Pencil-based algorithms for the tensor rank decomposition are not stable

Paul Breiding (MPI MiS Leipzig)
Carlos Beltrán (Universidad de Cantabria)
Nick Vannieuwenhoven (KU Lueven)

paulbreiding.org juliahomotopycontinuation.org

CPD for tensors $\mathcal{A} \in \mathbb{R}^{n_1 \times n_2 \times n_3}$:

$$\mathcal{A} = \sum_{i=1}^r \mathbf{a}_i \otimes \mathbf{b}_i \otimes \mathbf{c}_i$$

$$+ \cdots +$$

minimal number of terms needed = rank(A)

Notation

 $\mathcal{S} := \{\mathcal{A} \mid \operatorname{rank}(\mathcal{A}) = 1\}$ are the rank-one tensors. $\sigma_r := \{\mathcal{A} \mid \operatorname{rank}(\mathcal{A}) \leq r\}$ are the tensors of rank at most r.

We assume that w. probability=1 $\mathcal{A} \in \sigma_r$ has a unique decomposition (σ_r is "generically identifiable").

A direct algorithm for order-3 tensors

In some cases, the CPD of third-order tensors can be computed directly via a **generalized eigendecomposition**.

This is also called Jenrich's algorithm.

For simplicity, assume that $A \in \mathbb{R}^{n \times n \times n}$ is of rank n. Say

$$\mathcal{A} = \sum_{i=1}^n \mathbf{a}_i \otimes \mathbf{b}_i \otimes \mathbf{c}_i.$$

The steps are as follows.

1. Choose a matrix $Q \in \mathbb{R}^{n \times 2}$ with orthonormal columns $\mathbf{q}_1, \mathbf{q}_2$.

- 1. Choose a matrix $Q \in \mathbb{R}^{n \times 2}$ with orthonormal columns $\mathbf{q}_1, \mathbf{q}_2$.
- 2. Compute the multilinear multiplication

$$\mathcal{B} = (I, I, Q^T) \cdot \mathcal{A} := \sum_{i=1}^n \mathbf{a}_i \otimes \mathbf{b}_i \otimes (Q^T \mathbf{c}_i).$$

$$\in \mathbb{R}^{n \times n \times n} \quad \mapsto \qquad \boxed{\mathcal{B}} \quad \in \mathbb{R}^{n \times n \times 2}$$

- 1. Choose a matrix $Q \in \mathbb{R}^{n \times 2}$ with orthonormal columns $\mathbf{q}_1, \mathbf{q}_2$.
- 2. Compute the multilinear multiplication

$$\mathcal{B} = (I, I, Q^T) \cdot \mathcal{A} := \sum_{i=1}^n \mathbf{a}_i \otimes \mathbf{b}_i \otimes (Q^T \mathbf{c}_i).$$

$$\in \mathbb{R}^{n \times n \times n} \quad \mapsto \quad \boxed{\mathcal{B}} \quad \in \mathbb{R}^{n \times n \times 2}$$

3. The two **slices** X_1 and X_2 of \mathcal{B} are

$$X_j = \sum_{i=1}^n \langle \mathbf{q}_j, \mathbf{c}_i \rangle \mathbf{a}_i \otimes \mathbf{b}_i = A \operatorname{diag}(\mathbf{q}_j^T C) B^T$$

where $A = [\mathbf{a}_i]$ and $B = [\mathbf{b}_i]$ and $C = [\mathbf{C}_i]$.

- 1. Choose a matrix $Q \in \mathbb{R}^{n \times 2}$ with orthonormal columns $\mathbf{q}_1, \mathbf{q}_2$.
- 2. Compute the multilinear multiplication

$$\mathcal{B} = (I, I, Q^T) \cdot \mathcal{A} := \sum_{i=1}^n \mathbf{a}_i \otimes \mathbf{b}_i \otimes (Q^T \mathbf{c}_i).$$

$$\in \mathbb{R}^{n \times n \times n} \quad \mapsto \quad \boxed{\mathcal{B}} \quad \in \mathbb{R}^{n \times n \times 2}$$

3. The two slices X_1 and X_2 of \mathcal{B} are

$$X_j = \sum_{i=1}^n \langle \mathbf{q}_j, \mathbf{c}_i \rangle \mathbf{a}_i \otimes \mathbf{b}_i = A \operatorname{diag}(\mathbf{q}_j^T C) B^T$$

where $A = [\mathbf{a}_i]$ and $B = [\mathbf{b}_i]$ and $C = [\mathbf{C}_i]$.

Hence, $X_1X_2^{-1}$ has the following eigenvalue decomposition:

$$X_1 X_2^{-1} = A \operatorname{diag}(\mathbf{q}_1^T C) \operatorname{diag}(\mathbf{q}_2^T C)^{-1} A^{-1}$$

from which \boldsymbol{A} can be found as the matrix of eigenvectors.

4. By a 1-flattening

$$\mathcal{A} = \bigcap \mathcal{A}_{(1)} = \bigcap \mathcal{A}_{(1)}$$

we find

$$\mathcal{A}_{(1)} := \sum_{i=1}^{n} \mathbf{a}_{i} (\mathbf{b}_{i} \otimes \mathbf{c}_{i})^{T} = A(B \odot C)^{T},$$

where $B \odot C := [\mathbf{b}_i \otimes \mathbf{c}_i]_i \in \mathbb{R}^{n^2 \times n}$.

4. By a 1-flattening

we find

$$\mathcal{A}_{(1)} := \sum_{i=1}^{n} \mathbf{a}_{i} (\mathbf{b}_{i} \otimes \mathbf{c}_{i})^{T} = A(B \odot C)^{T},$$

where $B \odot C := [\mathbf{b}_i \otimes \mathbf{c}_i]_i \in \mathbb{R}^{n^2 \times n}$.

5. Computing

$$A \odot (A^{-1}\mathcal{A}_{(1)})^T = A \odot (B \odot C) = [\mathbf{a}_i \otimes \mathbf{b}_i \otimes \mathbf{c}_i]_i,$$

solves the tensor decomposition problem.

Let's perform an experiment in Tensorlab v3.0:

1. Create a rank-25 random tensor of size $25 \times 25 \times 25$:

```
>> FactorMatrices{1} = randn(25,25);
>> FactorMatrices{2} = randn(25,25);
>> FactorMatrices{3} = randn(25,25);
% generate the full tensor
>> A = cpdgen(FactorMatrices);
```

Let's perform an experiment in Tensorlab v3.0:

1. Create a rank-25 random tensor of size $25 \times 25 \times 25$:

```
>> FactorMatrices{1} = randn(25,25);
>> FactorMatrices{2} = randn(25,25);
>> FactorMatrices{3} = randn(25,25);
% generate the full tensor
>> A = cpdgen(FactorMatrices);
```

2. Compute \mathcal{A} 's decomposition U and compare the outputs relative to the machine precision $\epsilon \approx 2 \cdot 10^{-16}$:

```
>> U = cpd_gevd(A, 25);
>> E = A - cpdgen(U);
>> norm( E(:), 2 ) / eps
ans =
     8.6249e+04
```

Let's perform an experiment in Tensorlab v3.0:

1. Create a rank-25 random tensor of size $25 \times 25 \times 25$:

```
>> FactorMatrices{1} = randn(25,25);
>> FactorMatrices{2} = randn(25,25);
>> FactorMatrices{3} = randn(25,25);
% generate the full tensor
>> A = cpdgen(FactorMatrices);
```

2. Compute \mathcal{A} 's decomposition U and compare the outputs relative to the machine precision $\epsilon \approx 2 \cdot 10^{-16}$:

```
>> U = cpd_gevd(A, 25);

>> E = A - cpdgen(U);

>> norm( E(:), 2 ) / eps

ans =

8.6249e+04
```

What happened?

Let us look more closely at the computational problem:

- The input is a tensor $\mathcal{A} \in \sigma_{25} \subset \mathbb{R}^{25 \times 25 \times 25}$ of rank 25.
- The output is the tuple $(\mathbf{a}_i \otimes \mathbf{b}_i \otimes \mathbf{c}_i)_{i=1}^{25} \in \mathcal{S}^{\times 25}$.

Let $f:\sigma_{25}\to\mathcal{S}^{\times 25}$ be the function that maps a tensor to its decomposition. Then, what we observed was

$$\frac{\|f(\mathcal{A}) - f(\mathcal{A}')\|}{\|\mathcal{A} - \mathcal{A}'\|} \approx 8 \cdot 10^4$$

with $\|\mathcal{A} - \mathcal{A}'\| \approx 2 \cdot 10^{-16}$.

The **condition number** quantifies the **worst-case sensitivity** of a (local) function f to perturbations of the input.

Here: $f: \sigma_r \to \mathcal{S}^{\times r}$ is a local inverse of the addition map:

$$\Phi_r: \mathcal{S} \times \dots \times \mathcal{S} \to \mathbb{R}^{n_1 \times n_2 \times n_3}$$
$$(\mathcal{A}_1, \dots, \mathcal{A}_r) \mapsto \mathcal{A}_1 + \dots + \mathcal{A}_r$$

Proposition (Beltrán, Breiding, Vannieuwenhoven)

If σ_r is generically identifiable, there is an open dense submanifold $\mathcal{M}_r \subset \sigma_r$ such that:

- ① For all $A \in \mathcal{M}_r$ the condition number is the same for all local inverses. We denote it by $\kappa(A)$.
- $2 \kappa(\mathcal{A}) < \infty \text{ for all } \mathcal{A} \in \mathcal{M}_r.$

The interpretation of the condition number is: if $\mathcal{A}=\mathcal{A}_1+\cdots+\mathcal{A}_r$ and $\mathcal{A}'=\mathcal{A}_1'+\cdots+\mathcal{A}_r'$, then for $\|\mathcal{A}-\mathcal{A}'\|_F\approx 0$ we have the **asymptotically sharp bound**

$$\underbrace{\min_{\pi \in \mathfrak{S}_r} \sqrt{\sum_{i=1}^r \|\mathcal{A}_i - \mathcal{A}'_{\pi_i}\|_F^2}}_{\text{forward error}} \lesssim \underbrace{\kappa(\mathcal{A})}_{\text{condition number}} \cdot \underbrace{\|\mathcal{A} - \mathcal{A}'\|_F}_{\text{backward error}}$$

Back to our example

```
>> FactorMatrices{1} = randn(25,25);
>> FactorMatrices{2} = randn(25,25);
>> FactorMatrices{3} = randn(25,25);
>> A = cpdgen(FactorMatrices);
>> U = cpd_gevd(A, 25);
>> E = A - cpdgen(U);
>> norm( E(:), 2 ) / eps
ans =
    8.6249e+04
```

We understand now that this can happen, because of a high condition number. However,

```
>> kappa = condition_number(U)
ans =
    2.134
```

The only explanation is that there is something wrong with the algorithm.

We show that algorithms based on a reduction to tensors in $\mathbb{R}^{n_1 \times n_2 \times 2}$ are **numerically unstable**.

The forward error produced by the algorithm divided by the backward error is "much" larger than the condition number, for some inputs.

Pencil-based algorithms

A **pencil-based algorithm** (PBA) is an algorithm that computes the CPD of

$$\mathcal{A} = \sum_{i=1}^{r} \mathbf{a}_{i} \otimes \mathbf{b}_{i} \otimes \mathbf{c}_{i} \in \sigma_{r} \subset \mathbb{R}^{n_{1} \times n_{2} \times n_{3}}$$

in the following way:

- S1. Choose a fixed $Q \in \mathbb{R}^{n_3 \times 2}$ with orthonormal columns.
- **S2.** $\mathcal{B} \leftarrow (I, I, Q^T) \cdot \mathcal{A};$
- S3. $\{\mathbf{a}_1,\ldots,\mathbf{a}_r\}\leftarrow\mathsf{decompose}\ \mathcal{B}\in\mathbb{R}^{n_1\times n_2\times 2};$
- S4. Choose an order $A := (\mathbf{a}_1, \dots, \mathbf{a}_r)$;
- S5. $(\mathbf{b}_1 \otimes \mathbf{c}_1, \dots, \mathbf{b}_r \otimes \mathbf{c}_r) \leftarrow (A^{\dagger} \mathcal{A}_{(1)})^T$;
- $\textbf{S6}.\quad \mathtt{output} \leftarrow \big(\mathbf{a}_1 \otimes \mathbf{b}_1 \otimes \mathbf{c}_1, \ldots, \mathbf{a}_r \otimes \mathbf{b}_r \otimes \mathbf{c}_r\big).$

Pencil-based algorithms

A **pencil-based algorithm** (PBA) is an algorithm that computes the CPD of

$$\mathcal{A} = \sum_{i=1}^{r} \mathbf{a}_{i} \otimes \mathbf{b}_{i} \otimes \mathbf{c}_{i} \in \sigma_{r} \subset \mathbb{R}^{n_{1} \times n_{2} \times n_{3}}$$

in the following way:

- OK Choose a fixed $Q \in \mathbb{R}^{n_3 \times 2}$ with orthonormal columns.
- OK $\mathcal{B} \leftarrow (I, I, Q^T) \cdot \mathcal{A};$
- $\mathsf{BAD} \quad \{\mathbf{a}_1, \dots, \mathbf{a}_r\} \leftarrow \mathsf{decompose} \ \mathcal{B} \in \mathbb{R}^{n_1 \times n_2 \times 2};$
 - OK Choose an order $A := (\mathbf{a}_1, \dots, \mathbf{a}_r)$;
 - OK $(\mathbf{b}_1 \otimes \mathbf{c}_1, \dots, \mathbf{b}_r \otimes \mathbf{c}_r) \leftarrow (A^{\dagger} \mathcal{A}_{(1)})^T$;
 - $\mathsf{OK} \quad \mathsf{output} \leftarrow \big(\mathbf{a}_1 \otimes \mathbf{b}_1 \otimes \mathbf{c}_1, \dots, \mathbf{a}_r \otimes \mathbf{b}_r \otimes \mathbf{c}_r\big).$

The BAD step transforms the numerically "easy" problem

compute the CPD of $\mathcal{A} \in \mathbb{R}^{n_1 \times n_2 \times n_3}$

into the numerically hard problem

compute the CPD of
$$\mathcal{B} = (I, I, Q^T)\mathcal{A} \in \mathbb{R}^{n_1 \times n_2 \times 2}$$
.

The reason for this is that we can have:

$$\kappa(\mathcal{A}) \approx 1$$
, while $\kappa(\mathcal{B}) \gg 1$.

Dashed lines = empirical distribution of $\kappa(A)$ for

$$\mathcal{A} = \sum_{i=1}^{15} \mathbf{a}_i \otimes \mathbf{b}_i \otimes \mathbf{c}_i \in \mathbb{R}^{15 \times 15 \times n},$$

where the a_i, b_i, c_i are independent Gaussian vectors.

Dashed lines = empirical distribution of $\kappa(A)$ for

$$\mathcal{A} = \sum_{i=1}^{15} \mathbf{a}_i \otimes \mathbf{b}_i \otimes \mathbf{c}_i \in \mathbb{R}^{15 \times 15 \times n},$$

where the a_i, b_i, c_i are independent Gaussian vectors.

Theorem (Breiding, Vannieuwenhoven (2019))

Let $\mathcal{A} = \sum_{i=1}^r \mathbf{a}_i \otimes \mathbf{b}_i \otimes \mathbf{c}_i \in \mathbb{R}^{n_1 \times n_2 \times 2}$ have Gaussian factors. Then: $\mathbb{E} \kappa(\mathcal{A}) = \infty$.

Let $\{\widetilde{A}_1, \dots, \widetilde{A}_r\}$ be the CPD of \mathcal{A} (in floating-point representation) returned by the PBA.

We show that for every $\epsilon > 0$ there exists an open neighborhood $\mathcal{O}_{\epsilon} \subset \sigma_r$ such that the **excess factor**

$$\omega(\mathcal{A}) = \frac{\text{observed forward error due to algorithm}}{\text{maximum forward error due to problem}} \\ := \frac{\min_{\pi \in \mathfrak{S}_r} \sqrt{\sum_{i=1}^r \|\mathcal{A}_i - \widetilde{\mathcal{A}}_i\|^2}}{\kappa(\mathcal{A}) \cdot \|\mathcal{A} - \mathrm{fl}(\mathcal{A})\|_F}$$

behaves like a constant times ϵ^{-1} .

For PBAs this ratio is essentially
$$=\frac{\kappa(\mathcal{B})}{\kappa(\mathcal{A})}$$
.

Formally, we showed the following result:

Theorem (Beltrán, Breiding, Vannieuwenhoven (2019))

There exist a constant k > 0 and a tensor

$$O \in \sigma_r \subset \mathbb{R}^{n_1 \times n_2 \times n_3}$$

with the following properties: for all sufficiently small $\epsilon > 0$, there exists an open neighborhood \mathcal{O}_{ϵ} of \mathcal{O} , such that for all tensors $\mathcal{A} \in \mathcal{O}_{\epsilon}$ we have

$$\omega(\mathcal{A}) = \frac{\textit{observed forward error due to algorithm}}{\textit{maximum forward error due to problem}} \geq k\epsilon^{-1}.$$

Formally, we showed the following result:

Theorem (Beltrán, Breiding, Vannieuwenhoven (2019))

There exist a constant k > 0 and a tensor

$$O \in \sigma_r \subset \mathbb{R}^{n_1 \times n_2 \times n_3}$$

with the following properties: for all sufficiently small $\epsilon > 0$, there exists an open neighborhood \mathcal{O}_{ϵ} of \mathcal{O} , such that for all tensors $\mathcal{A} \in \mathcal{O}_{\epsilon}$ we have

$$\omega(\mathcal{A}) = \frac{\textit{observed forward error due to algorithm}}{\textit{maximum forward error due to problem}} \geq k\epsilon^{-1}.$$

The reason for this is

$$\kappa(\mathcal{A}) \approx 1$$
, while $\kappa(\mathcal{B}) \gg 1$.

Distribution of the forward error

Forward error $\operatorname{err}_{\operatorname{forward}}$ for random tensors in \mathcal{O}_{ϵ} :

$$\label{eq:cpd-pba} \begin{split} & \text{cpd-pba} = \text{Pencil-based algorithm} \\ & \text{cpd} = \text{Pencil-based algorithm} + \text{iterative refinement.} \end{split}$$

In our formal statement ...

- ① we show that the excess factor is unbounded in a small neighborhood \mathcal{O}_{ϵ} ;
- 2 the projection matrix Q is chosen independently from \mathcal{A} .

Experiments indicate that a high excess factor is a problem in general.

Empirical distribution of the excess factor

 10^5 random $23 \times 17 \times 5$ tensors $\mathcal{A} = \sum_{i=1}^{17} \mathbf{a}_i \otimes \mathbf{b}_i \otimes \mathbf{c}_i$ of rank 17 with Gaussian factors.

cpd-pba: use GEVD for $\mathcal{B} = (I, I, Q^T)\mathcal{A}$; random Q.

cpd-pba2: use iterative method for \mathcal{B} ; random Q.

cpd-gevd: 10 10 use GEVD for \mathcal{B} ; choose Q depending on \mathcal{A} .

Empirical distribution of the excess factor

 10^5 random $23\times17\times15$ tensors $\mathcal{A}=\sum_{i=1}^{17}\mathbf{a}_i\otimes\mathbf{b}_i\otimes\mathbf{c}_i$ of rank 17 with Gaussian factors.

cpd-pba: use GEVD for $\mathcal{B}=(I,I,Q^T)\mathcal{A};$ random Q.

cpd-pba2: use iterative method for \mathcal{B} ; random Q.

cpd-gevd: 10 10 use GEVD for \mathcal{B} ; choose Q depending on \mathcal{A} .

Empirical distribution of the excess factor

 10^5 random $23\times23\times23$ tensors $\mathcal{A}=\sum_{i=1}^{23}\mathbf{a}_i\otimes\mathbf{b}_i\otimes\mathbf{c}_i$ of rank 23 with Gaussian factors.

cpd-pba: use GEVD for $\mathcal{B}=(I,I,Q^T)\mathcal{A};$ random Q.

cpd-pba2: use iterative method for \mathcal{B} ; random Q.

cpd-gevd: 10 10 use GEVD for \mathcal{B} ; choose Q depending on \mathcal{A} .

Conclusions

Take-away story:

- Reduction to a matrix pencil yields numerically unstable algorithms for computing CPDs.
- 2 The reason is that the ratio of condition numbers $\frac{\kappa(\mathcal{B})}{\kappa(\mathcal{A})}$ for $\mathcal{A} \in \mathbb{R}^{n_1 \times n_2 \times n_3}$ and $\mathcal{B} = (I, I, Q^T) \mathcal{A} \in \mathbb{R}^{n_1 \times n_2 \times 2}$ is unbounded.

Further reading

- Beltrán, Breiding, and Vannieuwenhoven, Pencil-based algorithms for tensor rank decomposition are not stable,
 SIAM J. Matrix Anal. and Appl., 2019.
- Beltrán, Breiding, and Vannieuwenhoven, The average condition number of most tensor rank decomposition problems is infinite, arXiv1903.05527.
- Breiding and Vannieuwenhoven, The condition number of join decompositions, SIAM J. Matrix Anal. and Appl., 2018.
- Breiding and Vannieuwenhoven, On the average condition number of tensor rank decompositions, IMA J. Num. Anal., 2019.
- Breiding and Vannieuwenhoven, A Riemannian trust region method for the canonical tensor rank approximation problem, SIAM J. Optim, 2018.

