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Motivations

From Quantum Physics

Tensor space has high dimension: dim(V⌦d) = dim(Vi )d .
Quickly intractable. Requires too large memory to reprensent
a tensor.

Given a quantum many-body wave function, specifying its
coe�cients in a given local basis does not give any intuition
about the structure of the entanglement between its
constituents:

e0 ⌦ e0 ⌦ e0 + e1 ⌦ e1 ⌦ e1

T =
dX

i ,j ,k=1

ti ,j ,kei ⌦ ej ⌦ ek

with {el} orthonormal and ti ,j ,k 2 R>0
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A Tensor Network has this information directly available in its
description in terms of a network of quantum correlations.

Matrix product AB = C :
P

m

j=1
ai ,jbj ,k = (ci ,k)i=1,...,n1,k=1,...,n2 .

The network of correlations makes explicit the e↵ective lattice
geometry in which the state actually lives

A TN is a set of tensors where some, or all, indices are contracted
according to some pattern.
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Matrix product states

Reduced number of parameters

dm
2 dim(V ) << dim(V )d

MPS are accurate representations of physical states with limited
bond length m.

Highlight entangled structure of state. The corresponding spaces
of tensors are only locally entangled because interactions
(entanglement) in the physical world appear to just happen locally.
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Definition - Graph Tensor

Fix a graph �(v(�), e(�))

Fix the weights m = (me , e 2 e(�)) = bond dimensions

d := ]v(�)

Consider Ime
2 Cme ⌦ Cme at e

Tensor them:
N

e2e(�)
Ime

It naturally lives in
N

e2e(�)
Cme ⌦ Cme but we think it as an

element of
N

v2v(�)
(
N

e3v
Cme ) :=

N
v2v(�)

Wv obtained by
grouping together the spaces incident at the same vertex:

T (�,m) :=
O

e2e(�)

Ime
2

O

v2v(�)

We
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Definition - TNS

TNS
�
m,n ⇢ V1 ⌦ · · ·⌦ Vd associated to the tensor network (�,m, n)

� : Hom(W1,V1)⇥ · · ·⇥ Hom(Wd ,Vd) ! V1 ⌦ · · ·⌦ Vd

(X1, . . . ,Xd) 7! (X1 ⌦ · · ·⌦ Xd)(T (�,m))

Im(�) = TNS
�,0
m,n

TNS
�

m,n = Im(�) ⇢ V1 ⌦ · · ·⌦ Vd
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Example Matrix multiplication

T (�,m) = Im 2 Cm ⌦ Cm = W1 ⌦W2 Fix V1,V2

� : Hom(W1,V1)⇥ Hom(W2,V2) ! V1 ⌦ V2

�(X1,X2) = (X1,X2)·Im = (X1,X2)·
mX

i=1

ei⌦ei =
mX

i=1

X1ei⌦X2ei =

=
mX

i=1

X1ei (X2ei )
T = X1ImX

T

2 = X1X
T

2

In this case TNS
�
m,n = {M 2 V1 ⌦ V2 : rank(M)  m} = TNS

�,0
m,n
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Why graph tensor is better

The multilinear multiplication is nothing but evaluation. Evaluating
the graph tensor T (�,m) is easier than evaluating other tensors.

Given T 2 V1 ⌦ · · ·⌦ Vd and a graph �

start with small m and evaluate T (�,m): hope to find linear
maps X1, . . . ,Xd s.t.

(X1 ⌦ · · ·⌦ Xd)(T (�,m)) = T
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Properties

One can assume that all me > 1, otherwise remove the edge
from the graph.

Monotonicity:

If m0  m (entry-wise) then TNS
�

m0,n ✓ TNS
�

m,n

Universality: If � is connected then

TNS
�

m,n = V1 ⌦ · · ·⌦ Vd

if me is large enough for every e 2 e(�).
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Reductions

We may assume all bond dimensions associated to the edges
incident a fixed vertex are balanced: Fix a vertex v and
e1, . . . , ek 2 v ; If

mek
> nv ·me1

· · ·mek�1
, mek

is overabundant

then
TNSm,n = TNSm,n

where me = me if e 6= ek and mek
= nv ·m1 · · ·mek�1

.
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Definition (Landsberg-Qi-Ye ’12)

A vertex v 2 v is called

subcritical if
Q

e3v
me � nv ;

supercritical if
Q

e3v
me  nv ;

critical if v is both subcritical and supercritical.

Theorem (BDG)

If the vertex v is supercritical let N = dimWd =
Q

e3d
me and

n0 = (n0
v
: v 2 v(�)) be the d-tuple of local dimensions s.t. n

0
v
= nv if

v 6= d and n
0
d
= N. Then

dimTNS
�

m,n = N(nd � N) + dimTNS
�

m,n0 .
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Studying the orbit of T (�,m) does not say anything about tensors
in TNS�(m, n) \ TNS0

�
(m, n).

Theorem (Landsberg-Qi-Ye ’12)

If � doesn’t have cycles, then TNS
0

�
(m, n) = TNS�(m, n)

otherwise TNS�(m, n) \ TNS0

�
(m, n) 6= ;
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If f : X ! Y map between varieties, then

dim(Im(f )) = dimX � dim f
�1(y)

for y generic in Im(f ).

We study the fibers of

� : Hom(W1,V1)⇥ · · ·⇥Hom(Wd ,Vd) ! V1 ⌦ · · ·⌦ Vd

(X1, . . . ,Xd) 7! (X1 ⌦ · · ·⌦ Xd)(T (�,m))
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Obviously in the fiber

Ex: Matrix case

� : Hom(Cm,V1)⇥ Hom(Cm,V2) ! V1 ⌦ V2

with �(X1,X2) = X1 · Im · X t

2
.

�(X1,X2) = �(X1g ,X2(g�1)t) for every g 2 GLm.
The fiber containing (X1,X2) contains the entire GLm-orbit.

The fiber containing (Xv : v 2 v(�)) contains its entire G�,m-orbit,
where

G�,m = ⇥e2e(�)GLme
gauge subgroup of �.
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The role of this group in the theory of tensor network was known
and it is expected that it entirely controls the value of dimTNS . In
fact, it is expected that in ”most” cases the exact value of the
dimension is

min{
X

v

(nv ⇥
Y

e3v
me)� d + 1

| {z }
dim⇥vP(Hom(Wv ,Vv ))

�
X

e

(m2

e � 1)

| {z }
dimG�,m

,
Y

v

nv}

This computation does not take care of two facts:

the possible existence of the stabilizer under the action of the
gauge subgroup of a generic d-tuple of linear maps,

there may be something else in the fiber.
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Main theorem

Theorem (BDG’21)

dim(TNS�

m,n) 

min{
X

v

(nv ⇥
Y

e3v

me)� d + 1

| {z }
dim⇥vP(Hom(Wv ,Vv ))

�(
X

e

(m2

e
� 1)

| {z }
dimG�,m

� dim StabG�,m(X ))
| {z }

??

,
Y

v

nv}
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Luckily...

Theorem (Derksen-Makam-Walter’20)

dim(StabG�,m(X )) = 0 in ”most” cases

(the action of G�,m on ⇥vHom(Wv ,Vv ) is generically stable, i.e. there exists an

element v in the parameter space s.t. StabG (v) is a finite group).

Two important ones:

� is a cycle, called matrix product states;

� is a grid, called projected entangled pair states.
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Theorem (Haegeman-Mariën-Osborne-Verstraete ’14)

Matrix product states with open boundary conditions

(m0 = md = 1)

dimTNS
�

m,n = min

8
<

:

dX

i=1

nimi�1mi �
d�1X

j=1

m
2

i ,
dY

1

ni

9
=

;
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Main theorem

Theorem (BDG’21)

If (�,m, n) is a subcritical tensor network with no overabundant bond

dimension, then

dim(TNS�

m,n) 

min{
X

v

(nv ⇥
Y

e3v

me)� d + 1

| {z }
dim⇥vP(Hom(Wv ,Vv ))

�(
X

e

(m2

e
� 1)

| {z }
dimG�,m

� dim StabG�,m(X ))
| {z }

??

,
Y

v

nv}

If (�,m, n) is a supercritical case the the bound is sharp and

dim StabG�,m(X )) = 0

dim(TNS�

m,n) = min{
X

v

(nv ⇥
Y

e3v

me)� d + 1�
X

e

(m2

e
� 1),

Y

v

nv}
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m = (2, 2, 2)

n lower bound upper bound
(2, 2, 2) 8 8
(2, 2, 3) 12 12
(2, 2, 4) 16 16
(2, 3, 3) 18 18

⇤ (2, 3, 4) 22 24
⇤ (2, 4, 4) 26 29

(3, 3, 3) 25 25
(3, 3, 4) 29 29
(3, 4, 4) 31 31
(4, 4, 4) 37 37

m = (2, 2, 2, 2)

n lower bound upper bound
⇤ (2, 2, 2, 2) 15 16
⇤ (2, 2, 2, 3) 20 21
⇤ (2, 2, 2, 4) 24 25

(2, 2, 3, 3) 25 25
(2, 2, 3, 4) 29 29
(2, 2, 4, 4) 33 33

⇤ (2, 3, 2, 3) 24 25
⇤ (2, 3, 2, 4) 28 29

(2, 3, 3, 3) 29 29
(2, 3, 3, 4) 33 33
(2, 3, 4, 3) 33 33
(2, 3, 4, 4) 37 37

⇤ (2, 4, 2, 4) 32 33
(2, 4, 3, 4) 37 37
(2, 4, 4, 4) 41 41
(3, 3, 3, 3) 33 33
(3, 3, 3, 4) 37 37
(3, 3, 4, 4) 41 41
(3, 4, 3, 4) 41 41
(3, 4, 4, 4) 45 45
(4, 4, 4, 4) 49 49
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m = (2, 2, 2), n = (2, 3, 4)

T (�,m) 2 C2⇥2 ⌦ C2⇥2 ⌦ C2⇥2

TNS�(m, n) ✓ P(C2 ⌦ C3 ⌦ C4).

Let T 2 C2 ⌦ C3 ⌦ C4. Consider the flattening

T1 : C2 ! C3 ⌦ C4.

Then LT = P(Im(T1)) is a line in P(C3 ⌦ C4) (or a single point).

Theorem (BDG’21)

T 2 TNS�(m, n) if and only if

either rank(LT ) = 1

or LT intersects {A : rank(A)  2} in at least two points

(counted with multiplicity).

In particular dimTNS�(m, n)  (=)24� 2 = 22 < 24.
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Further Questions

Classify all sub-critical cases where the upper bound is not
reached: they have some interesting peculiar geometric
properties.

Which is ”the best” TNS
�
m,n a given T belongs to?

� can be reasonably chosen from the context. One may work
on decreasing m. How to choose m s.t. a given T 2 TNS

�,0
m,n?

Very well established procedures to find a ”good enough”
approximation of T on a given TNS

�
m,n.
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