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CPD for tensors 4 € R71xn2xns.
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minimal number of terms needed = rank(4)

Notation

S := {4 | rank(4) = 1} are the rank-one tensors.
o, = {4 | rank(2) < r} are the tensors of rank at most r.

We assume that w. probability=1 4 € ¢, has a unique
decomposition (o, is “generically identifiable”).



A direct algorithm for order-3 tensors

In some cases, the CPD of third-order tensors can be
computed directly via a generalized eigendecomposition.

This is also called Jenrich’s algorithm.
For simplicity, assume that 2 € R"*"*" is of rank n. Say
n
A=) a;0b;®c;.

i=1

The steps are as follows.



1.C i i
hoose a matrix Q € R™*? with orthonormal columns qi, qa.



1. Choose a matrix Q € R™*2 with orthonormal columns qi, qs.

2. Compute the multilinear multiplication

8= (I,1,Q") 'ﬂi:iai®bi®(QTCi)~
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1. Choose a matrix Q € R™*? with orthonormal columns qi, qs.
2. Compute the multilinear multiplication

8= (I,1,Q") 'ﬂi:iai®bi®(QTCi)~
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3. The two slices X; and X, of B are

X; =Y (qj.ci)a; ® b; = Adiag(q] C) BT
i=1

where A = [a;] and B = [b;] and C = [C;].



1. Choose a matrix Q € R™*? with orthonormal columns qi, qs.
2. Compute the multilinear multiplication

B=(I,1,Q") a:= iai@)bi@(QTCi)'
i=1
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3. The two slices X; and X, of B are

Xj= Z<Qj7 Ci>ai ®b; = Adiag(quC)BT
=1

where A = [a;] and B = [b;] and C = [C;].
Hence, X, X, ! has the following eigenvalue decomposition:

X1X, ! = Adiag(qf C) diag(q; ©)'A™

from which A can be found as the matrix of eigenvectors.



4. By a 1-flattening

Zaz i®c)l =ABoO)T,

we find

where Bo® C := [b; ® ¢;]; € R X1




4. By a 1-flattening

Za, i®c)l =ABoO)T,

we find

where Bo® C := [b; ® ¢;]; € R X7,
5. Computing

A (A'3) =40 (BeC)=[a;®b; ®cil;,

solves the tensor decomposition problem.



Let’s perform an experiment in Tensorlab v3.0:

1. Create a rank-25 random tensor of size 25 x 25 x 25:

>> FactorMatrices{1} = randn(25,25);
>> FactorMatrices{2} = randn(25,25);
>> FactorMatrices{3} = randn(25,25);

% generate the full tensor
>> A = cpdgen(FactorMatrices);
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>> FactorMatrices{1} = randn(25,25);
>> FactorMatrices{2} = randn(25,25);
>> FactorMatrices{3} = randn(25,25);

% generate the full tensor
>> A = cpdgen(FactorMatrices);

2. Compute 4's decomposition U and compare the outputs
relative to the machine precision e ~ 2 - 10~ 16:

>> U = cpd_gevd(A, 25);
>> E = A - cpdgen(U);
>> norm( E(:), 2 ) / eps
ans =

8.6249e+04
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% generate the full tensor
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2. Compute 4's decomposition U and compare the outputs
relative to the machine precision e ~ 2 - 10~ 16:

>> U = cpd_gevd(A, 25);
>> E = A - cpdgen(U);
>> norm( E(:), 2 ) / eps
ans =

8.6249e+04

What happened?



Let us look more closely at the computational problem:

e The input is a tensor 4 € oq5 C R?°%25X25 of rank 25.
o The output is the tuple (a, ® b; ® ¢;)?3; € S*%.

Let f : 095 — S*?° be the function that maps a tensor to its
decomposition. Then, what we observed was

1/ () = f(A)]]
|4 -2
with |2 — 4| =~ 210716,

~8-10%




The condition number quantifies the worst-case sensitivity of
a (local) function f to perturbations of the input.

f(y)

£ () =F (=)l
ly—zll -

k[f](x) := lim

su
e—0 P

yillz—yll<e

Here: f : 0, — S*" is a local inverse of the addition map:

@T:SX...XSﬁRanTLQXTLg
(ﬂl,...,ﬂr)»—>21+..._|_/qr



Proposition (Beltran, Breiding, Vannieuwenhoven)
If o, is generically identifiable, there is an open dense
submanifold M, C o, such that:

For all 2 € M, the condition number is the same for all
local inverses. We denote it by ().

k(4) < oo forall 4 € M,.

The interpretation of the condition number is: if
A=A+ --+2 and 2 =242+ -+ 4, then for
|2 — 4'||r ~ 0 we have the asymptotlcally sharp bound

T
i g |2 < «(a g — 4
gg\lZ!l% alrs s A=A
condition number backward error

forward error



Back to our example

randn (25,25) ;
randn(25,25) ;
randn(25,25) ;

>> FactorMatrices{1}
>> FactorMatrices{2}
>> FactorMatrices{3}

>> A = cpdgen(FactorMatrices);
>> U = cpd_gevd(A, 25);
>> E = A - cpdgen(U);

>> norm( E(:), 2 ) / eps
ans =
8.6249e+04

We understand now that this can happen, because of a high
condition number. However,

>> kappa = condition_number (U)
ans =
2.134



The only explanation is that there is something wrong with
the algorithm.

We show that algorithms based on a reduction to tensors
in R™*"2X2 gre numerically unstable.

The forward error produced by the algorithm divided by the
backward error is “much” larger than the condition number,
for some inputs.



Pencil-based algorithms

A pencil-based algorithm (PBA) is an algorithm that
computes the CPD of

r
4 = Zai Rb;Rc; € g, C R Xn2Xn3
=1

in the following way:

S1.
S2.
S3.
S4.
S5.
S6.

Choose a fixed Q € R™*2 with orthonormal columns.
B+ (I,1,Q7) - a

{ay,...,a,} + decompose B € R xn2x2,

Choose an order A := (aj,...,a,);

(b1 ®cy,...,b,®c,) « (Alay))T;

output < (a; ® b1 ®cy,...,a, @b, @ c,).



Pencil-based algorithms

A pencil-based algorithm (PBA) is an algorithm that
computes the CPD of

r
4 = Zai Rb;Rc; € g, C R Xn2Xn3
=1

in the following way:

OK
OK
BAD
OK
OK
OK

Choose a fixed Q € R™*?2 with orthonormal columns.
B+ (I,1,Q7) - 4

{ay,...,a,} + decompose B € R xn2x2,

Choose an order A := (aj,...,a,);

(b1 ®cy,..., b, ®c,) « (Alay))T;

output < (a; ® b1 ®c1,...,a, @b, @ c,).



The BAD step transforms the numerically “easy” problem

compute the CPD of g4 € R™*"2%"3

into the numerically hard problem

compute the CPD of 8 = (I, 1, QT);Z[ c RM*Xn2x2

The reason for this is that we can have:

k(4) ~ 1, while k(B)>1.
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15
2= a;@b; @ c; € RIFXIN,
=1

where the a;, b;, ¢c; are independent Gaussian vectors.



15x 15 xn

Dashed lines = empirical distribution of x(A) for

15
7= Zai @ b; ®c; € RI5X15xn

i=1

where the a;, b;, ¢c; are independent Gaussian vectors.

Theorem (Breiding, Vannieuwenhoven (2019))

Let 2 =73_,a; ®b; ®c; € Rm*"2%2 have Gaussian factors.
Then: E k(4) = cc.



Let {4,...,4,} be the CPD of 4 (in floating-point
representation) returned by the PBA.

We show that for every e > 0 there exists an open
neighborhood O, C o, such that the excess factor

_ observed forward error due to algorithm

w(Aa) = -
() maximum forward error due to problem

minges, /Y0y 17 — A2
w(a) - 14— ()|

behaves like a constant times 1.

K(B)

r(A)

For PBAs this ratio is essentially =



Formally, we showed the following result:

Theorem (Beltran, Breiding, Vannieuwenhoven (2019))
There exist a constant k > 0 and a tensor

o) c o, C Rnlxngxng

with the following properties: for all sufficiently small € > 0,
there exists an open neighborhood O, of 0, such that for all
tensors 4 € O, we have

observed forward error due to algorithm 1
w(a) = . > ke
maximum forward error due to problem
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The reason for this is

k(4) ~ 1, while x(B)>1.



Distribution of the forward error
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Forward error errg,,warq fOr random tensors in O,:

cpd-pba = Pencil-based algorithm
cpd = Pencil-based algorithm + iterative refinement.



In our formal statement ...

we show that the excess factor is unbounded in a small
neighborhood O,;

the projection matrix Q is chosen independently from 4.

Experiments indicate that a high excess factor is a problem in
general.



Empirical distribution of the excess factor
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Empirical distribution of the excess factor
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Conclusions

Take-away story:
Reduction to a matrix pencil yields numerically unstable
algorithms for computing CPDs.

A

The reason is that the ratio of condition numbers K(f& for
4 e Rmxm2xnms gnd B = (I,1,Q7)a € Rmxn2x2 s
unbounded.
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