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Question:

Do self-correcting quantum
memories exist in 2D?



If so, it is due to topological order.

Picture from Quanta Magazine



Quantum many-body systems and their
spectral gap
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Spin s particles = finite dim Hilbert space

Total Hilbert space = tensor product of local ones

Translational invariant finite range interaction

Hamiltonian:
H = Z hi ® Idrest
i

Eigenstates associated to Ay(NV) = ground states

Eigenstates associated to 4,(/V) = excited states

e‘ﬁH

Thermal (or Gibbs) state: Pp= m
r(e—

Spectral gap: yy = 4{(N) — 45(N)

The system has gap if there exists ¢>0 such that Ay > ¢ for all N?




Spectral gap: a central concept

Spectral Gap in condensed matter physics:

|t defines the concept of quantum phase, phase transition, phase diagram, ...
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Spectral Gap in quantum information and computation:

« |t measures the efficiency in adiabatic quantum computation and quantum state engineering
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Topological phases

Degeneracy of the ground state in Hamiltonian depends on topology

All ground states are indistinguishable locally
Excitations behave like quasiparticles with anyonic statistics.

To move between ground states: non-local operator.

CANDIDATES TO BE GOOD QUANTUM MEMORIES

Protected space = ground space

Errors need to accumulate in a non-local pattern to change the protected
information. This is unlikely.

This is proven true in 4D. What about 2D and 3D? Here we will focus on 2D



How to construct topologically
ordered systems. PEPS

They approximate well GS of local Hamiltonians
(Hastings)



Basics in TNS. Box-leg notation for tensors

Each leg = one index

vector matrix

i ij

Joining leg = tensor contraction

Scalar product Matrix Multiplication
Z Vivi




1D PEPS = MPS

= |[MPS) = Z tr(A; Ay Ay [y =iy)
ey

> Physical index. Dimension d
(Ai>i = ﬁ | > Virtual index. Dim D = bond dimension




Parent Hamiltonian




Parent Hamiltonian

H=Yh H20 H|MPS)=0 MPSisGSofH

The same in 2D I N E R B
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Parent Hamiltonian
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Topology in PEPS. Gauge symmetry

G any finite group. For example G = Z, = {1,Z}
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Topology in PEPS. Gauge symmetry

Contractible loops of Z vanish.

What about not contractible loops?



Topology in PEPS. Gauge symmetry
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Non contractible loops can be arbitrarily deformed but they do not vanish.



Topology in PEPS. Gauge symmetry
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Non contractible loops can be arbitrarily deformed but they do not vanish.
New ground states of the parent Hamiltonian (which are locally equal).



Excitations = open strings
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Open strings can be arbitrarily deformed except for the extreme points

(quasi-particles).

All of them have the same energy (=2). Quasi-particles can move freely.



Anyonic statistics (G non-abelian)
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Moving one excitation around another one has a non-trivial effect.
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Topological phases

Degeneracy of the ground state in Hamiltonian depends on topology
All ground states are indistinguishable locally @
Excitations behave like quasiparticles with anyonic statistics. @

To move between ground states: non-local operator. @
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Those models are exactly Kitaev’s quantum double models (the case of G = Z, is the Toric Code)
CANDIDATES TO BE GOOD QUANTUM MEMORIES

Protected space = ground space

Errors need to accumulate in a non-local pattern to change the protected information. This is
unlikely.

This is proven true in 4D. What about 2D and 3D? Here we will focus on 2D



Lifetime of topological quantum memories



Quantum memories

Take a 2D topological model with Hamiltonian Htop

E.g Kitaev’s quantum double of a group G (Toric code for G = Z, ).

Assume thermal noise (weak coupling limit). Evolution given by Linbladian:

Pt = e' (Po)

How long does it take to reach p_, = e PHhop 7

\

Information is lost
Short memory time < Gap(Zy) > ¢z > 0, for all j



Quantum memories

Previous results for 2D quantum memories:

Alicki, Fannes, Horodecki 2007. For the Toric code: Gap(gﬂ) > cp> 0, for all §

Komar, Landon-Cardinal, Temme 2016.
For abelian models Gap(Z'3) = ¢z > 0, for all j

What about the non-abelian case?

~

Theorem (A. Lucia, DPG, A. Pérez-Hernandez, in preparation):
For all (even non abelian) quantum double models Gap(ffﬂ) > cp> 0, forall p
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Quantum memories

( )
Theorem (A. Lucia, DPG, A. Pérez-Hernandez, in preparation):
For all (even non abelian) quantum double models Gap(fZﬂ) > cp > 0, forall #

\ J

PrOOf: Consider e_ﬁHtop

At each site we do a partial transposition: | - Y{ | = |- )| )

We obtain a PEPS, called the thermofield double | TMDﬂ)

Gap (HTMDﬂ) = Gap <£Z ﬁ>

The problem boils down to estimate the gap of a PEPS parent Hamiltonian

Theorem (Scarpa et al PRL2020): The existence of spectral gap is an UNDECIDABLE

problem, even for parent Hamiltonians of PEPS.




Solution in this case via bulk-boundary

correspondence in PEPS
Poilblanc et al 2013.



Boundary state

-

It is a mixed 1D state living on the virtual d.o.f.
Mediates the correlations in the system
Defines the parent Hamiltonian of the state

.
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Spectral gap via boundary state

M. Kastoryano, A. Lucia, DPG, Commun. Math. Phys. (2019) 366: 895



Spectral gap in PEPS

Conjecture Poilblanc et al. 2013 (numerical evidence): the parent Hamiltonian of the PEPS
has gap if and only if the boundary state is the Gibbs state of a short-range Hamiltonian.

Intuition. Araki’s theorem: Gibbs state of finite range 1D Hamiltonians have exponentially
decaying correlations

Remember that boundary states mediate the correlations in a PEPS.



Spectral gap in PEPS

Theorem 1: If the boundary state is approximately factorizable, then the bulk Hamiltonian
is gapped.

A 1D state is approximately factorizable if p,pc = Asp Q2pc

ﬁhe case of exact factorization implies that the Hamiltonian terms commute with each \
other and hence the system is gapped. (Remember boundary states define the
Hamiltonian terms)

The approximate case reduces to the martingale condition of Nachtergaele (1995)

Wartingale condition is equivalent to gap (Lucia, Kastoryano 2018) /




Spectral gap in PEPS

[Theorem 1: If the boundary state is approximately factorizable, then the bulk Hamiltonian }
is gapped.

Theorem 2: Gibbs states of Hamiltonians with fast decaying interactions are
approximately factorizable.

[Imagine e — e ™ — finite depth circuit —> A,z Qg

locality
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Spectral gap in PEPS

{Theorem 1: If the boundary state is approximately factorizable, then the bulk Hamiltonian }
is gapped.

Theorem 2: Gibbs states of Hamiltonians with fast decaying interactions are
approximately factorizable.

[Imagine e — e ™ — finite depth circuit —> A,z Qg }

locality




Back to quantum memories
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Theorem 1: If the boundary state is approximately factorizable, then the bulk Hamiltonian
is gapped.
J
~
Theorem (A. Lucia, DPG, A. Pérez-Hernandez, in preparation):
For all (even non abelian) quantum double models Gap(gﬁ) > cp > 0, forall #
W,

Proof:  consider ¢

At each site we do a partial transposition: | - Y{ - | = |- )| - )

We obtain a PEPS, called the thermofield double | TMDﬂ)

Gap <HTMDﬂ> = Gap (5,@)

The problem boils down to estimate the gap of a PEPS parent Hamiltonian

The boundary state of | TMDﬂ) is approximately factorizable. QED.



Thank you for your attention



Boundary state properties. lllustration in 1D

W) :

-
>
I




Boundary state properties. lllustration in 1D

B ,1 \

Pa=
A
‘ ‘ Boundary state
| I — E— Lives on the virtual d.o.f
0 — connecting A & Ac
A°

Encodes the correlations of
the system




Boundary state properties

. lllustration in 1D

{ Orthogonal projector J




Boundary state properties

. lllustration in 1D

{ Orthogonal projector J




Boundary state properties

. lllustration in 1D

{ Orthogonal projector J




Boundary state properties

. lllustration in 1D

{ Orthogonal projector J




Boundary state properties

. lllustration in 1D

{ Orthogonal projector J

=|v)

H=Y(1-P)



