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Non-Commutative Optimization

General setting

Tensor Action (main example):
Action of group G = SLm1 ×⋯ × SLmp on space of tensors
V = Cm1 ⊗⋯⊗Cmp via tensor product

Baby example: conj. action of G = GLn on V = Cn×n, π(g)(A) = gAg−1

General setting:

▸ Algebraic subgroup G ≤ GLn closed under g ↦ g∗ (complex
reductive group), e.g., Tn ∶= (C∗)n, GLn, SLn or products

▸ Regular representation π∶G → GL(V ) on f.d. C-Hilbert space V :
G acts on V by linear transformations

▸ Maximal compact subgroup K = G ∩Un of G

▸ Assume K acts isometrically on V

▸ Orbit Gv ∶= {π(g)v ∣ g ∈ G} of v ∈ V has closure Gv
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Non-Commutative Optimization

Norm minimization

▸ For given v ∈ V (approximately) compute g ∈ G such that π(g)v
has minimal norm:

▸ Capacity of v : cap(v) ∶= infg∈G ∥π(g)v∥
▸ Conj. of matrices:

diagonal matrix w with same eigenvalues as v minimizes norm

▸ Shortest vector w is uniquely determined up to unitary action
(Kempf-Ness 1978)
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Non-Commutative Optimization

Geodesic convexity
▸ Use techniques from convex optimization on Riemannian manifolds

▸ Riemannian geometry induced by Lie group symmetry

▸ For simplicity: G = GLn,K = Un

▸ Want to minimize Fv ∶G → R, g ↦ log ∥π(g)v∥

▸ Cone PSDn of hermitian psd matrices has natural Riemannian
metric (invariant under conjugation)

▸ Induced map F̃v ∶PSDn → R, X ↦ 1
2

log⟨π(X )v , v⟩ is geodesically
convex (implicit in Kemp-Ness 1978)



Non-Commutative Optimization

Geodesic convexity
▸ Use techniques from convex optimization on Riemannian manifolds

▸ Riemannian geometry induced by Lie group symmetry

▸ For simplicity: G = GLn,K = Un

▸ Want to minimize Fv ∶G → R, g ↦ log ∥π(g)v∥

▸ Cone PSDn of hermitian psd matrices has natural Riemannian
metric (invariant under conjugation)

▸ Induced map F̃v ∶PSDn → R, X ↦ 1
2

log⟨π(X )v , v⟩ is geodesically
convex (implicit in Kemp-Ness 1978)



Non-Commutative Optimization

Dual norm minimization (or scaling)
▸ We want to minimize

Fv ∶G → R, g ↦ log ∥π(g)v∥

▸ Consider derivative or gradient µ(v) ∈ Lie(G) ⊆ Cn×n at g0 = I of Fv

▸ Conj. of matrices: µ(A) = ∥A∥−2
F (AA∗ −A∗A)

▸ Tensor action: for v ∈ Cm1 ⊗⋯⊗Cmp , have µ(v) = (ρ1, . . . , ρp),
where ρk = trk(vv∗) ∈ Cmi×mi is kth partial trace, e.g.,

(ρ1)ij = ∑
i2,...,ip

vii2...ip v̄ji2...ip .

▸ Dual norm minimization:
For given v ∈ V (approximately) compute g ∈ G such that
∥µ(π(g)v)∥F has minimal norm

▸ Kempf-Ness: Suppose cap(v) > 0. Then

w ∈ Gv has minimal norm iff µ(w) = 0
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Non-Commutative Optimization

First order algorithm for scaling
▸ Developed gradient descent algorithm: given v ∈ V such that

cap(v) > 0, it outputs g ∈ G such that ∥µ(π(g)v)∥F ≤ ε, with
number of iterations

4N(π)2

ε2
log

∥v∥
cap(v)

▸ Hilbert associated with a representation π its null cone

N (π) ∶= {v ∈ V ∣ cap(v) = 0} = {v ∈ V ∣ 0 ∈ Gv}

Conj. of matrices: N (π) consists of nilpotent matrices

▸ Can use above algorithm for testing membership to the null cone.

▸ This is a special case of moment polytope membership problem, of
relevance in quantum information theory.

▸ Developed and analyzed gradient descent algorithm for p-scaling and
deciding (approximate) membership to moment polytopes.
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Non-Commutative Optimization

Algorithm for deciding null cone membership

▸ We shall identify gap parameters γ(π) and c(π) such that

∀v ∈ V ∖ 0 cap(v) = 0Ô⇒ inf
g∈G

∥µ(π(g)v)∥F ≥ γ(π)

∀v ∈ V (Z[i]) cap(v) > 0Ô⇒ cap(v) ≥ c(π)
▸ Run gradient descent on v for T = 16N(π)

γ(π)2 log ( ∥v∥
c(π)
) iterations,

producing g1, . . . ,gT .

▸ If ∥µ(π(gt)v)∥F ≤ 1
2
γ(π) for some t ≤ T , then output “cap(v) > 0”.

Otherwise, output “cap(v) = 0”.
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Non-Commutative Optimization

Critical complexity parameter

▸ Gradient descent decides membership to null cone with # iterations

T = 16N(π)
γ(π)2

log ( ∥v∥
c(π))

▸ # iterations is poly bounded in weight norm N(π) ≤ degree,
log ∥v∥, log c(π)−1, and γ(π)−1.

▸ Thm. log c(π)−1 ≤ poly(m,n,d) for homogeneous polynomial
representations π∶SL(n)→ GL(m) of degree d , e.g., when π given
in Gelfand-Tsetlin basis.

▸ Proof based on deep general results from invariant theory: (1)
Derksen’s general degree bound for a system of generators of ring of
invariants. (2) Analysis of Cayley’s Ω-process for SLn.

▸ So c(π) is harmless, γ(π) is the critical parameter.
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Non-Commutative Optimization

Weight margin
▸ Can cleanly identify a dual gap parameter γ(π)
▸ For simplicity assume G = GLn or G = Tn

▸ Let Ω(π) ⊆ Zn be the set of weights of π
▸ Define the weight margin γ(π) as the minimum distance between 0

and the convex hull of any subset of Ω(π) which does not contain 0

▸ Prop. The weight margin γ(π) is a dual gap parameter.
▸ Thm. GL-representations of quivers (e.g. L/R action) have inverse

polynomial lower bounds for γ(π). (Key insight: totally unimodular
matrix of weights.) Scaling algorithm for null cone is poly time.

▸ For tensor action γ(π) can get exponentially small [Kravtsov, Franks &

Reichenbach]

▸ More sophisticated analysis in [Franks & Reichenbach, CCC 21]



Non-Commutative Optimization

Weight margin
▸ Can cleanly identify a dual gap parameter γ(π)
▸ For simplicity assume G = GLn or G = Tn

▸ Let Ω(π) ⊆ Zn be the set of weights of π
▸ Define the weight margin γ(π) as the minimum distance between 0

and the convex hull of any subset of Ω(π) which does not contain 0

▸ Prop. The weight margin γ(π) is a dual gap parameter.
▸ Thm. GL-representations of quivers (e.g. L/R action) have inverse

polynomial lower bounds for γ(π). (Key insight: totally unimodular
matrix of weights.) Scaling algorithm for null cone is poly time.

▸ For tensor action γ(π) can get exponentially small [Kravtsov, Franks &

Reichenbach]

▸ More sophisticated analysis in [Franks & Reichenbach, CCC 21]



Non-Commutative Optimization

Weight margin
▸ Can cleanly identify a dual gap parameter γ(π)
▸ For simplicity assume G = GLn or G = Tn

▸ Let Ω(π) ⊆ Zn be the set of weights of π
▸ Define the weight margin γ(π) as the minimum distance between 0

and the convex hull of any subset of Ω(π) which does not contain 0

▸ Prop. The weight margin γ(π) is a dual gap parameter.
▸ Thm. GL-representations of quivers (e.g. L/R action) have inverse

polynomial lower bounds for γ(π). (Key insight: totally unimodular
matrix of weights.) Scaling algorithm for null cone is poly time.

▸ For tensor action γ(π) can get exponentially small [Kravtsov, Franks &

Reichenbach]

▸ More sophisticated analysis in [Franks & Reichenbach, CCC 21]



Non-Commutative Optimization

Quantitative duality

Thm.
For v ∈ V ∖ 0 we have

1 − ∥µ(v)∥F
γ(π) ≤ cap(v)2

∥v∥2
≤ 1 − ∥µ(v)∥2

F

4N(π)2

This again shows “µ(v) = 0⇒ ∥v∥ = cap(v)”, but turns this into a
quantitative statement.

Another consequence: weight margin indeed gives dual gap. If
cap(v) = 0, then

γ(π) ≤ min
g∈G

∥µ(gv)∥F
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Non-Commutative Optimization

Null cone membership: previously known results
▸ Simultaneous LR-action: G = SLn × SLn acts on V = (Cn×n)m:

π(g ,h)(A1, . . . ,Am) ∶= (gA1h
T , . . . ,gAmh

T )

▸ Alternating minimization algorithm by [Gurvits 2004)], generalizing
Sinkhorn’s algorithm, shown to be poly time in [Garg, Gurvits, Oliveira,

Wigderson 2016] using invariant theory

▸ Algebraic poly time algorithms [Ivanyos, Qiao, Subrahmanyam 2017]

works in any char

▸ Tensor action: Alternating minimization algorithm by [Verstrate et al

2004] analyzed by [B, Franks, Garg, Oliveira, Walter, Wigderson 2018].
However, only get exponential time algorithm!

Are there poly time algorithms for null cone
memberships for tensors?
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Non-Commutative Optimization

Second order algorithm
Generalize [Allen-Zhu, Garg, Li, Oliveira, Wigderson 18] from L/R action.

For given v ∈ V ∖ 0 and κ, ε > 0, add to Fv a regularizing term
F (g) ∶= Fv(g) + ε

κ
reg(g), where reg(g) ∶= ∥g∥2

F + ∥g−1∥2
F upper bounds

condition number κF (g) ≤ reg(g).
Algorithm:

▸ Set g0 = I .

▸ For t = 0, . . . ,T − 1:
1 Compute the geodesic gradient L ∶= ∇F(gt) and Hessian

Q ∶= ∇2F(gt) at gt .
2 Solve the following (Euclidean) convex quadratic optimization

problem:

Ht ∶= argmin{tr[LH] + 1

2e
tr[Q(H ⊗H)] ∶ H ∈ iLie(K), ∥H∥F ≤ 1

4N(π)}

3 Set gt+1 ∶= eHt/e
2

gt .

▸ Return gT .
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Second order algorithm
Generalize [Allen-Zhu, Garg, Li, Oliveira, Wigderson 18] from L/R action.

For given v ∈ V ∖ 0 and κ, ε > 0, add to Fv a regularizing term
F (g) ∶= Fv(g) + ε

κ
reg(g), where reg(g) ∶= ∥g∥2

F + ∥g−1∥2
F upper bounds

condition number κF (g) ≤ reg(g).
Algorithm:

▸ Set g0 = I .

▸ For t = 0, . . . ,T − 1:
1 Compute the geodesic gradient L ∶= ∇F(gt) and Hessian

Q ∶= ∇2F(gt) at gt .
2 Solve the following (Euclidean) convex quadratic optimization

problem:

Ht ∶= argmin{tr[LH] + 1

2e
tr[Q(H ⊗H)] ∶ H ∈ iLie(K), ∥H∥F ≤ 1

4N(π)}

3 Set gt+1 ∶= eHt/e
2

gt .

▸ Return gT .
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Analysis of second order algorithm
▸ Assume cap(v) > 0 and put C ∶= log(∥v∥/cap(v)).
▸ Suppose there is a well-conditioned approximate minimizer g⋆ s.t.

log∥π(g⋆)v∥ ≤ log cap(v) + ε, reg(g⋆) ≤ κ.
▸ Then the second order algorithm, with #iterations

T ≥ 8e2N(π)
√
n (logκ + log (1 + C

ε
)) log (C

ε
)

returns a group element g ∈ G = GLn such that

log∥π(g)v∥ ≤ log cap(v) + 3ε.

▸ Show existence of well-conditioned approximate minimizer by
analyzing the flow of gradient vector field of G → R, g ↦ 1

2
∥π(g)v∥2.

▸ Obtain running time polynomial in γ(π)−1, log ε−1, while gradient
descent had polynomials dependence on ε−1.

▸ Due to γ(π)−1 dependence still don’t get poly time for null cone
membership.
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Open problems

▸ Is the null cone membership problem for general group actions in P?
E.g., for tensor action?

▸ Intermediate goal: in NP ∩ coNP?

▸ Same question may be asked about the moment polytope
membership problem for general group actions. Note that
membership in “global moment polytopes” is known to be in
NP ∩ coNP [BCMW17].

▸ In the non-commutative case, our algorithms’ guarantees do not
match those of ellipsoid or interior point methods.

▸ Can we extend non-commutative/geodesic optimization to include
interior point methods? (Possible in the commutative case [B, Li,

Nieuwboer, Walter 2020].)

▸ Can geodesic optimization lead to new efficient algorithms in
combinatorial optimization?
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Thank you for listening
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