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Optimizing Nonconvex Problems Globally
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Nonconvex Problems with Benign Landscape
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• Generalized Phase Retrieval [Sun’18]
• Low-rank Matrix Recovery [Ma’16, Jin’17, Chi’19]
• (Convolutional) Sparse Dictionary Learning [Sun’16, 

Qu’20]
• (Orthogonal) Tensor Decomposition [Ge’15]
• Sparse Blind Deconvolution [Zhang’17, Li’18, Kuo’19]
• Deep Linear Network [Kawaguchi’16]
• ...
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• Provide the global landscape for overcomplete 
representation learning problems.

• Explains why they can be efficiently optimized to 
global optimality

Landscape Analysis of Overcomplete Learning

Q. Qu, Y. Zhai, X. Li, Y. Zhang, Z. Zhu, Analysis of optimization 
landscapes for overcomplete learning, ICLR’20, (oral, top 1.9%)



Overcomplete Tensor Decomposition

We consider decomposing a 4-th order tensor of rank m
in the following form

Core problem for several unsupervised representation learning problems 
(ICA and mixture of Gaussian [Anandkumar’12], dictionary learning
[Barak’14,Qu’20]), and even training neural networks [Ge’17].



Overcomplete Tensor Decomposition
A natural (nonconvex) objective to find one component
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Overcomplete Tensor Decomposition

• For overcomplete case, most of existing landscape analysis results 
[Ge’17] are local, or are based on Sum-of-Squares relaxations [Barak’15, 
Ma’16] which is computationally expensive.  

• Empirically, gradient descent or power method find the global solution 
efficiently even when 



A Global Result in Overcomplete Settings



Assumptions on A (Near Orthogonal) 

• Row orthogonal: unit norm tight frame (UNTF)

• Incoherence of the columns (near orthogonal)
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Relationship to Dictionary Learning

The underlying reasoning is that, in expectation



Relationship to Dictionary Learning



Relationship to Dictionary Learning



Relationship to Dictionary Learning



Outline of this Talk
• Introduction

• Overcomplete Tensor Decomposition 
(Representation Learning)

• Neural Collapse in Deep Network Training



• Analyzes the global landscape of the training loss 
based on the unconstrained feature model

• Explains the ubiquity of Neural Collapse of the 
learned representations of the network

Understanding Deep Neural Networks

Z. Zhu, T. Ding, J. Zhou, X. Li, C. You, J. Sulam, and Q. Qu, A 
Geometric Analysis of Neural Collapse with Unconstrained Features, 
arXiv Preprint arXiv:2105.02375, May 2021.

https://arxiv.org/abs/2105.02375


Understanding Deep Neural Networks

weights bias



Understanding Deep Neural Networks

i-th input in the k-th class One-hot vector for the k-th class



Fundamental Challenges: Optimization

Landscape of Modern Deep Neural Networks 
Credited to [Li’17]

Landscape in Classical Optimization
(abundant algorithms & theory)



Optimization: Existing Results

Existing analysis are based on various simplifications:
• Go Linear: deep linear networks [Kawaguchi’16], deep 

matrix factorizations [Arora’19], etc.
• Go Shallow: Two-layer neural networks [Safran’18, 

Liang’18], etc.
• Go Wide: Neural tangent kernels [Jacot’18, Allen-Zhu’18, 

Du’19], mean-field analysis [Mei’19, Sirignano’19], etc.

Most of results hardly provide much insights for practical
neural networks.



Features – What NNs (Conceptually) 
Designed to Learn

Wishful Design: NNs learn rich feature representations across 
different levels?



Neural Collapse in Classification 



Neural Collapse in Classification

Neural Collapse
in the Feature Space

Data in the Input Space

Last-layer classifier Last-layer feature

Simplex Equiangular Tight 
Frames (Simplex ETF)



Neural Collapse: Symmetry and Structures

Neural Collapse (NC) means that
1) Within-ClassVariability Collapse on H: features of each class 

collapse to class-mean with zero variability;

2) Convergence to Simplex ETF on H: the class means are 
linearly separable, and maximally distant;

3) Convergence to Self-Duality (W,H): the last-layer classifiers 
are perfected matched with the class-means of features.

4) Simple Decision Rule via Nearest Class-Center decision.



Simplification: Unconstrained Features

Last-layer classifier Last-layer feature

Treat                                 as a free optimization variable



Simplification: Unconstrained Features

Last-layer classifier Last-layer feature

Treat                                 as a free optimization variable



Simplification: Unconstrained Features

Last-layer classifier Last-layer feature

Treat                                 as a free optimization variable

• Validity: Modern network are highly overparameterized, that can 
approximate any point in the feature space [Shaham’18];

• State-of-the-Art: also called Layer-Peeled Model [Fang’21], existing work 
[E’20, Lu’20, Mixon’20, Fang’21] only studied global optimality conditions.



Main Theoretical Results

• (Global Optimality) Any global solution
satisfies the NC properties (1-4).

• (Benign Global Landscape) The function has no
spurious local minimizer and is a strict saddle function,
with negative curvature for non-global critical point.



Main Theoretical Results

• (Global Optimality) Any global solution
satisfies the NC properties (1-4).

• (Benign Global Landscape) The function has no
spurious local minimizer and is a strict saddle function,
with negative curvature for nonglobal critical point.

Message: deep networks always learn Neural Collapse 
features and classifiers, provably



Experiment: NC is Algorithm Independent

CIFAR-10 Dataset, ResNet18, with different training algorithms

Measure of Within-Class Variability Measure of Between-Class Separation Measure of Self-Duality Collapse



Experiment: NC Occurs for Random Labels

CIFAR-10 Dataset, ResNet18, random labels with varying network width

Measure of Within-Class Variability Measure of Between-Class Separation Measure of Self-Duality Collapse

Validity of Unconstrained Feature Model: Learned last-layer features and 
classifiers seems to be independent of input!



Implications for Practical Network Training

Observation: For NC features, when
the best classifier is given by the Simplex ETF



Implications for Practical Network Training

Observation: For NC features, when
the best classifier is given by the Simplex ETF

• Implication 1: No need to learn the classifier
q Just fix them as a Simplex ETF
q Save 8%, 12%, and 53% parameters for 
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Implications for Practical Network Training

Observation: For NC features, when
the best classifier is given by the Simplex ETF

• Implication 1: No need to learn the classifier
q Just fix them as a Simplex ETF
q Save 8%, 12%, and 53% parameters for 

ResNet50, DenseNet169, and ShuffleNet!
• Implication 2: No need of large feature dimension d

q Just use feature dim d = #class K (e.g., d=10 for CIFAR10)
q Further saves 21% and 4.5% parameters for ResNet18 and ResNet50!



Experiment: Fixed Classifier with d = K
ResNet50, CIFAR10, Comparison of Learned vs. Fixed Classifiers of W

Measure of Between-Class Separation Testing AccuracyTraining Accuracy

Training with fixed last-layer classifiers achieves on-par performance 
with learned classifiers.



• Through landscape analysis under unconstrained feature 
model, we provide a complete characterization of 
learned representation of deep networks.

• The understandings of learned representations could 
shed lights on generalization, robustness, and 
transferability.

Summary and Discussion
Z. Zhu, T. Ding, J. Zhou, X. Li, C. You, J. Sulam, and Q. Qu, A 
Geometric Analysis of Neural Collapse with Unconstrained Features, 
arXiv Preprint arXiv:2105.02375, May 2021.

https://arxiv.org/abs/2105.02375
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