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Outline

» Scope: Leverage efficiency speedup from tensor network to
traditional mesh-based solvers in the field of computational
fluid dynamics and multi-scale modeling and simulations of
PDEs.

P Kinetic equations: six-dimensional time dependent PDEs.

» Adaptive rank representation of high D PDE solutions

» 1D1V Vlasov model: explicit integration

» LoMaC: Locally Macroscopic Conservative projection
» 0D2V Fokker-Planck model: implicit integration

» High dimensional problems: Hierarchical Tucker tensor

» Qutlook for future directions.
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Boltzmann equation

Plasma dynamics may be described by the Boltzmann-Maxwell
system

ofs

af—i— Vf—i—m(E—i—va)Vf:C(f). (1)
with the electromagnetic fields E and B satisfying the Maxwell

equations,

oB OE
E——VXE, E—VXB—J,

V.-E=p, V-B=0,

with the charge density p = >~ gs [ fsdv the current density
J=>".9s [ fsvdv.
» fs(t,v,x) is the distribution function of particle of species s.

» 6D + time nonlinear dynamical systems.
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Curse of dimensionality of traditional mesh-based methods

Introduced by Bellman: to achieve a prescribed accuracy ¢, the
complexity of an algorithm scales like O(e=%/%) for a
d-dimensional problem,

» Sparse grid methods.

» Reduced order modeling.
» Low-rank tensor approximation of kinetic solutions.

» Dynamical low rank approximation (DLR): derive a set of
differential equations for the low-rank factors by projecting the
update onto the tangent space

» Step and Truncate(SAT): low rank truncation of a full rank
high order solver.

DLR: spatial discret. — low rank projection — temporal discret.
SAT : spatial discret. — temporal discret. — adaptive rank projection
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Explicit low rank integration of
1D1V Vlasov solutions
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Vlasov-Poisson 1D1V system

In the zero magnetic limit, the Vlasov-Maxwell system is reduced
to the Vlasov-Poisson system for electrons,

fr +v-Vxf 4+ E(x,t)-V,f=0, (2)

E( ) = —Vad(x 1), —Ded(x,t) = p(x, t) = / fdv 1. (3)
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A low rank idea for 1D1V Vlasov-Poisson system

» At the continuous level: Schmidt decomposition.

r(”)
foov,t) =32 (G7 U w), @)

j=1

> At the discrete level: SVD of A with Aj; = f(x;, v;).

Cn, Mt (bv(ZJ.n)T

(Om Nt

Frames in x and v-directions as orthogonal global basis for
function approximations. Storage: O(Nr). Low rank if r” < N.
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At the continuous level

1D1V VP system
fir+v- -+ E-f,=0.

Keep the phase space continuous, a low rank representation of
function f at t”

f(") X V) ZC ( J( )(”)( )

A forward Euler discretization of the VP system gives

Fr D (x,v) = 10 ¢ [UD O uP () - A

J

(2 U009 @ (U ) + (B @ ZUPD(W))],
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Dynamically and adaptively update basis and solutions
1 Add basis. Take the forward Euler method for example,
o (- ~(n) (1),(n) (2),(n)
s =555 67 (g7 2 yPt)
(1),(n) (2),(n) n (1),(n) (2),(n)
fAt(DXUj @vx U + B U @ D, U )}

Here D, and D, represent a differentiation matrix, e.g. from
spectral method or high order finite difference methods with
upwind principle.

3™ x 3" 3" x N

N x 3"
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2 SVD Truncation.

apply SVD and truncate

(a) (b)

ISE[ ] [

(UltlasT il y

(c) (d)

(a)—(b): perform Gram-Schmidt to obtain orthonormal basis;
(b)—(c): perform SVD on and truncate small singular values;
(c)—(d) update low rank form of solution at t"*1.
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Bump-on-tail instability

Truncation threshold ¢ = 10~4.

N, x N, = 64 x 128.
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Extension to high D: hierarchical Tucker decomposition

with periodic boundary conditions, a smooth initial condition

d =4 and T =27. For the low rank algorithm with N = 128 and
e = 1079, the CPU time is 4.2s, 7.8s, 14.2, 30.1s, 65.3s,

d
us + Z u, =0, xe&[-mn]?
m=1

u(x,t =0) = exp (—2(x7 + x3)) sin(x3 + xa),

respectively.

N | L2 error | order
16 | 2.56E-02
32 | 5.76E-03 | 2.15
64 | 1.41E-03 | 2.04
128 | 3.52E-04 | 2.00
256 | 8.09E-05 | 2.12
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Low rank approach for 1D1V Vlasov system

» Built upon traditional methods: high order spatial and
temporal accuracy.

» Explicit time stepping: evolve and truncate with low rank and
rank adaptive
» Extension to high D: via hierarchical Tucker representation of
high D functions
» Overcoming the CoD: CPU time only doubled with mesh
refinement, but not 2911,
Remaining issues:

» Loss of conservation with SVD truncation: conservative in the
"add basis step”; but conservation is destroyed in the
truncation step.

» Implicit time stepping
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Locally Macroscopic Conservative (LoMaC) Projection
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Macroscopic conservation

The VP system satisfies the macroscopic moment equations

ﬂt‘l‘vx'J:O
0+ Vy-0=—pE
Ore+Vy-Q=E-(E;—J).

> particle density: p(x,t) = [o f(x,v,t)dv

» current density: J(x,t) = fQ vi(x,v,t)dv

> kinetic energy density: k(x,t) = 5 fQ v2f(x, v, t)dv
> energy density: e(x, t) = k(x,t) + 1E2

> fluxes:

> a(x,t) = [ (v@ Vv)f(x,v,t)dv,
> Q(x,t) =5 [ wf(x,v,t)dv.
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» If a discretization of the VP system can reduce to a consistent
and conservative discretization for the macroscopic system,
then it is locally conservative. Local conservation leads to
global conservation.

» The discretization used in the adding bases step is locally
mass and momentum conservative. Conservation in energy
requires implicit energy conserving time integrators *.

» The mass, momentum and energy conservation is lost in the
SVD truncation step.

» We propose a mass, momentum and energy conservative SVD
truncation.

*Cheng, Christlieb, Zhong 2014
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General idea: orthogonal decomposition of f("*1) in the
add basis step

fn+1) — f1 + fo, flrt1) ¢ RNy,

> f; represents the orthogonal projection of f("*1) onto the
subspace W = span(1,, v, v?).

f1 = Py (FIM+Y)

» The orthogonal remainder f, contains zero mass, momentum
and kinetic energy,

fo = (I — Py)(F("1)
The compressed low rank solution at t("*1) s
f(n+1) =f + T(f2),

where 7T is the low rank truncation of f> with zero mass,
momentum and kinetic energy.
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Weighted inner product space

> Inner product space /2(Q,):

<f,g>n= ijngJWan
with weight function w. It can be viewed as a discrete analog

of < f,g >= [f(v)g(v)w(v)dv.
» One may choose w; = exp(—vj-2/2) to ensure

W c 2(Q,).

Such weight function will also ensure fi; have proper decay as
vV — 00.

» Subspace: W = span(1,, v, v?) for conservation of mass,
momentum and energy.
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Construction of f;

» Introduce the rescaled f = f x L

> perform the orthogonal projection of Py (f), s.t.

< PW(f),g >,=<f,g>,, VgeW.

» Then let
f1 = W % Pw(f)
Proposition.
fi=wx(a®1l,+oov+ao(v?-Cc), (6)
. 1\/7 2 w j — [
with ¢ = (G273, &0 = . @ = [ and & = (54 o,

and x € RMx are macroscopic charge, current and kinetic densities.
fi preserves the mass, momentum and kinetic energy of f.
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Weighted truncation of f,

Let f, = f("t1) — f;.
> f, is orthogonal to W in 12(Q,).
» A weighted SVD truncation for 7y, (f2)

f2 resc_a;ing fz _ f2 « \/]-W trunf)tion T(fz) res:i;ing \/W* T(sz)

» Update the solution f("*1) = f; + Tw(f2).

Proposition. 7, (f2) has zero density, zero current density, and
zero kinetic energy. Hence, p("t1), J(nt1)  (n+1) 3re preserved for
f(n+1) after the truncation. Furthermore, the method is locally
conservative with mass and momentum, as the full rank high order
method.
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Algorithm 1 The conservative truncation for the 1D1V VP system.

» Input: the pre-compressed low-rank solution at time t("+1):
fr(n+1) — ZR . C* U*’(l) ® U*7(2)
1= 1 1

» Output: the compressed low-rank solution "1 with
conservation on charge, current and kinetic energy density.

1. Compute p=(mt1) gu(nt1) on(ntl) ¢ RNx of £5(nt1) jn 5
low-rank fashion.

2. Compute fi =wx (a1 ®1, + o ®@v+ 3 ® (v? — ¢)) with ¢,
2, ¢z and ¢ from po(t1) | ge(nt1) - pex(nt1),

3. Perform the weighted SVD truncation of f, = f*("+1) _

4. Update the compressed low-rank solution by

f D) — £ + T, (F2).
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Bump-on-tail instability

[

@
8
X

>
2

relative deviation of total mass
relative deviation of total momentum

time

relative deviation of total mass

relative deviation of total momentum

Non-conservative (upper panels) and conservative (lower panels) method.
e=10"*%
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However, energy is not conserved

» Conservation of energy is of paramount importance to avoid
unphysical plasma self-heating or cooling.

» Existing full-rank methods with energy conservation require
implicit symplectic time integrators.

» Our work: an explicit LoMaC method by working with
macroscopic equations alongside with the kinetic Vlasov
model.

¢

relative deviation of total energy

\ —32x64
—64x128
128256
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Kinetic flux pr + Vx -J=0
Oef +v-Vxf +E-Vyf =0 Ord + Vy -0 = pE

—

Macroscopic densities ate + VX . Q == 0

1. Employ a conservative method for the macroscopic model
with kinetic flux vector splitting (KFVS) computed from f:

J
Vi - o =V, /fv
Q

dv

v2

N << =

2. Replace the macroscopic charge, current and kinetic energy
densities in f; by the ones from the macroscopic model.

fi=wx(a®1l,+0@v+a (v’ --7)),

with ¢, ¢1, ¢, and c3 depending on macroscopic charge, current
and kinetic energy density (p, J, e).
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mE mw Y ) '}J A
ﬁ o i _W i W’WN‘W m

Bump-on-tail instabilities. The time evolution of relative deviation
of total momentum and total energy from the energy conserving
method. Mesh N, x N, =128 x 256. ¢ = 10~%.




Reduced Augmentation Implicit Low rank (RAIL)
schemes for Fokker-Planck models
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The Fokker-Planck model and matrix differential equations
» The Fokker-Planck model

Ns 2
Zw{%% R (A

» F on velocity discretizations on tensor product of grids:
matrix differential equation

OF
ot
> Ex(F): explicit treatment as in step-and-truncate (SAT)
> Im(F): e.g. DiF + FDJ
» RAIL as implicit low rank integrators

OF
— =DiF +FDJ
ot 1F+FLD; (8)

= Ex(F) + Im(F) (7)

evolving the matrix F in the low rank format F = VXS(VY) 7.
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DIRK time discretization
Seek F' = V'S (V)T
> At the k-th stage, with t("%) = +(") 4 ¢, At k=1,2,....5.
k
F(n’k) = F(n) + Atz aeYy, (9)
/=1
with Y := DIVXS(V)T 4+ V*S(DvY) T,
» Final RK update of the solution:

s
FOr) = F) 4 At " bY, (10)
k=1
C1 all 0 oo 0
C2 ani dno ... 0
Cs | das1 ds? ... dss
by by ... bs
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Backward Euler: K-L steps
vx,(n+1)s(n+1)(vy,(n+1))T _ At(Dlvx,(n+l)s(n+l)(Vy,(n+1))T +Vx.(n+1)s(n+l)(Dzvy,(n+l))7') _ Vx,(n)sn(vy,(n

> Unknowns: V*:(7+1) s S("+1), (Vy,(n+1))T

»  Our strategy of divide and conquer: predict v (141 i KoL steps, and update s(m+1) via S-step.

P K step of size N X r: frozen and project around V{’(nJrl) = () (with O(At) error) gives the
Sylvester equation

KD — A KD — Ak (D) (D v (M) Ty (1) =y (mg(m), (11)

with K("+1) — Vx,(n+1)S(n+1)(Vy,(n+1))TV{v("+1) e RVXr,

> Perform QR factorization to K("*1) to obtain orthonormal basis V;'('Hl):
K(n+1) _ Vx,(n+1)R
Tt
»  Similarly for other dimensions:
oy 1 -
v ¢ ]RNX'(") Use V, ("+1) for orojection V;:"('H'l) c RergnJrl)

K and L equations
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Backward Euler: S step

P> Reduced augmentation: strike a balance between augmentation(enriching the subspaces as much as
possible) and reduced (truncation on redundancy)

1
Vvondl) [V?(n+1) [ vl ] c ]RNX(,i(anr )+r(”))'

aug

(12)

(n+1):Qx RS s ¥ (VX

— 00X T
g aug Naug — Qaug aug “aug aug)
———

X,
Vau
reduced QR SVD

X, (n+1 — . .
vt Qx Us (10 R),

y,(n+1 — . .
vt Qr UYL 1 R).

P>  S-step:

(1= e D)7 pyy (7)) (1) g(041) (p( Dy (D) Ty (41))

(VD)) Ty, (g (m) (v () Ty (1)

»  Finally, the updated solution VX’("+1)S("+1)(VY’("+1))T is truncated using an SVD-type procedure.
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Extensions to general DIRK and IMEX schemes

> BE:

P formal analysis to first order local truncation error (LTE)
> unconditional stability

»  General DIRK: per RK stage

P Prediction of basis: from BE and previous RK stages via reduced augmentation procedure
P K-L steps in updating basis
» S step in updating coefficients

»  General IMEX methods for a mixture of implicit-explicit treatment

RAIL IMEX integrators

u+ V- (ax,t)u) = V- (D-Vu) + é(x,t), x€Q, t>0,
Convection-diffusion: w(x, t = 0) = uo(x), xeq,
Low rank assumption: U) = VE(6)SE)(VY ()T
Spatial discretization: %U = Ex(U) + Im(U) + ®.

Table 2: Implicit Scheme “Table 3: Fxplicit Scheme
IMEX RK methods: 000 0 0 0 0o 0o o o

e |0 an 0 o0 e | 0 0 0

e |0 an an ... 0 e |G Gz O 0

0|0 ay on . o MR

0 by b2 ... b by by by by
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Rotational problem with diffusion: IMEX RAIL integrators

Up — YUy + TUy = d(Ugg + Uyy) + &, z,y € (—2m,2m)

4-‘ ‘ ‘ .
& 4 2 o0z 4 s+ 2 o0z 4 5 4 2 o 2 4 s

Figure 5: Various snapshots of the numerical solution to equation (3.3) with initial condition exp(—(z2+9y2)).
Mesh size N = 200, tolerance ¢ = 1.0E — 08, time-stepping size At = 0.15Az, initial rank 70 = 20, using

IMEX(4,4,3). Times: 0, w/4, /2.
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Swirling deformation problem with diffusion

u; — (cos® (z/2) sin (y)f(t)u) , + (sin () cos® (y/2)f(t)u)y = Ugg + Uyy, z,y € (—m,m) (
where we set f(t) = cos (wt/Ts)w. The initial condition is the smooth (with C® smoothness) cosine bell

b osb T”(w)ﬂ) if b b

r§ cos if rb(z,y) < 7|

u(z,y,t=0) = 0 ( ort s ( 79) 09
3 otherwise,

L' error
rank

IMEX111 6
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0D2V Lenard-Bernstein-Fokker-Planck equation

! s ‘ ¢ . 10
X p " . e 10°
@ T @ 1 @ | v N
. N i N = 10t
. =

[

Figure 9: Various snapshots of the numerical solution to equation (3.6) with initial condition fas1(vs, v,) + 0
Fa2(ve,v,). Mesh size N = 300, tolerance ¢ = 1.0E — 06, time-stepping size At = 0.15Az, initial rank

79 = 30, using IMEX(4,4,3). Times: 0, 0.25, 1. o

1072

0
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Tensor approach for high dimensional PDEs
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Low-rank tensor approximation of functions

» Huge amount of literature. Textbook by [Hachbusch 2012].

» The canonical polyadic (CP) tensor decomposition represents a
multivariate function as a sum of rank-one separable functions [Hitchcock
1927], [Carroll, Chang 1970], [Kolda, Bader 2009], ...).

» Tensor networks for sparse data tensor decomposition: the hierarchical
Tucker (HT) format ([Hackbusch, Kiihn 2009], [Grasedyck 2010], ...) and
the tensor train (TT) format ([Oseledets 2011], ...). Storage complexity:
linear scaling with the dimension.
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Tensor

Algebraically, a tensor is a multilinear array (this is a very
simplified setting).

a[l] = a[il, i, .. .,id] eR,

ieli={12,...,n}, I = iyl ac R' is called a d-th order

tensor. Example
» d =1, vector
» d = 2, matrix
» grid function based on the direct discretization of a

multivariate function f(x) on product grids,
alin, fay ... ig]l = f(irh,izh,- -+ Jigh). h: the mesh size.

» Storage cost: Hle n;, suffers the curse of dimensionality.
» Low rank decomposition to represent or approximate tensors of
high order in a data sparse format.
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Hierarchical Tucker (HT) format

To represent a four-order tensor in HT format, we define a
dimension tree.

» The storage complexity of the HT format scales like
O(ndr + dr?), where r = max,{r, € ry7}, avoiding the
exponential scaling on d.
> leaf node {j}, the basis u¥) of U; is explicitly stored
» at a non-leaf node «, the transfer tensor B(®) is stored
P a tensor already in the HT format can be truncated to smaller
HT rank with a quasi-optimal error bound, and the cost only
scales like O(dnr? + dr?), i.e., linear scaling with d.
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2D2V Vlasov-Poisson solution

Hierarchical Tucker tensor representation of order-four tensor

f(x1,x,v1, ).

with

y:(n

112

and

(3 4),(n
134

r2 34

Z Z (1234 ,(n) U(12)( )®U(34)(n)

i12,i34,1 i12 i34
i12=1 i34=1

(1,2),(n) g4(1),(n) @, .
Z Z 102,12 U/1 ® U , h2=1,...,

ih1=1ih=1

ZZ BENO YO0 ¢ y@ )

i3,ia,34
i3=1ip=1

(13)

rnoz,

(14)

y 34.
(15)
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2D2V Vlasov-Poisson equation

ft+V1fX1+V2fXQ+E1fv1 +E2fV2 :O7 (16)

As with the 1D1V case, in the adding basis step, we need to
discretize the derivatives term-by-term. For example,

Vlf;<1 ~ (V1 X Dxl)fn.

Treatment for v»f, is similar.
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2D2V Vlasov-Poisson equation, cond.

For Eif,,, assume El(") is in the HT format.

Eif, ~ (Ey® D,,)f("

E = (E1, E>) is solved by a low-rank conjugate gradient method
from Poisson’s equation .

TGrasedyck and Lébbert 2018
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2D2V Vlasov-Poisson equation: low rank truncation

» Matlab toolbox htucker ¥.

» Similar to SVD truncation of matrices, the HOSVD truncation
for hierarchical Tucker tensor consist of (1) orthogonalize the
frames and transfer tensors, (2) compute the reduced
Gramians and (3) the associated eigen-decompostion with
truncation.

> Cost: O (dNr? + (d —2)r*).
> Mass, momentum and energy conservative truncation are
being developed (rather involved).

IKressner, Tobler 2012
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Nonlinear Vlasov-Poisson: weak Landau damping

hierarc hical rank
]

electric energ

3 3

R )
—
3

(c) (d)

Weak Landau damping 2D2V. Truncation threshold in SVD is
e=1le—6. Ny x N, =162 x 322, 322 x 642 and 64> x 1282,
CPU time is 76s, 117s, and 265s, respectively. The time evolution
of the rank for 642 x 1282 (left), the electric energy (right)
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Nonlinear Vlasov-Poisson: strong Landau damping

E O e N

(a) (b) (c)

Strong Landau damping 2D2V. Hierarchical ranks. ¢ = 1073.
rmax = 32. (a) N2 x N2 =322 x 642. (b) N2 x N2 = 642 x 1282,
(c) N2 x N2 = 1282 x 2562. The CPU time is 438.9s, 1278.7s,
and 2606.4s.
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Nonlinear Vlasov-Poisson: strong Landau damping

Strong Landau damping 2D2V. & = 1073, rpa = 32. N2 x N2 = 1282 x 256°.
(a) 2D cut at (x2, v2) = (2m,0) t = 5. (b) 2D cut at (x1,x) = (27, 27) t = 5.
(c) 2D cut at (x2, v2) = (27,0) t = 30. (d) (x1,x) = (27, 27) t = 30.. 45 /48



Non-conservative low rank method for 2D2V two stream

instability. ¢ = 107°.

absolute total momenturm of J |

—3264 —3264
—64x128 — 64128
128256 128 256]

absolute total momentum of J ,

£
\/ =,
3260 5.
64128
128256
time

|

1283256 L4
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LoMaC low rank method for 2D2V weak Landau damping.
e=107°.

electric energy

relative deviation of total mass

i

relative deviation of total energy

absolute fotal momentum of J |

time
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Summary
» A low rank explicit tensor approach for the high dimensional
Vlasov equation

» RAIL algorithm as an implicit low rank approach for stiff
collisional terms

» A LoMaC projection for consistency with nonlinear
macroscopic conservation laws

Ongoing work
» A Krylov subspaces approach for implicit tensor integration.
» Multi-scale low rank approach for various kinetic models.

References:
» Low rank Vlasov equation: Guo & Q., JCP 2022
» LoMaC projection: Guo Q., SISC, arXiv: 2207.00518
» Reduced augmentation of implicit low rank method (RAIL),
Nakao, Q. & Einkemmer, arXiv: 2311.15143

Questions? Thank you!
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