'“\
- &,

UNIVERSITY OF

g MICHIGAN

™ & )
3

i

Lancag D A

Tensof afid®Netral Com

v <
L 4

i

. 4

Qing Qu
Dept. of EECS, University of Michigan
May 17, 2021



Outline of this Talk

e Introduction

* Overcomplete Tensor Decomposition
(Representation Learning)

* Neural Collapse in Deep Network Training

JMI UNIVERSITY OF MICHIGAN



Outline of this Talk

e Introduction

* Overcomplete Tensor Decomposition
(Representation Learning)

* Neural Collapse in Deep Network Training

JMI UNIVERSITY OF MICHIGAN



Nonconvex Problems in Representation Learning

Nonconvex landscape

5/18/21

min f(x), s.t. x € R"

T

4

Convex landscape
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(General Nonconvex Problems

-

—
Minimizer Saddle Maximizer
Vips>=0 Amin V@ < 0 Vip =<0
Amax V2o > 0
Noncritical Point (V¢ # 0) Critical Points (Vi = 0)
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(General Nonconvex Problems

min f(x), s.t. x € R"

T

“bad” local minimizers “flat” saddle points

,

v v ’
local mlnlma

global minima “Aat” vSngdle
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(General Nonconvex Problems

min f(x), s.t. x € R"

In the worst case, even finding a local minimizer is NP-hard
(Murty et al. 1987)
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Optimizing Nonconvex Problems Globally

¥ v v
all local minima are

global minima “fNat” saddle

equally good

Benign nonconvex landscapes enable efficient
global optimization!
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Nonconvex Problems with Benign Landscape

* Generalized Phase Retrieval [Sun’1§]

* Low-rank Matrix Recovery [Ma’16, Jin’17, Chi’19|

e (Convolutional) Sparse Dictionary Learning [Sun’16,
Qu’20|

* (Orthogonal) Tensor Decomposition |Ge’15|

« Sparse Blind Deconvolution |Zhang’17, Li’18, Kuo’19|

* Deep Linear Network |Kawaguchi’16]
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Landscape Analysis of Overcomplete Learning

Q. Qu, Y. Zhai, X. Li, Y. Zhang, Z. Zhu, Analysis of optimization
landscapes for overcomplete learning, ICLR’20, (oral, top 1.9%)

* Provide the global landscape for overcomplete
representation learning problems.

* Explains why they can be efficiently optimized to
global optimality

JMI UNIVERSITY OF MICHIGAN



Overcomplete Tensor Decomposition

We consider decomposing a 4-th order tensor of rank m
in the following form

™m
g = Zaié@ai@ai@ai, a; € R".
i=1
e Given I, our goal is to recover each component a; € R".

e We are interested in the overcomplete regime that m > n.

Core problem for several unsupervised representation learning problems
(ICA and mixture of Gaussian [Anandkumar’12|, dictionary learning
|Barak’14,Qu’20]), and even training neural networks [Ge’17].
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Overcomplete Tensor Decomposition

A natural (nonconvex) objective to find one component

n

. 4
min f(q) = — Y Tijkeqiqiarge = — ) (ai,q)

q )
0.4,k 0€[m]* i=1

s.t. gl = 1.
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Overcomplete Tensor Decomposition

e When m < n, and {a;}, , are orthogonal, existing result [Ge’15]

has shown that the function is a strict saddle function with benign
optimization landscape, all global solutions are approximately {+a;}; ;.

Let A = [a,l am}, the problem
can be written as

min —[[ATq|l,. st Jqll, =1

e The analysis of orthogonal case cannot be generalized to overcomplete
settings.
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Overcomplete Tensor Decomposition
 For overcomplete case, most of existing landscape analysis results
|Ge’17]| are local, or are based on Sum-of-Squares relaxations [Barak’15,

Ma’16| which is computationally expensive.

 Empirically, gradient descent or power method find the global solution
efficiently even when m > n.
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Let A = [a,l am}, the problem
can be written as

méin — HATqu, s.t. g, = 1.




A Global Result in Overcomplete Settings

min f(q) = —[|A7q[,. st llgl,=1.

Theorem (Informal) Suppose that (i) K = m/n is a constant,
and (i) A is near orthogonal with small . Then every critical

point of f(q) is either
e a strict saddle point exhibits negative curvature;

e or close to a target solution: one column a; of A.

JMI UNIVERSITY OF MICHIGAN



Assumptions on A (Near Orthogonal)

* Row orthogonal: unit norm tight frame (UNTF)

J—AAT = 1, Jai|, = 1.
m

* Incoherence of the columns (near orthogonal)

max [(a;, a;)| < p.
1]
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Relationship to Dictionary Learning

pEsEcEEE (J= o
ESpuR=E®

S N

ENEEERNS |
AL I -

L T
B 0 N

\3312132 my
Y A X

Given Y = AX € R™"*P_ jointly find overcomplete
dictionary A € R™"*™ and sparse X € R"*P,
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Relationship to Dictionary Learning

We can find one column of A via

min fpr(q) = = [Y7ql;, st lal, =1,

The underlying reasoning is that, in expectation
Ex |[Y7qll,| = Ex [[X7ATq|l;| = 1| ATq|f; +e:

for X following some sparse zero-mean distributions
(e.g., Bernoulli-Gaussian)
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Relationship to Dictionary Learning

min fpr(q) = —[[Y7ql,, st lal, =1,

Theorem (Informal) Suppose that (i) K = m/n is a constant,
(i1) A is near orthogonal, and (iii) p > Q(poly(n)). Then with
high probability every critical point of f(q) is either

e a strict saddle point exhibits negative curvature;

e or close to a target solution: one column a; of A.
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Relationship to Dictionary Learning

nxm
A Ap €R
[Sun, Qu, Wright’16]
Global [Sun, Qu, Wright'16] Our Result
[Li et al.’18]

Initialization Required
[Arora et al.’14&15]
[Agarwal et al.’16]
[Chatterji et al.’17]
[Awasthi et al.’18]

[Qu, Sun, Wright’16]
Local Zhai et al.’19]

>
Complete n =m  Overcomplete m > n
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Relationship to Dictionary Learning

55 1F *—o
5 Eos}
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£45 206}
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3D ~ 02 _e_vlt,v’:rz :-—l p
~m/n=s
3 — . . : —I M 0% - : : : :
15 1.7 19 21 23 25 27 0 500 1000 1500 2000 2500 3000
105.{] 0 (“H,) # of Runs
practice m < n? recover full Ay via repeated
vs. theory m < Cn independent trials
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Understanding Deep Neural Networks

Z. Zhu, T. Ding, J. Zhou, X. Li, C. You, J. Sulam, and Q. Qu, A
Geometric Analysis of Neural Collapse with Unconstrained Features,
arXiww Preprint arXiw:2105.02375, May 2021.

* Analyzes the global landscape of the training loss
based on the unconstrained feature model

* Explains the ubiquity of Neural Collapse of the
learned representations of the network
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https://arxiv.org/abs/2105.02375

Understanding Deep Neural Networks

Input Hidden layer 1 Hidden layer L-1 Output

L . L
© = {W,,bi},_; o(-): nonlinear activations
A \
weights bias
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Understanding Deep Neural Networks

Input Hidden layer 1 Hidden layer L-1 Output

~~th input in the k-th class One-hot vector for the k-th class
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Fundamental Challenges: Optimization

Landscape in Optimization Landscape of Deep Neural Networks
(abundant algorithms & theory) Credited to [Li’17]

JMI UNIVERSITY OF MICHIGAN



Optimization: Existing Results

Existing analysis are based on various simplifications:

* Go Linear: deep linear networks |[Kawaguchi’16|, deep
matrix factorizations |Arora’19|, etc.

e Go Shallow: Two-layer neural networks [Safran’18,
Liang’18|, etc.

* Go Wide: Neural tangent kernels [Jacot’18, Allen-Zhu’18,
Du’19|, mean-field analysis [Mei’19, Sirignano’19], etc.

Most of results provide much insights for practical
neural networks.
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Features — What NNs (Conceptually)
Designed to Learn

Low Level Features Mid Level Features ngh Level Features

A = e © TR
s e B T
N~ =k 50

Lines & Edges Eyes, nose, ears Facial structure

Input Output

Wishful Design: NNs learn rich feature representations across
different levels?
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Neural Collapse in Classification

Prevalence of neural collapse during the terminal
phase of deep learning training

Vardan Papyan, ©& X. Y. Han, and David L. Donoho
+ See all authors and affiliations

PNAS October 6, 2020 117 (40) 24652-24663; first published September 21, 2020;
https://doi.org/10.1073/pnas.2015509117

Contributed by David L. Donoho, August 18, 2020 (sent for review July 22, 2020, reviewed by Helmut Boelsckei and
Stéphane Mallat)
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Neural Collapse in Classification
Ve (x) Z/WLg (Wr—1---oc(Wiz +by) + bL—1Z+bL

Last-layer classifier do(x)=:h +—0_ Last-layer feature

H3

-
W, = [ - px|
Simplex Equiangular Tight
Frames (Simplex ETF)

M

Data in the Input Space Neural Collapse

in the Feature Space
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Neural Collapse: Symmetry and Structures

Balanced training dataset with n =ny =n9 =--- = ng, and
W = WL, H = [h171 hK,n] .

Neural Collapse (NC) means that

1) Within-Class Variability Collapse on H: features of each class
collapse to class-mean with zero variability;

2) Convergence to Simplex ETF on H: the class means are

, and ;
3) Convergence to Self-Duality (W,H): the last-layer classifiers
are with the class-means of features.

4) Simple Decision Rule via Nearest Class-Center decision.
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Simplification: Unconstrained Features
Ve (x) Z/WLg (Wr_1---o(Wix +b1) +br 1) +br

Last-layer classifier ¢o(x)=:h +<—_ Last-layer feature

Treat H = [hl,l hK,n} as a optimization variable
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Simplification: Unconstrained Features
Ve (x) Z/WLg (Wr_1---o(Wix +b1) +br 1) +br

Last-layer classifier ¢o(xr)=:h <—_ Last-layer feature
Treat H = [hl,l .-+ h K,n} as a optimization variable

S QLS Aw 2 >\H b
V‘;{l}%bK—nl;i_Zliw(th,ﬂrb,yk)Jr - W%+ |H|7 + ||b||2
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Simplification: Unconstrained Features
Ve (x) Z/WLg (Wr_1---o(Wix +b1) +br 1) +br

Last-layer classifier ¢o(x)=:h +<—_ Last-layer feature
Treat H = [h1,1 hK,n} as a optimization variable

Aw A
min —ZzseCE (Whies +b.yi) + 22 W+ 22 H 2+ 22 b

W.H.b Kn
k=1 1=1

 Validity: Modern network are highly overparameterized, that can
approximate any point in the feature space |Shaham’18|;

« State-of-the-Art: also called Layer-Peeled Model [Fang’21|, existing work
|E’20, Lu’20, Mixon’20, Fang’21| studied global optimality conditions.
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Main Theoretical Results

Theorem (Informal) Consider the nonconvex loss with
unconstrained feature model with K < d and balanced data

)\ A
min —ZZ%CE (Why; +b,yr) + — ||WHF + — HHHF + 71) HbH;

W.H,b Kn
k=1 1=1

* (Global Optimality) Any global solution (W, H,)

satisfies the NC' properties (1-4).
(Benign Global Landscape) The function has no
spurious local minimizer and is a strict saddle function,

with negative curvature for non-global critical point.
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Main Theoretical Results

Theorem (Informal) Consider the nonconvex loss with
unconstrained feature model with K < d and balanced data

* (Global Optimality) Any global solution (W, H,)

satisfies the NC' properties (1-4).

(Benign Global Landscape) The function has no
spurious local minimizer and is a strict saddle function,
with negative curvature for nonglobal critical point.

Message: deep networks always learn Neural Collapse
features and classifiers, provably
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Experiment: NC is Algorithm Independent

CIFAR-10 Dataset, ResNet18, with

6 0.8 1.0
—¥— SGD —%— SGD —¥— SGD
—e— Adam —e— Adam 0.8 —e— Adam
4 —#— LBFGS 0.6 —&— LBFGS —#— LBFGS
— o m0.6
E 30 E
5 0.4
0.2
0.2
0 0.0 0.0
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Epoch Epoch Epoch

Measure of Within-Class Variability = Measure of Between-Class Separation =~ Measure of Self-Duality Collapse
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Experiment: NC Occurs for Random Labels

CIFAR-10 Dataset, ResNet18,

o . 1.0f 1.2
] —8— width =4 ’ —e— width = 4 —e— width =4
v 6 width = 8 0.8 width = 8 1.0 width = 8
8 - width = 16 B width = 16 08 - width = 16
a 4 —4— width = 32 0.6 —4— width = 32 . —4— width = 32
g’ 2 ks Width = 64 § »— width = 64 § 0.6 ~— width = 64
= 0.4
22 0.2/} 0.2
-4 — 0.0 0.0 ==
0 200 400 600 800 0 200 400 600 800 70 200 400 600 800
Epoch Epoch Epoch

Measure of Within-Class Variability =~ Measure of Between-Class Separation =~ Measure of Self-Duality Collapse

Validity of Unconstrained Feature Model: Learned last-layer features and
classifiers seems to be independent of input!
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Implications for Practical Network Training

Observation: For NC features, when K < d
the best classifier is given by the Simplex ETF
}T

H3

/\./1
M
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Implications for Practical Network Training

Observation: For NC features, when K < d
the best classifier is given by the Simplex ETF
}T

H3

W, = [p1 - px

 Implication 1: No need to learn the classifier
/\./l

0 Just fix them as a Simplex ETF
d Save 8%, 12%, and 53% parameters for
ResNet50, DenseNet169, and ShuffleNet! at
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Implications for Practical Network Training

Observation: For NC features, when K < d
the best classifier is given by the Simplex ETF
}T

H3

W, = [p1 - px

 Implication 1: No need to learn the classifier
/\./l

0 Just fix them as a Simplex ETF
d Save 8%, 12%, and 53% parameters for
ResNet50, DenseNet169, and ShuffleNet! at

 Implication 2: No need of large feature dimension d

O Just use feature dim d = #class K (e.g., d=10 for CIFAR10)
O  Further saves 21% and 4.5% parameters for ResNet18 and ResNet50!
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Experiment: Fixed Classifier with d = K

ResNet50, CIFAR10, Comparison of

1.2

1.0

0.8

¥ learned classifier, d=2048
—e— fixed classifier, d=2048
—&— |earned classifier, d=10
—#— fixed classifier, d=10

50 100

Epoch

150 200

Measure of Between-Class Separation
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Training accuracy

100

(o]
o

@)}
o

v— |earned classifier, d=2048
—e— fixed classifier, d=2048
—#— |earned classifier, d=10
—#— fixed classifier, d=10

N
o

N
o

o

50 100

Epoch

150

Training Accuracy

200

Training with fixed last-layer classifiers achieves
with learned classifiers.

Testing accuracy

v— learned classifier, d=2048
—e— fixed classifier, d=2048
—@— |earned classifier, d=10
—%— fixed classifier, d=10

50 100

Epoch

150

Testing Accuracy

200



Summary and Discussion

Z. Zhu, T. Ding, J. Zhou, X. Li, C. You, J. Sulam, and Q. Qu, A
Geometric Analysis of Neural Collapse with Unconstrained Features,
arXiv Preprint arXiw:2105.02375, May 2021.

* Through landscape analysis under unconstrained feature
model, we provide a complete characterization of
learned representation of deep networks.

* The understandings of learned representations could
shed lights on
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https://arxiv.org/abs/2105.02375
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