
Pencil-based algorithms for the tensor
rank decomposition are not stable

Paul Breiding (MPI MiS Leipzig)
Carlos Beltrán (Universidad de Cantabria)
Nick Vannieuwenhoven (KU Lueven)

paulbreiding.org
juliahomotopycontinuation.org

1 / 24

CPD for tensors A ∈ Rn1×n2×n3 :

A =
r∑
i=1

ai ⊗ bi ⊗ ci

A
= + + · · ·+

minimal number of terms needed = rank(A)

Notation
S := {A | rank(A) = 1} are the rank-one tensors.
σr := {A | rank(A) ≤ r} are the tensors of rank at most r.

We assume that w. probability=1 A ∈ σr has a unique
decomposition (σr is “generically identifiable”).

2 / 24

A direct algorithm for order-3 tensors

In some cases, the CPD of third-order tensors can be
computed directly via a generalized eigendecomposition.

This is also called Jenrich’s algorithm.

For simplicity, assume that A ∈ Rn×n×n is of rank n. Say

A =
n∑
i=1

ai ⊗ bi ⊗ ci.

The steps are as follows.

3 / 24

1. Choose a matrix Q ∈ Rn×2 with orthonormal columns q1,q2.

2. Compute the multilinear multiplication

B = (I, I,QT) · A :=
n∑
i=1

ai ⊗ bi ⊗ (QT ci).

A
∈ Rn×n×n 7→

B
∈ Rn×n×2

3. The two slices X1 and X2 of B are

Xj =
n∑
i=1
〈qj , ci〉ai ⊗ bi = Adiag(qTj C)BT

where A = [ai] and B = [bi] and C = [Ci].
Hence, X1X

−1
2 has the following eigenvalue decomposition:

X1X
−1
2 = Adiag(qT1 C) diag(qT2 C)−1A−1

from which A can be found as the matrix of eigenvectors.

4 / 24

1. Choose a matrix Q ∈ Rn×2 with orthonormal columns q1,q2.
2. Compute the multilinear multiplication

B = (I, I,QT) · A :=
n∑
i=1

ai ⊗ bi ⊗ (QT ci).

A
∈ Rn×n×n 7→

B
∈ Rn×n×2

3. The two slices X1 and X2 of B are

Xj =
n∑
i=1
〈qj , ci〉ai ⊗ bi = Adiag(qTj C)BT

where A = [ai] and B = [bi] and C = [Ci].
Hence, X1X

−1
2 has the following eigenvalue decomposition:

X1X
−1
2 = Adiag(qT1 C) diag(qT2 C)−1A−1

from which A can be found as the matrix of eigenvectors.

4 / 24

1. Choose a matrix Q ∈ Rn×2 with orthonormal columns q1,q2.
2. Compute the multilinear multiplication

B = (I, I,QT) · A :=
n∑
i=1

ai ⊗ bi ⊗ (QT ci).

A
∈ Rn×n×n 7→

B
∈ Rn×n×2

3. The two slices X1 and X2 of B are

Xj =
n∑
i=1
〈qj , ci〉ai ⊗ bi = A diag(qTj C)BT

where A = [ai] and B = [bi] and C = [Ci].

Hence, X1X
−1
2 has the following eigenvalue decomposition:

X1X
−1
2 = Adiag(qT1 C) diag(qT2 C)−1A−1

from which A can be found as the matrix of eigenvectors.

4 / 24

1. Choose a matrix Q ∈ Rn×2 with orthonormal columns q1,q2.
2. Compute the multilinear multiplication

B = (I, I,QT) · A :=
n∑
i=1

ai ⊗ bi ⊗ (QT ci).

A
∈ Rn×n×n 7→

B
∈ Rn×n×2

3. The two slices X1 and X2 of B are

Xj =
n∑
i=1
〈qj , ci〉ai ⊗ bi = A diag(qTj C)BT

where A = [ai] and B = [bi] and C = [Ci].
Hence, X1X

−1
2 has the following eigenvalue decomposition:

X1X
−1
2 = A diag(qT1 C) diag(qT2 C)−1A−1

from which A can be found as the matrix of eigenvectors.
4 / 24

4. By a 1-flattening

A = A(1) =

we find
A(1) :=

n∑
i=1

ai(bi ⊗ ci)T = A(B � C)T ,

where B � C := [bi ⊗ ci]i ∈ Rn2×n.

5. Computing

A� (A−1A(1))T = A� (B � C) = [ai ⊗ bi ⊗ ci]i,

solves the tensor decomposition problem.

5 / 24

4. By a 1-flattening

A = A(1) =

we find
A(1) :=

n∑
i=1

ai(bi ⊗ ci)T = A(B � C)T ,

where B � C := [bi ⊗ ci]i ∈ Rn2×n.

5. Computing

A� (A−1A(1))T = A� (B � C) = [ai ⊗ bi ⊗ ci]i,

solves the tensor decomposition problem.

5 / 24

Let’s perform an experiment in Tensorlab v3.0:

1. Create a rank-25 random tensor of size 25× 25× 25:

>> FactorMatrices{1} = randn(25,25);
>> FactorMatrices{2} = randn(25,25);
>> FactorMatrices{3} = randn(25,25);
% generate the full tensor
>> A = cpdgen(FactorMatrices);

2. Compute A’s decomposition U and compare the outputs
relative to the machine precision ε ≈ 2 · 10−16:

>> U = cpd_gevd(A, 25);
>> E = A - cpdgen(U);
>> norm(E(:), 2) / eps
ans =

8.6249e+04

What happened?

6 / 24

Let’s perform an experiment in Tensorlab v3.0:

1. Create a rank-25 random tensor of size 25× 25× 25:

>> FactorMatrices{1} = randn(25,25);
>> FactorMatrices{2} = randn(25,25);
>> FactorMatrices{3} = randn(25,25);
% generate the full tensor
>> A = cpdgen(FactorMatrices);

2. Compute A’s decomposition U and compare the outputs
relative to the machine precision ε ≈ 2 · 10−16:

>> U = cpd_gevd(A, 25);
>> E = A - cpdgen(U);
>> norm(E(:), 2) / eps
ans =

8.6249e+04

What happened?

6 / 24

Let’s perform an experiment in Tensorlab v3.0:

1. Create a rank-25 random tensor of size 25× 25× 25:

>> FactorMatrices{1} = randn(25,25);
>> FactorMatrices{2} = randn(25,25);
>> FactorMatrices{3} = randn(25,25);
% generate the full tensor
>> A = cpdgen(FactorMatrices);

2. Compute A’s decomposition U and compare the outputs
relative to the machine precision ε ≈ 2 · 10−16:

>> U = cpd_gevd(A, 25);
>> E = A - cpdgen(U);
>> norm(E(:), 2) / eps
ans =

8.6249e+04

What happened?
6 / 24

Let us look more closely at the computational problem:

• The input is a tensor A ∈ σ25 ⊂ R25×25×25 of rank 25.
• The output is the tuple (ai ⊗ bi ⊗ ci)25

i=1 ∈ S×25.

Let f : σ25 → S×25 be the function that maps a tensor to its
decomposition. Then, what we observed was

‖f(A)− f(A ′)‖
‖A − A ′‖

≈ 8 · 104

with ‖A − A ′‖ ≈ 2 · 10−16.

7 / 24

The condition number quantifies the worst-case sensitivity of
a (local) function f to perturbations of the input.

•
x

• y •
f(x)

•
f(y)

ε

κε

κ[f](x) := lim
ε→0

sup
y:‖x−y‖≤ε

‖f(y)−f(x)‖
‖y−x‖ .

Here: f : σr → S×r is a local inverse of the addition map:

Φr : S × · · · × S → Rn1×n2×n3

(A1, . . . ,Ar) 7→ A1 + · · ·+ Ar

8 / 24

Proposition (Beltrán, Breiding, Vannieuwenhoven)
If σr is generically identifiable, there is an open dense
submanifoldMr ⊂ σr such that:

1 For all A ∈Mr the condition number is the same for all
local inverses. We denote it by κ(A).

2 κ(A) <∞ for all A ∈Mr.

The interpretation of the condition number is: if
A = A1 + · · ·+ Ar and A ′ = A ′1 + · · ·+ A ′r, then for
‖A − A ′‖F ≈ 0 we have the asymptotically sharp bound

min
π∈Sr

√√√√ r∑
i=1
‖Ai − A ′πi

‖2F︸ ︷︷ ︸
forward error

. κ(A)︸ ︷︷ ︸
condition number

· ‖A − A ′‖F︸ ︷︷ ︸
backward error

9 / 24

Back to our example

>> FactorMatrices{1} = randn(25,25);
>> FactorMatrices{2} = randn(25,25);
>> FactorMatrices{3} = randn(25,25);
>> A = cpdgen(FactorMatrices);
>> U = cpd_gevd(A, 25);
>> E = A - cpdgen(U);
>> norm(E(:), 2) / eps
ans =

8.6249e+04

We understand now that this can happen, because of a high
condition number. However,

>> kappa = condition_number(U)
ans =

2.134

10 / 24

The only explanation is that there is something wrong with
the algorithm.

We show that algorithms based on a reduction to tensors
in Rn1×n2×2 are numerically unstable.

The forward error produced by the algorithm divided by the
backward error is “much” larger than the condition number,
for some inputs.

11 / 24

Pencil-based algorithms

A pencil-based algorithm (PBA) is an algorithm that
computes the CPD of

A =
r∑
i=1

ai ⊗ bi ⊗ ci ∈ σr ⊂ Rn1×n2×n3

in the following way:

S1. Choose a fixed Q ∈ Rn3×2 with orthonormal columns.
S2. B ← (I, I,QT) · A;
S3. {a1, . . . ,ar} ← decompose B ∈ Rn1×n2×2;
S4. Choose an order A := (a1, . . . ,ar);
S5. (b1 ⊗ c1, . . . ,br ⊗ cr)← (A†A(1))T ;
S6. output←

(
a1 ⊗ b1 ⊗ c1, . . . ,ar ⊗ br ⊗ cr

)
.

12 / 24

Pencil-based algorithms

A pencil-based algorithm (PBA) is an algorithm that
computes the CPD of

A =
r∑
i=1

ai ⊗ bi ⊗ ci ∈ σr ⊂ Rn1×n2×n3

in the following way:

OK Choose a fixed Q ∈ Rn3×2 with orthonormal columns.
OK B ← (I, I,QT) · A;

BAD {a1, . . . ,ar} ← decompose B ∈ Rn1×n2×2;
OK Choose an order A := (a1, . . . ,ar);
OK (b1 ⊗ c1, . . . ,br ⊗ cr)← (A†A(1))T ;
OK output←

(
a1 ⊗ b1 ⊗ c1, . . . ,ar ⊗ br ⊗ cr

)
.

13 / 24

The BAD step transforms the numerically “easy” problem

compute the CPD of A ∈ Rn1×n2×n3

into the numerically hard problem

compute the CPD of B = (I, I,QT)A ∈ Rn1×n2×2.

The reason for this is that we can have:

κ(A) ≈ 1, while κ(B)� 1.

14 / 24

10
0

10
2

10
4

10
6

10
8

10
10

10
12

10
-4

10
-2

10
0

Dashed lines = empirical distribution of κ(A) for

A =
15∑
i=1

ai ⊗ bi ⊗ ci ∈ R15×15×n,

where the ai,bi, ci are independent Gaussian vectors.

Theorem (Breiding, Vannieuwenhoven (2019))
Let A =

∑r
i=1 ai ⊗ bi ⊗ ci ∈ Rn1×n2×2 have Gaussian factors.

Then: E κ(A) =∞.

15 / 24

10
0

10
2

10
4

10
6

10
8

10
10

10
12

10
-4

10
-2

10
0

Dashed lines = empirical distribution of κ(A) for

A =
15∑
i=1

ai ⊗ bi ⊗ ci ∈ R15×15×n,

where the ai,bi, ci are independent Gaussian vectors.

Theorem (Breiding, Vannieuwenhoven (2019))
Let A =

∑r
i=1 ai ⊗ bi ⊗ ci ∈ Rn1×n2×2 have Gaussian factors.

Then: E κ(A) =∞.
15 / 24

Let {Ã1, . . . , Ãr} be the CPD of A (in floating-point
representation) returned by the PBA.

We show that for every ε > 0 there exists an open
neighborhood Oε ⊂ σr such that the excess factor

ω(A) = observed forward error due to algorithm
maximum forward error due to problem

:=
minπ∈Sr

√∑r
i=1 ‖Ai − Ãi‖2

κ(A) · ‖A − fl(A)‖F

behaves like a constant times ε−1.

For PBAs this ratio is essentially = κ(B)
κ(A) .

16 / 24

Formally, we showed the following result:

Theorem (Beltrán, Breiding, Vannieuwenhoven (2019))
There exist a constant k > 0 and a tensor

O ∈ σr ⊂ Rn1×n2×n3

with the following properties: for all su�ciently small ε > 0,
there exists an open neighborhood Oε of O, such that for all
tensors A ∈ Oε we have

ω(A) = observed forward error due to algorithm
maximum forward error due to problem

≥ kε−1.

The reason for this is

κ(A) ≈ 1, while κ(B)� 1.

17 / 24

Formally, we showed the following result:

Theorem (Beltrán, Breiding, Vannieuwenhoven (2019))
There exist a constant k > 0 and a tensor

O ∈ σr ⊂ Rn1×n2×n3

with the following properties: for all su�ciently small ε > 0,
there exists an open neighborhood Oε of O, such that for all
tensors A ∈ Oε we have

ω(A) = observed forward error due to algorithm
maximum forward error due to problem

≥ kε−1.

The reason for this is

κ(A) ≈ 1, while κ(B)� 1.

17 / 24

Distribution of the forward error

10 -16 10 -14 10 -12 10 -10 10 -8 10 -6 10 -4 10 -2

10 -15

10 -10

10 -5

10 0

cpd_pba

cpd

Forward error errforward for random tensors in Oε:

cpd-pba = Pencil-based algorithm

cpd = Pencil-based algorithm + iterative refinement.

18 / 24

In our formal statement ...

1 we show that the excess factor is unbounded in a small
neighborhood Oε;

2 the projection matrix Q is chosen independently from A.

Experiments indicate that a high excess factor is a problem in
general.

19 / 24

Empirical distribution of the excess factor

10
0

10
5

10
10

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

cpd_pba

cpd_pba2

cpd_gevd

105 random 23×17×5 tensors
A =

∑17
i=1 ai ⊗ bi ⊗ ci of rank

17 with Gaussian factors.

cpd-pba:
use GEVD for B = (I, I,QT)A;
random Q.

cpd-pba2:
use iterative method for B;
random Q.

cpd-gevd:
use GEVD for B; choose Q de-
pending on A.

20 / 24

Empirical distribution of the excess factor

10
0

10
5

10
10

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

cpd_pba

cpd_pba2

cpd_gevd

105 random 23×17×15 tensors
A =

∑17
i=1 ai ⊗ bi ⊗ ci of rank

17 with Gaussian factors.

cpd-pba:
use GEVD for B = (I, I,QT)A;
random Q.

cpd-pba2:
use iterative method for B;
random Q.

cpd-gevd:
use GEVD for B; choose Q de-
pending on A.

21 / 24

Empirical distribution of the excess factor

10
0

10
5

10
10

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

cpd_pba

cpd_pba2

cpd_gevd

105 random 23×23×23 tensors
A =

∑23
i=1 ai ⊗ bi ⊗ ci of rank

23 with Gaussian factors.

cpd-pba:
use GEVD for B = (I, I,QT)A;
random Q.

cpd-pba2:
use iterative method for B;
random Q.

cpd-gevd:
use GEVD for B; choose Q de-
pending on A.

22 / 24

Conclusions

Take-away story:
1 Reduction to a matrix pencil yields numerically unstable

algorithms for computing CPDs.
2 The reason is that the ratio of condition numbers κ(B)

κ(A) for
A ∈ Rn1×n2×n3 and B = (I, I,QT)A ∈ Rn1×n2×2 is
unbounded.

23 / 24

Further reading

• Beltrán, Breiding, and Vannieuwenhoven, Pencil-based algorithms for
tensor rank decomposition are not stable,
SIAM J. Matrix Anal. and Appl., 2019.

• Beltrán, Breiding, and Vannieuwenhoven, The average condition
number of most tensor rank decomposition problems is infinite,
arXiv1903.05527.

• Breiding and Vannieuwenhoven, The condition number of join
decompositions, SIAM J. Matrix Anal. and Appl., 2018.

• Breiding and Vannieuwenhoven, On the average condition number of
tensor rank decompositions, IMA J. Num. Anal., 2019.

• Breiding and Vannieuwenhoven, A Riemannian trust region method for
the canonical tensor rank approximation problem, SIAM J. Optim, 2018.

24 / 24

	Introduction
	Conclusions

