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The status quo of quantum computing experiments
Useful or physically motivated applications (error mitigation):

● Topological phases of matter, majorana edge modes, non-abelian statistics (Satzinger et al. 2021, Mi et al. 2022, Andersen 
et al. 2022, …)

● Time crystals (Mi et al. 2022, …)
● Information scrambling quantum systems (Mi et al. 2021)
● Floquet evolution of transverse field Ising model (Y. Kim et al., 2023)
● MERA implementation (Haghshenas et al. 2023)
● Dissipative cooling (Mi et al. 2023)
● Graph problems (Deng et al. 2023)
● Other experiments from Harvard/QuEra, IBM, Quantinuum, USTC, …
● . . .

Beyond-classical demonstration attempts (usually no error mitigation involved):
● Random circuit sampling (Arute et al. 2019, Wu et al., 2021, Zhu et al. 2022, Morvan et al. 2023, Bluvstein et al. 2024)
● Gaussian BosonSampling (Zhong et al. 2020, Zhong et al. 2021, Madsen et al. 2022, Deng et al. 2023)

Early demonstrations of quantum error correction:
● Surface code implementations (Krinner et al. 2022, Zhao et al. 2022)
● Surface code error suppression (Google 2022)
● Other codes (Ofek et al. 2016, Fluhmann et al. 2019, Champagne-Ibarcq et al. 2020, Grimm et al. 2020, Chen et al. 2021, Egan et 

al. 2021, Ryan-Anderson et al. 2021, Sundaresan et al. 2022)

QEC

NISQ



Two use cases for tensor networks
NISQ

Benchmarking experiments with tensor networks

Exploiting structure: 
compressibility, low 
entanglement, …

Worst case:
brute force contraction

OTOC
(Mi, et al. 2021)

RCS
(Boixo, et al. 2017)

QEC
Decoding (and benchmarking)  with tensor networks

● Mapping decoding 
to TN contraction

● Contract efficiently

Surface code
(Google. 2023)
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A simulation problem (1 / 2)

● Observable

● Probability amplitude

● Samples

● …

Experiment

Characterization:

● Fidelity?
● Is the experiment giving right results?
● What kind of results do we expect?
● …

Challenging beyond-classical claims:

● What’s the classical computational cost?
● What are the hardness guarantees?
● Is the experiment beyond-classical?
● …

(classical) Simulation



A simulation problem (2 / 2)
Under special circumstances there are specialized techniques:

● Clifford circuits
● Clifford + T circuits
● Matchgate circuits
● Localized dynamics
● Large noise rates (hinder entanglement formation)
● …

In the generic case we need brute force

Circuit Tensor network

● Observable

● Probability amplitude

● Samples

● …

As quantity or primitive for it 



Making brute force less brute: the RCS case study (1/3)

11101101...
01111011...
10110011...
11011110...
01001100...
01101101...
10001100...
10110011...
11010101...
01001101...
11110110...
01001111...
00110000...
11010111...
11100110...
00101101...
10110001...
10111010...

Random Circuit Sampling (RCS)

N (~106)

Estimate fidelity f (from samples)
f > 0 within a few 𝛔’s?

Can a classical computer perform this task (in a 
reasonable amount of time)?
Fairly strong complexity theory guaranties for 
the hardness of this task.
(Boixo et al. 2016, Aaronson et al. 2016, Bouland et al. 2019 & 
2021, Movassagh et al. 2020,  …)

Sampling algorithm (Markov et al. 2018):

1. Compute p(x) for bit strings x chosen 
uniformly at random

2. Accept x with probability p(x)N/M

Acceptance ratio 1/M ~ 1/10

Modified rejection sampling: frugal sampling

11101101...
01111011...
10110011...
11011110...
01001100...
01101101...
10001100...
10110011...
11010101...
01001101...
11110110...
01001111...
00110000...
11010111...
11100110...
00101101...
10110001...
10111010...

Tensor network

Classical adversary



Making brute force less brute: the RCS case study (2/3)

Aa

Babcd Tijkl

Order of contraction dramatically affects computational cost.
Time and memory requirements lower bounded by treewidth of line graph 
(Markov & Shi 2008)

p(x) =

Goal: optimize tensor network contraction ordering (O). (Gray & Kourtis 2020)
Memory?
For current experiments this leads memory requirements  ~104⨉
the total memory of  the largest supercomputer on Earth
Solution: project (slice) a set of variables (S) and perform sum a posteriori (Alibaba, 2018). 
✅Alleviates memory requirements and parallelizes computation
❎Need to contract an exponential number TNs



Making brute force less brute: the RCS case study (3/3)
Optimization problem:
Contraction cost is function of ordering and slices C(O, S).
Memory usage M(O, S)<M* (total memory available).

Pedantic detail of our encoding:
We take slices from an ordered set of candidates P until 
M<M* is satisfied, so our cost function is really C(O, P).
Contraction cost is function of ordering and slices C(O, S).

Plethora of “tricks” from the literature can be beneficial in practice:
● Sparse output: so millions of amplitudes can be computed with a single contraction (F. Pan et al. 2021)
● Details of hardware gates:  fSim gate can be exploited for faster contractions (Google 2019 & F. Pan et al. 2021)
● Memoization: reuse of intermediate computations across branches of the computation (Kalachev et al. 2021)
● Experimental fidelity: low target fidelity speeds up simulation (Markov et al. 2018, Villalonga et al. 2019)

All these accounted for in C(O, P).
Highly optimized evaluation of C(O, P). Current experiments are close to ~1000 two-qubit gates.



Example results (1/2)

Optimized runtimes for RCS experiments:

Parallelizing over independent GPUs on Frontier
*Assuming distributed contractions over all RAM.
**Assuing distributed contractions using 
secondary storage.
*&** without inter-node communication times 
(for stronger adversary against BC claim)

Google, 2023



Example results (1/2)

Complexity vs. circuit size:

2D architecture (L ⨉ L) similar to experiment
● At low depth, cost exp(d ⨉ L)
● At large depth, cost exp(L ⨉ L) = exp(#qubits)

Google, 2023



The future of NISQ applications: noise vs. computational volume

Signal (fidelity) decreases exponentially with volume of computation (for generic circuits, ~#two-qubit gates).

Computations are limited to finite sizes, which limits their classical computational cost.

RCS experiments beyond classical?

Strongly established

Useful / physical experiments beyond classical?

Not yet

Strongly supported by highly optimized TN contraction results

Will there be a useful NISQ application before QEC is achievable?
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The setup: 3 performance contributing factors (1/2)

For low enough error rates:
● Encode logical operators (qubit) over many physical qubits
● Early demonstration with memory experiment: 

○ Initialize system in eigenstate of X or Z
○ Run several rounds of surface code, each one measuring parity 

checks (operators)
○ Decode: infer from parity checks whether logical operator has 

changed value
● Decoding has as input an understanding of physical errors: error 

model

What determines the quality of the experiment (of the logical qubit)?
● Hardware: roughly physical error rates
● Error model
● Decoder



The setup: 3 performance contributing factors (2/2)

Detectors — comparisons 
of measurements that 
should agree

Detection events — 
when they don’t

0     0     0     1detector

detection 
event

detector detector

From detection events, can we make a guess on the the logical operator flipped/not flipped?



The hyper-graph error model

X

0.9%
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Z-stabilizer

X-stabilizer We are trying to infer this one

Input to decoder (from experiment)



Logical 
meas. 
flipped?

Most likely error…

… might not belong 
to the most likely 
set of errors.

Logical 
meas. 
flipped?

Logical 
meas. 
flipped?

Logical 
meas. 
flipped?

Maximum likelihood decoding = optimal decoding

The (maximum-likelihood) decoding problem



A tensor network ML decoder for all hyper-graph error models (1/5)

Experiment (dj)Hidden (ei)

Trying to infer (lk)

Error model (pi+ graph)



Decoding:

A tensor network ML decoder for all hyper-graph error models (2/5)

Experiment (dj)

Propagates error to:
● Detectors
● Logical operator(s)  

Two ways of seeing it:
● Enforces right parity with dj and lk
● Kills error configurations that 

violate constraints

Errors (ei)

(Piveteau et al. 2023 also uses error 
hyper-graph as starting point)

(Initial proponent: Bravyi et al. 2014)



A tensor network ML decoder for all hyper-graph error models (3/5)

Exact contraction not scalable

Approximate contraction?

Graph structure is adjacency matrix of 
error hyper-graph



A tensor network ML decoder for all hyper-graph error models (4/5)

=

error: (1-pi , p)

parity

parity & copy

copy & copy



A tensor network ML decoder for all hyper-graph error models (5/5)

error: (1-pi , p)

parity

parity & copy

copy & copy

Approximate contraction:
MPS evolution with finite 𝛘
(left to right)

Decoding: ?



Results (1/2)

Milestone experiment on error suppression using the surface code
Google, 2023 - Nature 614, no. 7949 (2023): 676-681
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Results (2/2)

Benchmarking performance of faster / scalable decoders
N. Shutty, M. Newman, BV, 2024 - arXiv:2401.12434 (2024)

Benchmark of Harmony
Convergence

Complexity

O(d4r𝛘3)
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Conclusion
Two applications of tensor networks to experimental quantum computing:

● Highly-optimized tensor network contraction for benchmarking NISQ experiments:
○ Strong evidence for RCS being beyond classical
○ Insightful method to challenge useful beyond-classical claims

● Decoding for QEC:
○ Decode arbitrary error hyper-graph codes
○ Benchmark experimental hardware and error model quality
○ Benchmark performance of fast, scalable decoders
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