

Benchmarking NISQ and QEC experiments with tensor networks

Benjamin Villalonga

S. Boixo, S. Mandrà, M. Newman, N. Shutty, K. Kechedzhi, S. Isakov, X. Mi, V. Smelyanskiy, and many others

Workshop on Tensor Networks IPAM @ UCLA Los Angeles 2024

Outline

1. Motivation

- The status quo of quantum computing experiments.
- Two use cases for tensor networks

2. Benchmarking large NISQ experiments

- A simulation problem
- Making brute force TN contractions less brute: the RCS case study
- Some results
- The future of NISQ applications: noise vs. computational volume

3. Decoding early QEC demonstrations

- The setup: 3 performance contributing factors
- The hyper-graph error model.
- The (maximum-likelihood) decoding problem
- A TN maximum-likelihood decoder for all hyper-graph error models
- Results

4. Conclusion

Outline

1. Motivation

- The status quo of quantum computing experiments.
- Two use cases for tensor networks
- 2. Benchmarking large NISQ experiments
 - A simulation problem
 - Making brute force TN contractions less brute: the RCS case study
 - Some results
 - The future of NISQ applications: noise vs. computational volume
- 3. Decoding early QEC demonstrations
 - The setup: 3 performance contributing factors
 - The hyper-graph error model.
 - The (maximum-likelihood) decoding problem
 - A TN maximum-likelihood decoder for all hyper-graph error models
 - Results

4. Conclusion

The status quo of quantum computing experiments

Useful or physically motivated applications (error mitigation):

• Topological phases of matter, majorana edge modes, non-abelian statistics (Satzinger et al. 2021, Mi et al. 2022, Andersen et al. 2022, ...)

NISQ

OEC

- Time crystals (Mi et al. 2022, ...)
- Information scrambling quantum systems (Mi et al. 2021)
- Floquet evolution of transverse field Ising model (Y. Kim et al., 2023)
- MERA implementation (Haghshenas et al. 2023)
- Dissipative cooling (Mi et al. 2023)
- Graph problems (Deng et al. 2023)
- Other experiments from Harvard/QuEra, IBM, Quantinuum, USTC, ...
- ...

Beyond-classical demonstration attempts (usually no error mitigation involved):

- Random circuit sampling (Arute et al. 2019, Wu et al., 2021, Zhu et al. 2022, Morvan et al. 2023, Bluvstein et al. 2024)
- Gaussian BosonSampling (Zhong et al. 2020, Zhong et al. 2021, Madsen et al. 2022, Deng et al. 2023)

Early demonstrations of quantum error correction:

- Surface code implementations (Krinner et al. 2022, Zhao et al. 2022)
- Surface code error suppression (Google 2022)
- Other codes (Ofek et al. 2016, Fluhmann et al. 2019, Champagne-Ibarcq et al. 2020, Grimm et al. 2020, Chen et al. 2021, Egan et al. 2021, Ryan-Anderson et al. 2021, Sundaresan et al. 2022)

Two use cases for tensor networks

NISQ

Benchmarking experiments with tensor networks

Jantum Al

QEC

Decoding (and benchmarking) with tensor networks

Outline

1. Motivation

- The status quo of quantum computing experiments.
- Two use cases for tensor networks

2. Benchmarking large NISQ experiments

- A simulation problem
- Making brute force TN contractions less brute: the RCS case study
- Some results
- The future of NISQ applications: noise vs. computational volume

3. Decoding early QEC demonstrations

- The setup: 3 performance contributing factors
- The hyper-graph error model.
- The (maximum-likelihood) decoding problem
- A TN maximum-likelihood decoder for all hyper-graph error models
- Results

4. Conclusion

A simulation problem (1/2)

Experiment

Characterization:

- Fidelity?
- Is the experiment giving right results?
- What kind of results do we expect?
- ...

Observable

- Probability amplitude
- Samples

•••

Challenging beyond-classical claims:

- What's the classical computational cost?
- What are the hardness guarantees?
- Is the experiment beyond-classical?
- ...

(classical) Simulation

A simulation problem (2 / 2)

Under special circumstances there are specialized techniques:

- Clifford circuits
- Clifford + T circuits
- Matchgate circuits
- Localized dynamics
- Large noise rates (hinder entanglement formation)
- ...

In the generic case we need brute force

Tensor network

- Observable
- Probability amplitude
- Samples

...

As quantity or primitive for it

Making brute force less brute: the RCS case study (1/3)

Estimate fidelity **f** (from samples) **f** > 0 within a few σ 's?

Can a classical computer perform this task (in a reasonable amount of time)?

Fairly strong complexity theory guaranties for the hardness of this task.

(Boixo et al. 2016, Aaronson et al. 2016, Bouland et al. 2019 & 2021, Movassagh et al. 2020, ...)

11101101... 01111011... 10110011... 11011110...

01001100...

01101101...

10110011...

01001101... 11110110... 01001111...

11010111... 11100110... 00101101... 10110001...

10111010...

Tensor network

Sampling algorithm (Markov et al. 2018):
1. Compute p(x) for bit strings x chosen uniformly at random
2. Accept x with probability p(x)N/M
Acceptance ratio 1/M ~ 1/10

Modified rejection sampling: frugal sampling

Classical adversary

Making brute force less brute: the RCS case study (2/3)

Order of contraction dramatically affects computational cost. Time and memory requirements lower bounded by **treewidth of line graph** (Markov & Shi 2008)

Goal: optimize tensor network contraction ordering (O). (Gray & Kourtis 2020)

Memory?

Quantum Al

For current experiments this leads memory requirements ~10 $^4\times$

the total memory of the largest supercomputer on Earth

Solution: project (slice) a set of variables (S) and perform sum *a posteriori* (Alibaba, 2018).

Alleviates memory requirements *and* parallelizes computation

Need to contract an exponential number TNs

Making brute force less brute: the RCS case study (3/3)

Optimization problem:

Contraction cost is function of ordering and slices **C(O, S)**. Memory usage **M(O, S)<M*** (total memory available).

Pedantic detail of our encoding:

We take slices from an ordered set of candidates **P** until **M<M*** is satisfied, so our cost function is really **C(O, P)**. Contraction cost is function of ordering and slices **C(O, S)**.

Plethora of "tricks" from the literature can be beneficial in practice:

- Sparse output: so millions of amplitudes can be computed with a single contraction (F. Pan et al. 2021)
- Details of hardware gates: fSim gate can be exploited for faster contractions (Google 2019 & F. Pan et al. 2021)
- Memoization: reuse of intermediate computations across branches of the computation (Kalachev et al. 2021)
- Experimental fidelity: low target fidelity speeds up simulation (Markov et al. 2018, Villalonga et al. 2019)

All these accounted for in **C(O, P)**.

Highly optimized evaluation of **C(O, P)**. Current experiments are close to ~1000 two-qubit gates.

Quantum Al

Example results (1/2)

Optimized runtimes for RCS experiments:

Exp.	1 amp.	1 million noisy samples		
	FLOPs	FLOPs	XEB fid.	Time
SYC-53 [4]	6×10^{17}	2×10^{17}	2×10^{-3}	6 s
ZCZ-56 [5]	6×10^{19}	6×10^{19}	6×10^{-4}	$20 \min$
ZCZ-60 [6]	1×10^{21}	1×10^{23}	3×10^{-4}	$40 \mathrm{~days}$
SYC-70	5×10^{23}	6×10^{25}	2×10^{-3}	$50 { m yr}$
		2×10^{37}		$1 \times 10^{13} { m yr}$
SYC-67	2×10^{23}	2×10^{28}	1×10^{-3}	$1 \times 10^4 { m yr}^*$
		2×10^{25}		$12 \mathrm{~yr}^{**}$

Parallelizing over independent GPUs on Frontier *Assuming distributed contractions over all RAM.

**Assuing distributed contractions using secondary storage.

*&** without inter-node communication times (for stronger adversary against BC claim)

Google, 2023

Example results (1/2)

Complexity vs. circuit size:

Google, 2023

2D architecture ($L \times L$) similar to experiment

- At low depth, cost **exp(d × L)**
- At large depth, cost exp(L × L) = exp(#qubits)

The future of NISQ applications: noise vs. computational volume

Signal (fidelity) decreases exponentially with volume of computation (for generic circuits, ~#two-qubit gates).

Computations are limited to finite sizes, which limits their classical computational cost.

RCS experiments beyond classical?

Strongly established

Useful / physical experiments beyond classical?

Not yet

Strongly supported by highly optimized TN contraction results

Will there be a useful NISQ application before QEC is achievable?

Outline

1. Motivation

- The status quo of quantum computing experiments.
- Two use cases for tensor networks
- 2. Benchmarking large NISQ experiments
 - A simulation problem
 - Making brute force TN contractions less brute: the RCS case study
 - Some results
 - The future of NISQ applications: noise vs. computational volume

3. Decoding early QEC demonstrations

- The setup: 3 performance contributing factors
- The hyper-graph error model.
- The (maximum-likelihood) decoding problem
- A TN maximum-likelihood decoder for all hyper-graph error models
- Results

4. Conclusion

The setup: 3 performance contributing factors (1/2)

For low enough error rates:

- Encode logical operators (qubit) over many physical qubits
- Early demonstration with **memory experiment:**
 - Initialize system in eigenstate of **X** or **Z**
 - Run several rounds of surface code, each one measuring parity checks (operators)
 - Decode: infer from parity checks whether logical operator has changed value
- Decoding has as input an understanding of physical errors: error model

What determines the quality of the experiment (of the logical qubit)?

- Hardware: roughly physical error rates
- Error model
- Decoder

🚺 Quantum Al

The setup: 3 performance contributing factors (2/2)

Detectors — comparisons of measurements that should agree

Detection events — when they don't

From detection events, can we make a guess on the the logical operator flipped/not flipped?

The hyper-graph error model

The (maximum-likelihood) decoding problem

Quantum AI Maximum likelihood decoding = **optimal** decoding

A tensor network ML decoder for all hyper-graph error models (1/5)

Error model (**p**_i+ graph)

$$\Pr(\vec{e}) = \prod_{i} p_i^{e_i} \cdot (1 - p_i)^{1 - e_i}$$
$$\vec{d} = \vec{f}(\vec{e}) \text{ and } \vec{l} = \vec{g}(\vec{e})$$
$$I(\vec{l}\vec{d}) \propto \sum_{i=1}^{n} \Pr(\vec{e})$$

$$L\left(l|d
ight) \propto \sum_{\vec{e}: \left[\vec{f}(\vec{e}) = \vec{d}
ight] \wedge \left[\vec{g}(\vec{e}) = \vec{l}
ight]} \Pr(\vec{e})$$

A tensor network ML decoder for all hyper-graph error models (2/5)

(Initial proponent: Bravyi et al. 2014)

$$Pr(\vec{e}) = \prod_{i} p_{i}^{e_{i}} \cdot (1 - p_{i})^{1 - e_{i}}$$

$$\vec{d} = \vec{f}(\vec{e}) \text{ and } \vec{l} = \vec{g}(\vec{e})$$

$$L\left(l_{0}|\vec{d}\right) \propto \sum_{\vec{e}:[\vec{f}(\vec{e})=\vec{d}] \land [\vec{g}(\vec{e})=\vec{l}]} Pr(\vec{e})$$

$$L\left(l_{0}|\vec{d}\right) = \begin{bmatrix} L\left(l_{0}|\vec{d}\right) = 0 \\ \vec{e}:[\vec{f}(\vec{e})=\vec{d}] \land [\vec{g}(\vec{e})=\vec{l}] \end{bmatrix}$$

$$L\left(l_{0}|\vec{d}\right) = \begin{bmatrix} 1 \text{ if } \alpha_{0} + \alpha_{1} + \dots \text{ even} \\ 0 \text{ if } \alpha_{0} + \alpha_{1} + \dots \text{ odd} \end{bmatrix}$$

$$Trove (e_{i}) = Constant (d_{i})$$

$$\vec{e}:[\vec{f}(\vec{e})=\vec{d}] \land [\vec{g}(\vec{e})=\vec{l}]$$

(Piveteau et al. 2023 also uses error hyper-graph as starting point)

Quantum Al

Enforces right parity with d_j and l_k Kills error configurations that

violate constraints

A tensor network ML decoder for all hyper-graph error models (3/5)

Quantum Al

A tensor network ML decoder for all hyper-graph error models (4/5)

A tensor network ML decoder for all hyper-graph error models (5/5)

Approximate contraction: MPS evolution with finite χ (left to right) Decoding:

 $L\left(l_0=0|\vec{d}
ight) \ge L\left(l_0=1|\vec{d}
ight)$

Results (1/2)

Milestone experiment on error suppression using the surface code Google, 2023 - *Nature* 614, no. 7949 (2023): 676-681

Results (2/2)

Benchmarking performance of faster / scalable decoders N. Shutty, M. Newman, **BV**, 2024 - *arXiv:2401.12434* (2024)

Benchmark of Harmony

Quantum Al

detectors Complexity error mechanisms $\propto d^2$ $\propto d^2 r$

O(d⁴rχ³)

Outline

1. Motivation

- The status quo of quantum computing experiments.
- Two use cases for tensor networks
- 2. Benchmarking large NISQ experiments
 - A simulation problem
 - Making brute force TN contractions less brute: the RCS case study
 - Some results
 - The future of NISQ applications: noise vs. computational volume

3. Decoding early QEC demonstrations

- The setup: 3 performance contributing factors
- The hyper-graph error model.
- The (maximum-likelihood) decoding problem
- A TN maximum-likelihood decoder for all hyper-graph error models
- Results

4. Conclusion

Quantum Al

Conclusion

Two applications of tensor networks to experimental quantum computing:

- Highly-optimized tensor network contraction for benchmarking NISQ experiments:
 - Strong evidence for RCS being beyond classical
 - Insightful method to challenge useful beyond-classical claims
- Decoding for QEC:
 - Decode *arbitrary* error hyper-graph codes
 - Benchmark experimental hardware and error model quality
 - Benchmark performance of fast, scalable decoders

References

Latest RCS paper: Google, arXiv:2304.11119 (2023)

Surface code error suppression: Google, Nature 614, no. 7949 (2023): 676-681

Harmony decoding: Noah Shutty, Michael Newman, and Benjamin Villalonga, arXiv:2401.12434 (2024)

Acknowledgements

Salvatore Mandrà, Guifre Vidal, Sergio Boixo, Noah Shutty, Michael Newman, Hartmut Neven, K. Kechedzhi, S. Isakov, X. Mi, V. Smelyanskiy, ... and lots of people at Google Quantum Al

🚺 Quantum Al