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Definition

• pick field F I usually pick the complex numbers
• pick an order k I usually pick k=2 (matrix case) or k=3
• pick number d  not so relevant as long as large enough

• A tensor t is an element in 𝐹!⨂𝐹!⨂…⨂F! (k factors)

• k=2 matrix case                     k=3
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Restriction

• Pick t in 𝐹!⨂𝐹!⨂…⨂F! and t’ in 𝐹!"⨂𝐹!"⨂…⨂F!" (k factors)
• We say that t restricts to t’ (𝒕 ≥ 𝒕")

if there are matrices: 𝑎#, 𝑎$, … , 𝑎%s.th. (𝑎#⨂a$…⨂a&)𝑡 = 𝑡′
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Direct sum

• 𝑡⨁𝑡" in (𝐹!⨁𝐹!!)⨂(𝐹!⨁𝐹!!)⨂…⨂(𝐹!⨁𝐹!!)

<d>:=unit tensor size d=diagonal size d



Tensor product

• 𝑡⨂𝑡" in (𝐹!⨂𝐹!!)⨂(𝐹!⨂𝐹!!)⨂…⨂(𝐹!⨂𝐹!!)

⨂ =

⨂ = ⨂ =



Matrix rank

• monotone, i.e.
non-increasing under restriction

• additive
under direct sum

• multiplicative
under tensor product

• normalized
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Rank zoo

• What do they have in common? 
• monotone, normalized, but not multiplicative under tensor product

tensor rank

subrank

min flattening rank
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max flattening rank
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Your favorite animal
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1 1 00 1⨂ ⨂ =  2x2 matrix multiplication tensor (tensor rank=7<8, Strassen ‘69) 

𝑅 𝑡 ≔ min 𝑟: 𝑟 ≥ 𝑡

= min 𝑟: 𝑡 = 3
#$!

%

𝛼# ⊗ 𝛽# ⊗ 𝛾#

Q 𝑡 ≔ m𝑎𝑥 𝑟: 𝑡 ≥ 𝑟



Iterating the tensor product

• 1 → 𝑡 → 𝑡⨂$ → 𝑡⨂( → ⋯
• Sierpinsky carpet

• Menger sponge

for all x, y 2 X. Here, �(·, ·) denotes the metric on X ⇢ Rd. For the fractal construction by using an IFS, we set

X to [0, 1]⇥d with 1  d  3. That is, the space X is either the unit interval, the unit square, or the unit cube.

Definition 2.4. Let Y ✓ X be a subset of the metric space X. The Hutchinson operator corresponding to the IFS
{f1, . . . , fm} is given by

H(Y ) =
m[

i=1

fi(Y ).

The fixed set of the Hutchinson operator, i.e. Z ✓ X with H(Z) = Z, is called the IFS attractor.

As a consequence of the Banach fixed-point theorem, the IFS attractor Z is uniquely defined for any given
(countable) IFS, see [33]. Furthermore, it can be represented as a limit set of the iterative application of H to an
arbitrary compact subset Y ✓ X with Y 6= ?, i.e.

Z = lim
k!1

H
k(Y ).

IFS attractors often exhibit self-similarity over an infinite range of scales. The Cantor set, which was already
mentioned in the previous section, see Figure 2, can also be constructed by using an IFS instead of a finite subdivision
rule. The corresponding set of functions is given by

⇢
f1(x) =

1

3
x, f2(x) =

1

3
x+

2

3

�
,

with x 2 [0, 1]. The functions iteratively scale and shift a given initial subset of [0, 1]. If we, for the sake of simplicity,
start with the whole unit interval as the initial set, we get exactly the same construction steps as shown in Figure
2.

(a) (b) (c) (d)

Figure 3: Construction of the Sierpinski carpet: The first four iteration steps of the fractal construction are shown.
In each iteration step, the open central part of every subsquare is removed. The intersections with the red lines
correspond to the construction steps of the Cantor set shown in Figure 2.

Two other famous IFS fractals we will focus on in this paper are the Sierpinski carpet, introduced by W.
Sierpiński in 1916 [34], and the Menger sponge, introduced by K. Menger in 1926 [35]. Both can be seen as higher-
dimensional generalizations of the Cantor set. That is, the Sierpinski carpet is a two-dimensional counterpart of
the Cantor set. The corresponding IFS can be found in Appendix A.1. Figure 3 shows the first four iteration steps
of the construction of the Sierpinski carpet and its connection to the Cantor set. The Menger sponge is a three-
dimensional generalization of the Sierpinski carpet and the Cantor set, respectively. See Figure 4 for an illustration
of the construction and Appendix A.2 for the corresponding IFS. Each face of the Menger sponge is a Sierpinski
carpet and the intersection of the sponge with any midline of the faces is a Cantor set. The Sierpinski carpet as well
as the Menger sponge have in fact topological dimension of 1, meaning both are curves in two and three dimensions,
respectively. The fractal dimension of the Sierpinski carpet is DF = ln(8)/ ln(3) ⇡ 1.8928 and the fractal dimension
of the Menger sponge is DF = ln(20)/ ln(3) ⇡ 2.7268. These calculations become clear by considering the number of
residual subsquares/subcubes in each iteration step. In both cases the subsquares/subcubes are scaled by a factor
of 1/3, determining the denominators in (1).
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Figure 4: Construction of the Menger sponge: The first four iteration steps of the fractal construction are shown.
In each iteration step, every subcube is divided into 27 smaller cubes. Subsequently, the central smaller cubes in
the middle of each face and in the center of the subcube are then removed.

3 Tensor decompositions

A tensor is a multidimensional array T 2 Rn1⇥···⇥nd whose entries are indexed by Tx1,...,xd . The number d is called
the order of the tensor T. If we fix certain indices, colons are used to indicate the free modes (cf. Matlab colon
notation), e.g. for a tensor T 2 Rn1⇥···⇥nd , we obtain

Tx1,:,x3,:,x5,...,xd 2 Rn2⇥n4 and Tx1,:,...,:,xd 2 Rn2⇥···⇥nd�1 .

A tensor of order 1 is a vector, a tensor of order 2 is a matrix, and a tensor of order 3 can be imagined as layers
of matrices. In order to visualize tensors T 2 Rn1⇥n2⇥3, we list the single layers of the tensor in a row, i.e.

T =

T:,:,3

T:,:,2

T:,:,1

= (T:,:,1 |T:,:,2 |T:,:,3 ) ,

with T:,:,i 2 Rn1⇥n2 for i = 1, 2, 3.
With the aim to mitigate the curse of dimensionality, i.e. the exponential growth of the memory consumption

of a tensor, various tensor formats have been proposed over the last years. The common basis of these formats is
the tensor product.

Definition 3.1. The tensor product of two tensors T 2 Rm1⇥···⇥md and U 2 Rn1⇥···⇥ne defines a tensor T⌦U 2
R(m1⇥···⇥md)⇥(n1⇥···⇥ne) with

(T⌦U)x1,...,xd,y1,...,ye
= Tx1,...,xd ·Uy1,...,ye ,

where 1  xk  mk for k = 1, . . . , d and 1  yk  nk for k = 1, . . . , e.

The tensor product enables the decomposition of high-dimensional tensors into several smaller tensors. It is a
bilinear map, meaning that, if we fix one of the tensors, we obtain a linear map on the space where the other tensor
lives. In 1927, F. Hitchcock presented the idea of expressing a tensor as the sum of a finite number of so-called
rank-one tensors [19], i.e.

T =
rX

k=1

⇣
T(1)

⌘

k,:
⌦ · · ·⌦

⇣
T(d)

⌘

k,:
, (3)

with cores T(i) 2 Rr⇥ni for i = 1, . . . , d. The parameter r is called the rank of the decomposition. The above format
is the initial concept of tensor decompositions. In fact, any tensor can be represented by a linear combination of
tensor products of vectors as in (3). However, the number of required rank-one tensors plays an important role.
For more information about canonical tensors, we refer to [36].

Another fundamental operation is the Kronecker product, which has a close relation to the tensor product in
terms of vectorizations and matricizations, see e.g. [37, 38]. Usually, the Kronecker product is only applied to
vectors and matrices. However, we generalize this operation to tensors with arbitrary order.
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taken from Gelss and Schütte, https://arxiv.org/abs/1812.00814



Regularize/Amortize/Asymptotize

• 𝑓: 𝑡𝑒𝑛𝑠𝑜𝑟𝑠 → 𝐹

• :𝑓 𝑡 ≔ lim
)→+

𝑓 𝑡⨂)
"
#

• :𝑓 measures growth under tensor product
• 𝑓 multiplicativeà :𝑓 = 𝑓

• ex: matrix case J
• converse not true
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Folkore

• Theorem: Let 𝑓 monotone, normalized and :𝑓 exists. Then

?𝑅 ≥ :𝑓 ≥ ?𝑄
• Proof: 

• By definition
!𝑅 𝑡 9:;(9) ≥ 𝑡⨂9 ≥ !𝑄 𝑡 9:;(9)

• Apply 𝑓. Due to monotonicity
𝑓( !𝑅 𝑡 9:;(9) ) ≥ 𝑓(𝑡⨂9) ≥ 𝑓( !𝑄 𝑡 9:;(9) )

• Due to normalization
!𝑅 𝑡 9:;(9) ≥ 𝑓(𝑡⨂9) ≥ !𝑄 𝑡 9:;(9)

qed

tensor rank
max flattening rankmin flattening rankanalyti

c rank

subrank
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rank partition rankgeometric rank 
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Are there multiplicative functions?

• Theorem (Strassen): 
• There are normalized, multiplicative functions F, s.th. 

!𝑅 = max 𝐹 and !𝑄 = min 𝐹
• Furthermore

• the F’s are additive
• they determine asymptotic restriction

If 𝐹 𝑡 ≥ 𝐹 𝑡! ∀𝐹, 𝑡ℎ𝑒𝑛 𝑡 ≥ 𝑡′



Some results

• Quantum functionals
• Strassen F’s (STOC’18)

• Weighted slice rank
• = Legendre of Quantum functionals
• https://arxiv.org/abs/2012.14412

• Asymptotic symmetric subrank (of symmetric tensors)
• = symptotic subrank
• barrier for cap-set like problems
• https://arxiv.org/abs/2104.01130
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Figure S1. Entanglement polytopes for three qubits: (A) GHZ polytope (entire polytope, i.e., upper and lower pyramid), (B) W polytope (upper
pyramid), (C) three polytopes corresponding to EPR pairs shared between any two of the three parties (three solid edges in the interior), (D)
polytope of the unentangled states (interior vertex).

https://arxiv.org/abs/2012.14412
https://arxiv.org/abs/2104.01130


Summary

• QMATH – hiring!

• Zoo

• Asymptotic ranks (cool results J)

⨂ =

tensor rank
max flattening rankmin flattening rankanalyti

c rank

subrank

slice
rank partition rankgeometric rank 

border rankcactus rank
smoothable

(a) (b) (c) (d)

Figure 4: Construction of the Menger sponge: The first four iteration steps of the fractal construction are shown.
In each iteration step, every subcube is divided into 27 smaller cubes. Subsequently, the central smaller cubes in
the middle of each face and in the center of the subcube are then removed.
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