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Question: 
Do self-correcting quantum 

memories exist in 2D?



If so, it is due to topological order.

Picture from Quanta Magazine



Quantum many-body systems and their 
spectral gap

N

N

Spin s particles = finite dim Hilbert space

Translational invariant finite range interaction

i

Hamiltonian:

H = ∑
i

hi ⊗ Idrest

Total Hilbert space = tensor product of local ones

Spectral gap:   γN = λ1(N ) − λ0(N )
The system has gap if there exists c>0 such that    for all N? ΔN > c

Eigenstates associated to  = ground statesλ0(N )

Eigenstates associated to  = excited statesλ1(N )

Thermal (or Gibbs) state:  ρβ =
e−βH

tr(e−βH)



Spectral gap: a central concept

Spectral Gap in condensed matter physics: 

•   It defines the concept of quantum phase, phase transition, phase diagram, … 

Spectral Gap in quantum information and computation: 

•   It measures the efficiency in adiabatic quantum computation and quantum state engineering  



Topological phases
1. Degeneracy of the ground state in Hamiltonian depends on topology 
2. All ground states are indistinguishable locally  
3. Excitations behave like quasiparticles with anyonic statistics. 
4. To move between ground states: non-local operator. 

CANDIDATES TO BE GOOD QUANTUM MEMORIES 

Protected space = ground space 

Errors need to accumulate in a non-local pattern to change the protected 
information. This is unlikely. 

This is proven true in 4D. What about 2D and 3D? Here we will focus on 2D 



How to construct topologically 
ordered systems. PEPS

They approximate well GS of local Hamiltonians 
(Hastings)



Basics in TNS. Box-leg notation for tensors

v A

Each leg = one index

Joining leg = tensor contraction

v w

Scalar product Matrix Multiplication

A B

vector matrix

Av w

= ∑
i

vi | i⟩ = ∑
i, j

Ai, j | i⟩ | j⟩

∑
i

viwi

= ∑
i

AijBjk | i⟩ |k⟩ = AB

= ∑
i

Aijviwj



1D PEPS = MPS

A A A

A

Physical index. Dimension d

Virtual index. Dim D = bond dimension

= |MPS⟩ = ∑
i1,…,in

tr(Ai1Ai2⋯AiN) | i1i2⋯iN⟩

i1 i2 iN

i

(Ai)i
=



 Parent Hamiltonian

A A

X

h

A A

X

A A A

h

= 0

h = P

⊥

= 0



Parent Hamiltonian

 The same in 2D

MPS is GS of HH = ∑
i

hi H ≥ 0 H |MPS⟩ = 0

|PEPS⟩ =



Parent Hamiltonian

X

€ 

=
h = P

⊥

H = ∑
i

hi

H ≥ 0

H |PEPS⟩ = 0

= 0



Topology in PEPS. Gauge symmetry
G any finite group. For example  G = ℤ2 = {1,Z}

Z

Z

Z

Z

€ 

=

Z

Z

Z

Z

Z

Z

€ 

=



Topology in PEPS. Gauge symmetry

€ 

=

Contractible loops of Z vanish. 

What about not contractible loops?



Topology in PEPS. Gauge symmetry

€ 

=

Non contractible loops can be arbitrarily deformed but they do not vanish.



Topology in PEPS. Gauge symmetry

€ 

=

Non contractible loops can be arbitrarily deformed but they do not vanish. 
New ground states of the parent Hamiltonian (which are locally equal). 



Excitations = open strings

€ 

=

Open strings can be arbitrarily deformed except for the extreme points 
(quasi-particles).  
All of them have the same energy (=2). Quasi-particles can move freely.



Anyonic statistics (G non-abelian)

Moving one excitation around another one has a non-trivial effect.
€ 

=



Topological phases
1. Degeneracy of the ground state in Hamiltonian depends on topology 
2. All ground states are indistinguishable locally  
3. Excitations behave like quasiparticles with anyonic statistics. 
4. To move between ground states: non-local operator. 

Those models are exactly Kitaev’s quantum double models (the case of  is the Toric Code) 

CANDIDATES TO BE GOOD QUANTUM MEMORIES 

Protected space = ground space 

Errors need to accumulate in a non-local pattern to change the protected information. This is 
unlikely. 

This is proven true in 4D. What about 2D and 3D? Here we will focus on 2D 

G = ℤ2



Lifetime of topological quantum memories



Quantum memories

Take a 2D topological model with Hamiltonian  

E.g Kitaev’s quantum double of a group G (Toric code for  ). 

Assume thermal noise (weak coupling limit). Evolution given by Linbladian:  

Htop

G = ℤ2

ρt = et ℒβ (ρ0)

How long does it take to reach  ?ρ∞ = e−βHtop

Information is lost
Short memory time ⇔ Gap(ℒβ) ≥ cβ > 0, for all β



Quantum memories

Previous results for 2D quantum memories:

Alicki, Fannes, Horodecki 2007. For the Toric code: Gap(ℒβ) ≥ cβ > 0, for all β

Komar, Landon-Cardinal, Temme 2016.  
For abelian models   Gap(ℒβ) ≥ cβ > 0, for all β

What about the non-abelian case?

Theorem  (A. Lucia, DPG, A. Pérez-Hernández, in preparation):  
For all (even non abelian) quantum double models   Gap(ℒβ) ≥ cβ > 0, for all β



Quantum memories

Consider   

At each site we do a partial transposition:  

We obtain a PEPS, called the thermofield double  

 

The problem boils down to estimate the gap of a PEPS parent Hamiltonian

e−βHtop

| ⋅ ⟩⟨ ⋅ | → | ⋅ ⟩ | ⋅ ⟩
|TMDβ⟩

Gap (HTMDβ) = Gap (ℒβ)

Proof:

Theorem (A. Lucia, DPG, A. Pérez-Hernández, in preparation):  
For all (even non abelian) quantum double models   Gap(ℒβ) ≥ cβ > 0, for all β

Theorem  (Scarpa et al  PRL 2020): The existence of spectral gap is an UNDECIDABLE 
problem, even for parent Hamiltonians of PEPS.



Solution in this case via bulk-boundary 
correspondence in PEPS 

Poilblanc et al 2013.



Boundary state

It is a mixed 1D state living on the virtual d.o.f. 
Mediates the correlations in the system 
Defines the parent Hamiltonian of the state
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FIG. 1: We consider a PEPS state on a square lattice. a) Section of the PEPS on region A ✓ ⇤,
b) Graphical representation of the tensors T k

j1,j2,j3,j4 , c) representation of the operator VA on a one
dimensional lattice. The operator is to be read as mapping virtual indices (from the right) to physical
indices (to the left).

If instead there are edges connecting ⇤ with its complement in (G, V ), then we obtain a
state in H⇤ for each choice of “boundary condition”, in the following sense: denote with
E⇤̄ the edges which are incident to ⇤, with E⇤ the edges with are contained in ⇤, and with
@⇤ = E⇤̄ \E⇤ the edges that connect ⇤ with its complement. Let H@⇤ =

N
e2@⇤ HD (note

that while at each edge we associated |!ei 2 HD ⌦HD, we are only including one copy of
HD in H@⇤). Then for each vector |Xi 2 H@⇤ we can define a state

|PEPS⇤,Xi = hX|

O

v2⇤

Tv

O

e2E⇤̄

|!ei . (4)

This defines a linear map from H@⇤ to H⇤, which we will denote with V⇤. It is a mapping
from the virtual indices at the boundary of ⇤ to the physical indices in the bulk of ⇤ (see
Fig. 1 for an illustration):

V⇤ :H@⇤ ! H⇤

|Xi 7! |PEPS⇤,Xi .

A PEPS is said to be injective on ⇤ [52] if V⇤ is an injective map. As shown in Ref. [52], if a
PEPS is injective on disjoint regions A and B, it is also injective on A[B, so we will simply
assume, up to coarse graining of the lattice, that V⇤ is injective for every finite ⇤.

Again following Ref. [52], for any injective PEPS, we can define a local Hamiltonian,
called the parent Hamiltonian, for which the PEPS is the unique groundstate. This is done
by considering, for each edge e = (a, b), the orthogonal projector he on the orthogonal
complement of ImV{a,b}. Then H⇤ =

P
(a,b)2E⇤

he is a local Hamiltonian, and clearly
H⇤ |PEPS⇤,Xi = 0. H⇤ is frustration-free: i.e. he |PEPS⇤,Xi = 0 for all e 2 E⇤.

It will be very important for us to talk about sub-regions of the lattice A ✓ ⇤, and to
consider the associated local ground subspace GA = {|'i 2 H⇤ |HA |�i = 0} = ImVA,
for HA =

P
e2EA

he. We will denote with PA the orthogonal projector on GA. Because
of frustration freeness, for any A ✓ B ✓ ⇤, we have G⇤ ✓ GB ✓ GA, and therefore
PAPB = PB = PBPA.

At times, we will need to refer to Hamiltonians both in the bulk (2D) and at the boundary
(1D). In order to avoid confusion, we will always denote one dimensional boundary Hamil-
tonians by the letters Q,R, S, T , while the parent Hamiltonian of the PEPS will always be
referred to as H .
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B. Boundary states of PEPS

FIG. 2: Setup of the boundary state in one and two dimensions. The arrows indicate the input and
output directions for the (unnormalized) boundary density matrix ⇢@A.

The main conceptual contribution of this paper is that ‘boundary states’ play a very impor-
tant role in the analysis of ground state projectors for PEPS. These will be (unnormalized)
positive operators acting on the virtual space associated with the edges connecting a region
A and its complement. They are obtained by contracting the physical indices inside A, and
leaving the virtual indices at the boundary open, as depicted in Fig. 2.

Definition 2. For a finite region A ✓ ⇤, the boundary state of A is

⇢@A := V †
AVA 2 B(H@A). (5)

Moreover, we define the following linear operator WA : H@A ! HA

WA = VA⇢
�1/2
@A , (6)

where the inverse is taken on the support of ⇢@A if it is not full rank.

Remark 3. Some properties of ⇢@A and WA follow immediately from the definition

1. ⇢@A is positive semi-definite;

2. ker ⇢@A = kerVA, and in particular ⇢@A > 0 if the PEPS is injective;

3. WAW
†
A = VA⇢

�1
@AV

†
A = PA;

4. W †
AWA = (kerVA)? , and therefore WA is a unitary from (kerVA)? to ImVA, and a

partial isometry from H@A to HA (an isometry if the PEPS is injective).

The only point which might not be immediately clear from the definition is the fact that
PA = WAW

†
A: this can be shown by observing that WAW

†
A is a projector, which commutes

with PA since PAVA = VA, and has exactly the same image space as VA (and thus PA).
Remark 4. The entanglement spectrum is the spectrum of the reduced density matrix of a
pure state [25]. In the case where ⇤ has no outgoing edges, the entanglement spectrum is
related to the boundary state in the following way: call Ac = ⇤ \A and note that

trAc [|PEPS⇤i hPEPS⇤|] = VA⇢@AcV †
A

= WA⇢
1/2
@A ⇢@Ac⇢1/2@AW †

A. (7)



Spectral gap via boundary state
M. Kastoryano, A. Lucia, DPG, Commun. Math. Phys. (2019) 366: 895 



Spectral gap in PEPS

Conjecture Poilblanc et al. 2013 (numerical evidence): the parent Hamiltonian of the PEPS 
has gap if and only if the boundary state is the Gibbs state of a short-range Hamiltonian. 

Intuition. Araki’s theorem: Gibbs state of finite range 1D Hamiltonians have exponentially 
decaying correlations

Remember that boundary states mediate the correlations in a PEPS.



Spectral gap in PEPS

Theorem 1: If the boundary state is approximately factorizable, then the bulk Hamiltonian 
is gapped.

A B C

The case of exact factorization implies that the Hamiltonian terms commute with each 
other and hence the system is gapped. (Remember boundary states define the 
Hamiltonian terms)  

The approximate case reduces to the martingale condition of Nachtergaele (1995) 

Martingale condition is equivalent to gap (Lucia, Kastoryano 2018)

A 1D state is approximately factorizable if    ρABC ≈ ΛAB ΩBC



Spectral gap in PEPS

Theorem 1: If the boundary state is approximately factorizable, then the bulk Hamiltonian 
is gapped.

Imagine e−H → e−iH ⟶
 locality

finite depth circuit → ΛAB ΩBC

Theorem 2: Gibbs states of Hamiltonians with fast decaying interactions are 
approximately factorizable.  



Spectral gap in PEPS

Theorem 1: If the boundary state is approximately factorizable, then the bulk Hamiltonian 
is gapped.

A B C

Theorem 2: Gibbs states of Hamiltonians with fast decaying interactions are 
approximately factorizable.  

Imagine e−H → e−iH ⟶
 locality

finite depth circuit → ΛAB ΩBC



Back to quantum memories

Theorem 1: If the boundary state is approximately factorizable, then the bulk Hamiltonian 
is gapped.

Consider   

At each site we do a partial transposition:  

We obtain a PEPS, called the thermofield double  

 

The problem boils down to estimate the gap of a PEPS parent Hamiltonian 

The boundary state of  is approximately factorizable. QED. 

e−βHtop

| ⋅ ⟩⟨ ⋅ | → | ⋅ ⟩ | ⋅ ⟩
|TMDβ⟩

Gap (HTMDβ) = Gap (ℒβ)

|TMDβ⟩

Proof:

Theorem (A. Lucia, DPG, A. Pérez-Hernández, in preparation):  
For all (even non abelian) quantum double models   Gap(ℒβ) ≥ cβ > 0, for all β



Thank you for your attention



Boundary state properties. Illustration in 1D

ψ =
A

ρA =
A

A



ρA =
A

A

ρ
∂Ac
=

Boundary state 

Lives on the virtual d.o.f 
connecting A & Ac 

Encodes the correlations of 
the system

Boundary state properties. Illustration in 1D



PA = ρ
∂A
−1ρ

∂A =

Orthogonal projector

Boundary state properties. Illustration in 1D



PA = ρ
∂A
−1ρ

∂A

PA ψ =

ρ
∂A
−1

…

=

Orthogonal projector

Boundary state properties. Illustration in 1D



PA = ρ
∂A
−1ρ

∂A

PA ψ =

ρ
∂A
−1

…

=

ρ
∂A

Orthogonal projector

Boundary state properties. Illustration in 1D



PA = ρ
∂A
−1ρ

∂A

PA ψ =

…

=

Orthogonal projector

Boundary state properties. Illustration in 1D



PA = ρ
∂A
−1ρ

∂A

PA ψ =

=

… = ψ

Orthogonal projector

H = (1− Pi )
i
∑

Boundary state properties. Illustration in 1D


