
Workshop II: Tensor Network States and Applications, IPAM, UCLA, April. 19, 2021

Quantum criticality and spin liquid phase in 
the Shastry-Sutherland model

Collaborators: 
Jianwei Yang, CSRC 

Anders Sandvik, BU & IOP

Ling Wang, Zhejiang University

arXiv:2104.08887



Exact ground state of Shastry-Sutherland model

• Shastry-Sutherland proved that such defined model has an exact dimer 
singlet (DS) product ground state for  at S=1/2


• At that time, they call it Quantum Spin Liquid (QSL) phase, because its form is 
of the type given by Anderson
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C. CLASSICAL LIMIT As s + ®, the singlet 
state is the ground state only as a ÷ ®. 
However, for arbitrary a, we have succeeded in 
determining the ground state exactly in the 
isotropic l imi t .  We observe that the classical 
planar ( i .e . ,  x-y) and Heisenberg model share a 
ground state for the triangular Hamiltonian (5). 
Each triangle has a two-fold discrete "chiral" 
degeneracy, over and above the continuous 
degeneracy, of the sort discovered by Vi l la in  
in similar systems [8]. The optimum twist 
angle between a spin at the base and apex of 
a triangle is (~ ± cos -I I/2~) and the two 
chira l i t ies correspond to the two choices of the 
sign. One may then assign arrows to the bonds 
indicating the direction along which rotations 
are anti-clockwise. The constraint on a square 
containing a diagonal bond is that the arrows 
on parallel sides be in the same direction. 
The constraints on empty squares is that the 
l ine integral of the arrows vanish ( irrotat ion- 
al flow). There are precisely four degenerate 
ground states which satisfy these constraints. 
Each ground state contains one preferred direc- 
tion, say one of the four points of the compass, 
such that there is an average flow of arrows in 
this direction. Thus, the spins exhibit helical 
ordering as we proceed in this preferred direc- 
tion. for a ~ 1/2, the Neel state is the ground 
state. 

D. SUMMARY Our understanding of the model in 
the isotropic l im i t  is summarized in the "phase 
diagram" (Fig. 2). The l ine bounding the Q.S.L. 
phase is the point of highest frustration in 
the Ising l imi t .  In the Q.S.L. phase the Ising 
l im i t  has macroscopic degeneracy but the quantum 
effects freeze this degeneracy out for arbi- 
t ra r i l y  small Jx and Jy. I t  is interesting that 
similar behavior is found in approximate treat- 
ments of similar systems [2,3,5]. 

Finally we would l ike to point out the 
remarkable property of the ground state I~> for 
s = I/2 in the case a ~ 1 and Jx ~ Jv ~ Jz. In 
this case the ground state possesses-rotation 
invBriance (being a singlet) even though the 
Hamiltonian does not. This is the only example 
of symmetry br--r-ea-kTh-g in reverse that we are 
aware of. This provides an exmple in non- 
re la t iv is t ic  physics where the invariance of 
of the vacuum exceeds the invariance of the 
world [9]. 
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H = J

X

hi,ji

~Si · ~Sj + J
0
X

hhl,mii

~Sl · ~Sm

Shastry and Sutherland, Physica 108B, 1069 (1981)



SrCu2(BO3)2 realises Shastry-Sutherland modelShastry-Sutherland model

Ground-state = Product of singlets on J-bonds 
Shastry and Sutherland, �81

à Spin gap, and plateau at 0
formation of the singlet ground state near 10 K

in zero field. In

a
recent study, Jaime

et al. (17) performed
magnetostriction

experiments to 100 T, showing that the crystallographic c axis is

an extraordinarily sensitive witness to the magnetic structure and

superstructure. However sensitive, the c-axis results do not allow

for a direct examination of the spin-lattice correlations within the

Cu-dimer planes (Fig. 1A).

Experimental Results

Using an experimental setup modified from
one previously dis-

cussed (17), where an optical fiber Bragg grating (FBG) sensor is

placed perpendicular to the applied magnetic field, we obtained

the
first high-resolution

(better than
10 −6) in-plane

magneto-

striction at T
=
1.36 K

(Fig. 2). In our experiment we observe a

contraction of the a axis that is sensitive to, and shows features

at, the magnetic fields identified as onset of the 1/8, 1/4, and 1/3

magnetization
plateaus and

a
concomitant expansion

of the
c

axis with an FBG
sensor in the conventional configuration par-

allel to the applied field. Our new
data are consistent with a-axis

vs. field
data

from
Narumi et al. (14), although

the
X-ray ex-

periment did
not resolve

individual plateaus. The
observed

Δa=a=−1:4× 10 −4
and Δc=c= 1:15× 10 −4

put the relative change

in volume at ΔV
=V

=−1:65× 10 −4
for the 1/3 plateau.

Model
From

a magnetic point of view, one can expect that the system

will respond to the external magnetic field by modifying the in-

ternal coordinates of ions playing a
role

in
the

magnetic inter-

actions. The modification of any other internal coordinates would

have an elastic energy cost without magnetic energy gain. As al-

ready pointed
out (14, 15), the main

internal parameter related

with
the

magnetic
properties in

this compound
is the

CuOCu

b

superexchange angle (α) mediating the intradimer superexchange

interaction. This angle is, indeed, expected to decrease toward 90°

with the applied magnetic field as this distortion would weaken the

AFM
superexchange interaction

(18–21) through
a reduction

of

the Cu-3d/O-2p hopping.

The orthogonal arrangement of the dimers in SCBO
allows for

a variation of the angle with a minimum
lattice deformation. This

double-pantograph
(22) effect can

be
most easily visualized

in

Fig. 3 by considering the atoms moving as sketched. Each pan-

tograph
magnifies the

decrease
of the

internal superexchange

angles, but the two do not substantially change the overall length

Fig. 1.
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ic structure and
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agnetic orders of SrCu

2 (BO
3 )2 . (A) Top

view
of the [CuBO

3 ] −
layer. Sr 2+

ions are om
itted

for clarity. Dashed
ellipses em

phasize

structural dim
ers. (B) Side view

of the tetragonal unit cell: Sr in
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agenta, O

in
red, B

in
green, and

Cu
in
blue. The buckling

of the [CuBO
3 ] −

layers along
the

[001] direction
is visible. (C–F) Néel-like AFM

(C and D) and saturated FM
(E and F) orders for DFT. Spin-up

Cu ions are represented
in light blue and spin-down

Cu
ions are

represented
in
dark

blue.
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formation of the singlet ground state near 10 K in zero field. In
a recent study, Jaime et al. (17) performed magnetostriction
experiments to 100 T, showing that the crystallographic c axis is
an extraordinarily sensitive witness to the magnetic structure and
superstructure. However sensitive, the c-axis results do not allow
for a direct examination of the spin-lattice correlations within the
Cu-dimer planes (Fig. 1A).

Experimental Results
Using an experimental setup modified from one previously dis-
cussed (17), where an optical fiber Bragg grating (FBG) sensor is
placed perpendicular to the applied magnetic field, we obtained
the first high-resolution (better than 10−6) in-plane magneto-
striction at T = 1.36 K (Fig. 2). In our experiment we observe a
contraction of the a axis that is sensitive to, and shows features
at, the magnetic fields identified as onset of the 1/8, 1/4, and 1/3
magnetization plateaus and a concomitant expansion of the c
axis with an FBG sensor in the conventional configuration par-
allel to the applied field. Our new data are consistent with a-axis
vs. field data from Narumi et al. (14), although the X-ray ex-
periment did not resolve individual plateaus. The observed

Δa=a=−1:4× 10−4 and Δc=c= 1:15× 10−4 put the relative change
in volume at ΔV=V =−1:65× 10−4 for the 1/3 plateau.

Model
From a magnetic point of view, one can expect that the system
will respond to the external magnetic field by modifying the in-
ternal coordinates of ions playing a role in the magnetic inter-
actions. The modification of any other internal coordinates would
have an elastic energy cost without magnetic energy gain. As al-
ready pointed out (14, 15), the main internal parameter related
with the magnetic properties in this compound is the CuOCub
superexchange angle (α) mediating the intradimer superexchange
interaction. This angle is, indeed, expected to decrease toward 90°
with the applied magnetic field as this distortion would weaken the
AFM superexchange interaction (18–21) through a reduction of
the Cu-3d/O-2p hopping.
The orthogonal arrangement of the dimers in SCBO allows for

a variation of the angle with a minimum lattice deformation. This
double-pantograph (22) effect can be most easily visualized in
Fig. 3 by considering the atoms moving as sketched. Each pan-
tograph magnifies the decrease of the internal superexchange
angles, but the two do not substantially change the overall length

Fig. 1. Atomic structure and magnetic orders of SrCu2(BO3)2. (A) Top view of the [CuBO3]
− layer. Sr2+ ions are omitted for clarity. Dashed ellipses emphasize

structural dimers. (B) Side view of the tetragonal unit cell: Sr in magenta, O in red, B in green, and Cu in blue. The buckling of the [CuBO3]
− layers along the

[001] direction is visible. (C–F) Néel-like AFM (C and D) and saturated FM (E and F) orders for DFT. Spin-up Cu ions are represented in light blue and spin-down
Cu ions are represented in dark blue.

1972 | www.pnas.org/cgi/doi/10.1073/pnas.1421414112 Radtke et al.

• SrCu2(BO3)2 (SCBO) is a layered spin-1/2 magnetic material with magnetic 
degrees of freedom made of 3d electrons of Cu2+


• SS model can well describe the Antiferromagnetic interactions among Cu atoms 
within one layer. At ambient pressure, SCBO is in the dimer product phase

PNAS 112, 1971 (2014) Fig borrowed from F. Mila



Theoretical results of phase diagram for SS model
• Through Series expansion, Koga and Kawakami (PRL 2000) discovered the plaquette 

singlet (PS) phase in between dimer singlet and AFM phases 





• Using ED, Lauchili, Wessel and Sigrist (PRB 2002) found two-fold degeneracy of PS 
phase


• Using iPEPS, Corboz and Mila (PRB 2013) improves the accuracy of phase boundary 
and finds two first order phase transitions





• Using iDMRG, Lee et al (PRX 2019) , claim a Deconfined Quantum Criticality Point 
(DQCP) between PS and AFM phases

quettes grows up and the second-order quantum phase
transition from the spin-gap phase to the magnetically
ordered phase occurs at the critical point λc = 0.56 for
α → ∞, which has already been studied by several groups
[13,14,15]. On the other hand, decreasing α enhances
the frustration, which in turn suppresses the antiferro-
magnetic correlation, thus shifting the phase boundary
upward for smaller α in the phase diagram. It is seen
that two lines obtained from the distinct quantities are
in good agreement with each other, which implies that
the obtained phase boundary is rather accurate in spite
of the lower-order pertubative calculation. By exploit-
ing the phase boundary determined by means of biased
Padé approximants for the spin gap, the critical value is
given by αc2 = 0.86(1) for λ = 1. Recall that the sys-
tem is reduced to the original model only for λ = 1. We
thus find that the Shastry-Sutherland model has the dis-
ordered ground state in the region (0 < α < αc2) on the
λ = 1 line.
The above result does not necessarily imply that in

the region 0 < α < αc2 the system always belongs to the
disordered phase which is continuously connected to iso-
lated plaquettes. In fact, it is known that the orthogonal
dimer phase appears in the vicinity of α = 0 [3,4]. There-
fore, it is necessary to clarify how these two spin-gap
phases compete with each other by carefully comparing
the ground state energy Eg. To this end, performing the
plaquette expansion up to the seventh order in λ with α
being fixed, we estimate the ground state energy Eg for
the Shastry-Sutherland model (λ = 1) by means of the
first order inhomogeneous differential method [11]. The
results are shown in Fig. 4. As mentioned above [3,4],

0 0.25 0.5 0.75 1
α

-0.3

-0.4

-0.5

-0.6

Eg/JN λ=1

FIG. 4. Ground state energy per site as a function of
α = J ′/J (λ = 1, Shastry-Sutherland model). The flat line
(Eg/JN = −3/8) is the energy of the exact dimer state, while
the solid line with dots (error bars are smaller than the line
width) is obtained by the plaquette expansion. For compari-
son, we also show the ground state energy obtained by Ising
expansion [6] as the dashed line.

the system stabilizes the orthogonal dimer ground state
for smaller α. It is found, however, that the first-order
transition to the novel spin-gap phase introduced here
occurs at the critical point αc1 = 0.677(2). It is also seen

from this figure that further increase of α induces the
antiferromagnetic order, whose transition point is deter-
mined by the crossing point of the ground-state energy
obtained respectively by the Ising [6] and plaquette ex-
pansions. The result confirms the second-order phase
transition deduced above, and the transition point es-
timated from the figure is consistent with αc2 = 0.86(1)
obtained by the analysis of the susceptibility and the spin
gap. Consequently, we end up with the phase diagram for
the Shastry-Sutherland model as shown in Fig. 5. The
present results shed light on the controversial arguments
whether the quantum phase transition in this model is of
the first or second order [4,6,7]. In those previous stud-
ies, it was believed that the phase transition occurs only
once between the dimer phase (I) and the ordered phase
(III), giving rise to some confusions. Our phase diagram
clearly resolves this problem by explicitly showing the ex-
istence of the new spin-gap phase (II) which undergoes
the first- (I↔II) as well as the second-order transitions
(II↔III).

I II III

=0.677(2) =0.86(1)αc1 αc2 α=J’/J
FIG. 5. Phase diagram for the Shastry-Sutherland model.

The phase I represents the orthogonal dimer phase. The phase
II newly obtained is adiabatically connected to the plaquette
singlet phase. III is the magnetically ordered phase.

To check the validity of the above phase diagram, we
also show the results for the spin gap as a function of
α = J ′/J in Fig. 6. In this figure, the results ob-

0 0.25 0.5 0.75 1
α

0.2
0.4
0.6
0.8
1

1.2

Δ/J
λ=1

αc1 αc2

I II III

FIG. 6. The spin gap as a function of α = J ′/J for the
Shastry-Sutherland model. The solid line for α < αc1 is the
result obtained by Weihong et al. [6] The dots with error bars
for αc1 < α < αc2 represent the spin gap at k = 0 obtained
by the plaquette expansion.

tained by Weihong et al. [6] are shown for the orthogonal
dimer phase (I: 0 < α < αc1). In the new phase (II:
αc1 < α < αc2), we determine the values of the spin gap
at k = 0 by means of the plaquette expansion up to the
fifth order in λ with the first order inhomogeneous differ-
ential method. The results are shown as the dots with the

3

iPEPS with various setups and bond dimension up to 10 



SCBO under pressure

• Turn on pressure play the role of increasing g=J/J′, produces plaquette singlet 
and Antiferromagnetic phases

Neutron scattering

The intermediate phase is 
a full plaquette phase!

J’/J increases

Susceptibility

Guo et al, PRL 124, 206602 (2020)Zayed et al, NP 13, 962 (2017)
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Using the density-matrix renormalization group method for the ground state and excitations of the Shastry-
Sutherland spin model, we demonstrate the existence of a narrow quantum spin liquid phase between the pre-
viously known plaquette-singlet and antiferromagnetic states. Our conclusions are based on finite-size scaling
of excited level crossings and order parameters. Together with previous results on candidate models for decon-
fined quantum criticality and spin liquid phases, our results point to a unified quantum phase diagram where
the deconfined quantum-critical point separates a line of first-order transitions and a gapless spin liquid phase.
The frustrated Shastry-Sutherland model is close to the critical point but slightly inside the spin liquid phase,
while previously studied unfrustrated models cross the first-order line. We also argue that recent heat capacity
measurements in SrCu2(BO3)2 show evidence of the proposed spin liquid at pressures between 2.6 and 3 GPa.

The quasi two-dimensional (2D) S = 1/2 quantum magnet
SrCu2(BO3)2 [1–3] has emerged [4–9] as the most promising
material for realizing the deconfined quantum-critical point
(DQCP) [10–12], where a gapped state with a spontaneously
formed singlet pattern meets a gapless antiferromagnetic (AF)
state in a phase transition associated with fractionalized ex-
citations (spinons). The intralayer interactions of the Cu
spins correspond to the Shastry-Sutherland (SS) model [13],
with highly frustrated AF interdimer (J) and intradimer (J’)
Heisenberg couplings. This model has three known ground
states versus g = J/J

0; a dimer singlet (DS) state for small
g [13], a Néel AF state for large g, and a two-fold degenerate
plaquette-singlet (PS) state for ↵ 2 [0.68, 0.77] [3, 6, 14, 15].

At ambient pressure SrCu2(BO3)2 is in the DS phase [1, 2]
but it had been anticipated that the other SS phases may be
reached under high pressure [16]. Recent heat capacity [7, 8],
neutron scattering [4], and Raman [9] experiments indeed
detected phase transitions and excitations that confirm some
variant [17] of the PS phase (from 1.7 to 2.5 GPa at temper-
atures below 2 K) and an AF phase (between 3 and 4 GPa
below 4 K). A direct PS–AF transition may then be expected
at low-temperature between 2.6 and 3 GPa [18].

Here we show that the above picture is incomplete. Using
the density-matrix renormalization group (DMRG) method
[19], we study the ground state and low-lying excitations of
the SS model. Based on the lattice size dependence of the
level spectrum and order parameters, we conclude that there
is a narrow gapless spin liquid (SL) phase intervening between
the PS and AF phases. In light of this finding, the lack of signs
of any phase transition between 2.6 and 3 GPA in the recent
heat capacity measurements on SrCu2(BO3)2 [7, 8] opens the
intriguing prospect of an SL in this material.

DMRG calculations.—The SS model with AF couplings J

between first neighbor spins hiji and J
0 on a subset of second

neighbors hiji0 is illustrated in Fig. 1. The Hamiltonian is [13]

H = J

X

hiji

Si · Sj + J
0
X

hiji0
Si · Sj , (1)

here on Lx ⇥ Ly cylinders [20, 21] with open and periodic
boundary conditions in the x and y direction, respectively, and
Ly ⌘ L = 2n, Lx = 2L. In this geometry, the model has a
preferred singlet pattern which minimizes the boundary en-
ergy in the PS phase; thus the two-fold degeneracy is broken
and the ground state is unique, as illustrated in Fig. 1.

We have developed efficient procedures for calculating not
only the ground state with full SU(2) symmetry [22, 23], but
also successively generating excited states by orthogonalizing
to previous states [24–26]. We have run the DMRG calcu-
lations with stringent convergence criteria for given Schmidt
number m and used sufficiently large m for reliably extrapo-
lating to discarded weight ✏m = 0 (illustrated in the Supple-
mental Material [27]) for L up to 10, 12, or 14 depending on
quantity. Any remaining errors in the results are small on the
scale of the graph symbols in the figures presented below.

We focus on g 2 [0.7, 0.9], which according to previous
works straddles the PS and AF phases. The ground state of
the system is always a singlet, and we will analyze the gaps
�(S) to the lowest excited singlet (S = 0), triplet (S = 1),
and qintuplet (S = 2). Finite-size crossings of excited levels
with different spin have often been used as indicators of quan-
tum phase transitions in spin chains [28–30], and this method
was also applied to the 2D J-Q [31] and J1-J2 [25, 32, 33]

(a) (b)

Figure 1. The SS lattice with open x and periodic y boundary condi-
tions. The lengths Lx and Ly are both even. Nearest neighbors are
coupled at strength J by Eq. (1) and the blue diagonal links repre-
sent the dimer couplings J 0. The open edges break the Z2 symmetry
of the PS phase, thus inducing a singlet density pattern as indicated
schematically by the thickness of the red lines.
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Using the density-matrix renormalization group method for the ground state and excitations of the Shastry-
Sutherland spin model, we demonstrate the existence of a narrow quantum spin liquid phase between the pre-
viously known plaquette-singlet and antiferromagnetic states. Our conclusions are based on finite-size scaling
of excited level crossings and order parameters. Together with previous results on candidate models for decon-
fined quantum criticality and spin liquid phases, our results point to a unified quantum phase diagram where
the deconfined quantum-critical point separates a line of first-order transitions and a gapless spin liquid phase.
The frustrated Shastry-Sutherland model is close to the critical point but slightly inside the spin liquid phase,
while previously studied unfrustrated models cross the first-order line. We also argue that recent heat capacity
measurements in SrCu2(BO3)2 show evidence of the proposed spin liquid at pressures between 2.6 and 3 GPa.

The quasi two-dimensional (2D) S = 1/2 quantum magnet
SrCu2(BO3)2 [1–3] has emerged [4–9] as the most promising
material for realizing the deconfined quantum-critical point
(DQCP) [10–12], where a gapped state with a spontaneously
formed singlet pattern meets a gapless antiferromagnetic (AF)
state in a phase transition associated with fractionalized ex-
citations (spinons). The intralayer interactions of the Cu
spins correspond to the Shastry-Sutherland (SS) model [13],
with highly frustrated AF interdimer (J) and intradimer (J’)
Heisenberg couplings. This model has three known ground
states versus g = J/J

0; a dimer singlet (DS) state for small
g [13], a Néel AF state for large g, and a two-fold degenerate
plaquette-singlet (PS) state for ↵ 2 [0.68, 0.77] [3, 6, 14, 15].

At ambient pressure SrCu2(BO3)2 is in the DS phase [1, 2]
but it had been anticipated that the other SS phases may be
reached under high pressure [16]. Recent heat capacity [7, 8],
neutron scattering [4], and Raman [9] experiments indeed
detected phase transitions and excitations that confirm some
variant [17] of the PS phase (from 1.7 to 2.5 GPa at temper-
atures below 2 K) and an AF phase (between 3 and 4 GPa
below 4 K). A direct PS–AF transition may then be expected
at low-temperature between 2.6 and 3 GPa [18].

Here we show that the above picture is incomplete. Using
the density-matrix renormalization group (DMRG) method
[19], we study the ground state and low-lying excitations of
the SS model. Based on the lattice size dependence of the
level spectrum and order parameters, we conclude that there
is a narrow gapless spin liquid (SL) phase intervening between
the PS and AF phases. In light of this finding, the lack of signs
of any phase transition between 2.6 and 3 GPA in the recent
heat capacity measurements on SrCu2(BO3)2 [7, 8] opens the
intriguing prospect of an SL in this material.

DMRG calculations.—The SS model with AF couplings J

between first neighbor spins hiji and J
0 on a subset of second

neighbors hiji0 is illustrated in Fig. 1. The Hamiltonian is [13]

H = J

X

hiji

Si · Sj + J
0
X

hiji0
Si · Sj , (1)

here on Lx ⇥ Ly cylinders [20, 21] with open and periodic
boundary conditions in the x and y direction, respectively, and
Ly ⌘ L = 2n, Lx = 2L. In this geometry, the model has a
preferred singlet pattern which minimizes the boundary en-
ergy in the PS phase; thus the two-fold degeneracy is broken
and the ground state is unique, as illustrated in Fig. 1.

We have developed efficient procedures for calculating not
only the ground state with full SU(2) symmetry [22, 23], but
also successively generating excited states by orthogonalizing
to previous states [24–26]. We have run the DMRG calcu-
lations with stringent convergence criteria for given Schmidt
number m and used sufficiently large m for reliably extrapo-
lating to discarded weight ✏m = 0 (illustrated in the Supple-
mental Material [27]) for L up to 10, 12, or 14 depending on
quantity. Any remaining errors in the results are small on the
scale of the graph symbols in the figures presented below.

We focus on g 2 [0.7, 0.9], which according to previous
works straddles the PS and AF phases. The ground state of
the system is always a singlet, and we will analyze the gaps
�(S) to the lowest excited singlet (S = 0), triplet (S = 1),
and qintuplet (S = 2). Finite-size crossings of excited levels
with different spin have often been used as indicators of quan-
tum phase transitions in spin chains [28–30], and this method
was also applied to the 2D J-Q [31] and J1-J2 [25, 32, 33]

(a) (b)

Figure 1. The SS lattice with open x and periodic y boundary condi-
tions. The lengths Lx and Ly are both even. Nearest neighbors are
coupled at strength J by Eq. (1) and the blue diagonal links repre-
sent the dimer couplings J 0. The open edges break the Z2 symmetry
of the PS phase, thus inducing a singlet density pattern as indicated
schematically by the thickness of the red lines.
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Figure 2. (a) The lowest singlet and triplet gaps vs g in the neighbor-
hood of the expected quantum phase transition out of the PS phase.
(b) The lowest singlet and quintuplet gaps for g inside the AF phase,
close to its quantum phase transition.

Heisenberg models. Here we will study level crossings with
the aim of detecting the transitions out of the PS phase and
into the AF state, following Ref. 25 closely. We also study the
PS and AF order parameters to further corroborate the quan-
tum phases and phase transitions.

We graph singlet and triplet gaps in Fig. 2(a) and similarly
singlet and quintuplet gaps in Fig. 2(b), in g windows where
gap crossings are observed. In Fig. 3 we analyze the gap
crossing points as well as the singlet minimum that is also
observed in Fig. 2(a). Given the previous empirical obser-
vations of finite-size drifts of crossing points in 2D systems
[25, 31], we graph the results versus 1/L

2 and find almost per-
fect linear behaviors in this variable. Interesting, the singlet-
triplet crossings and the singlet minimum both extrapolate to
a point gc1 ⇡ 0.79, while the singlet-quintuplet points scale
to a higher value; gc2 ⇡ 0.82.

It was previously shown [25, 30] that the crossing point
between the lowest singlet and quintuplet levels is a useful
finite-size estimator for a quantum phase transition into an
AF phase, given that the lowest S > 0 states are Ander-
son quantum rotors, separated from the ground state by gaps
�A(S) / S(S+1)/L

2 (in 2D), while the singlet excited state
is unrelated to the rotor tower and should be at higher energy.
In fact, the singlet should correspond to the gapped amplitude
(“Higgs”) mode in the AF state [6]. In contrast, in other pu-
tative phases adjacent to the AF phase (in the SS model and
many other models), the S = 2 state should be above the
lowest S = 0 excitation. Thus, we identify the extrapolated
singlet-quintuplet crossing point gc2 ⇡ 0.82 with a quantum
phase transition into the AF state.

0.7

0.8

0.9

0.00 0.02 0.04 0.06

g
c(

L
)

1/L2

singlet−quintuplet
singlet−triplet

gap−min

Figure 3. Locations of gap crossings and singlet minimums, with the
lines showing linear-in-1/L2 fits. The L = 4 singlet-quintuplet point
is at g ⇡ 1.1, falling very close to the fitted line. The extrapolated
critical points are gc1 = 0.787± 0.002 and gc2 = 0.820± 0.002.

Following the previous work on the J1-J2 model [25], we
identify the extrapolated singlet-triplet crossing point gc1 ⇡
0.79 with the transition out of the PS state. The singlet min-
imum by itself is consistent with the PS gap vanishing at a
DQCP and becoming the gapped amplitude mode in the AF
phase [6]. However, an AF phase starting at gc1 is inconsistent
with the significantly higher singlet-quintuplet crossing point
gc2. Below we will show additional evidence of a gapless SL
phase for g 2 (gc1, gc2).

Though the separation between the transition points gc1 ⇡
0.79 and gc2 ⇡ 0.82 is small, an eventual flow toward a com-
mon point for larger systems appears unlikely, given the ab-
sence of significant corrections to the 1/L

2 forms in Fig. 3.
The singlet-triplet and singlet-quintuplet crossings both match
those previously identified in the J1-J2 Heisenberg model
[25], where several studies using different numerical tech-
niques now have reached a consensus on the existence of a
gapless SL phase between a columnar dimerized phase and the
AF phase [23, 25, 32–34]. A quantum field theory was very
recently proposed to account for this SL phase [35]. The same
level crossings were also previously found at the transition
from a gapless critical state to either a dimerized state (singlet-
triplet crossing) or an AF state (singlet-quintuplet crossing)
in a frustated Heisenberg chain with long-range interactions
[25, 30]. In light of all these results for related models and the
distinct gc1 and gc2 points identified here, a gapless SL phase
in the SS model is plausible.

In Fig. 4 we analyze the size dependence of the singlet gaps
for g in and close to the putative SL phase. At g = 0.80,
which should be inside the SL phase, the gaps are consistent
with asymptotic 1/L scaling. The results for g = 0.78 and
0.82, close to gc1 and gc2, respectively, also are consistent
with linear scaling. Thus, our results suggest a dynamic expo-
nent z = 1 for the SL phase and its quantum phase transitions,
though slightly higher z (as has been argued at the DQCP in
the J1-J2 model [35]) cannot be ruled out. The finite-size sin-
glet gap minimums [Fig. 2(a) and Fig. 3] would be explained
if z = 1 in the SL phase and z > 1 at gc1. We have triplet gaps
for L up to 10 and they also are consistent with 1/L scaling
in the SL phase.

AFM

PS
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Critical level crossings in one dimension
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FIG. 3. (a) The gap-crossing points from Fig. 2 graphed
vs L

�2. For the singlet-triplet (red squares) and singlet-
quintuplet (green circles) data sets, the black lines go through
the L = 8, 10 points, while the colored curves are of the
form gc(L) = gc(1) + aL

�2(1 + bL
�!) with gc2(1) ⇡ 0.519,

gc1(1) ⇡ 0.463, and ! ⇡ 4. (b) Size-scaled gaps at
the singlet-quintuplet (�c1) and singlet-triplet (�c2) cross-
ing points along with fits of the form L�(L) = c + dL

��,
where �1 ⇡ 2 and �2 ⇡ 1.5.

after crossing the other singlet (which has other quan-
tum numbers related to the lattice symmetries) that is
lower in what we will argue is the AFM phase. The insets
of Fig. 2 show results also for L = 6 and 8 in the region
around the level crossings that we will analyze (the higher
gaps for L = 4 are not shown for clarity). Using polyno-
mial fits to the DMRG data points, we extract crossing
points gc1(L) between the singlet and the quintuplet, as
well as gc2(L) between the singlet and the triplet. The
singlet-singlet crossings taking place close to gc1(L) are
discussed in the SM [64]; their size dependence is simi-
lar to gc1(L). For g & gc1(L) there are also other levels
in the energy range of Fig. 2, including singlets, but the
S = 0, 1, 2 gaps graphed are the lowest with these spins
up to and beyond the largest g shown.

As L increases the two sets of crossing points drift to-
ward two di↵erent asymptotic values. For the singlet-
triplet crossings, we have considered di↵erent extrapola-
tion procedures with gc2(L), all of which deliver gc2 ⇡
0.52 when L ! 1. It is natural to test whether the
finite-size correction to gc2 is consistent with the L

�2

drift in the frustrated Heisenberg chain [54–56]; a behav-
ior also found in the 2D J-Qmodel in Ref. 59. In Fig. 3(a)
we graph the data versus L

�2 along with a line drawn

through the L = 8 and L = 10 points, as well as a fitted
curve including a higher-order correction. Although we
have only four points and there are three free parameters,
it is not guaranteed that the fit should match the data as
well as it does. With a leading L

�1 correction the best
fit is far from good. Therefore, we take the former fit as
evidence that the asymptotic drift is at least very close to
L
�2. The fit with the subleading correction in Fig. 3(a)

gives gc2 = 0.519; a minute change from the straight-
line extrapolation. Based on the di↵erences between the
two extrapolations and roughly estimated errors on the
individual crossing points (which arise from the DMRG
extrapolations, as discussed in SM [64]), the final result
is gc2 = 0.519± 0.002.

Plotting the singlet-quintuplet crossing points in the
same graph in Fig. 3(a), the overall behavior is similar
to the singlet-triplet points, but it is clear that they do
not drift as far as to gc2. We find that the L

�2 form ap-
plies also here; see the SM [64] for further analysis of the
corrections for both gc1 and gc2. A rough extrapolation
by a line drawn through the L = 8 and L = 10 points
gives gc1 ⇡ 0.465, and when including a correction, of the
same form as in the singlet-triplet case, the extrapolated
value moves only slightly down to gc1 ⇡ 0.463. Based on
this analysis we conclude that gc1 = 0.463± 0.002.

In Fig. 3(b) we analyze the crossing gaps, multiplied
by L in order to make clearly visible the leading behavior
and well-behaved corrections. All gaps close as L�1, i.e.,
the dynamic exponent z = 1 at both critical points. We
have also analyzed the gaps in the regime gc1 < g < gc2

(not shown), and it appears that the lowest S = 0, 1, 2
gaps all scale as L

�1 throughout. This phase should
therefore be a gapless (algebraic) SL, instead of a Z2 SL
with nonzero triplet gap for L ! 1 [28] and singlet gap
vanishing exponentially (due to topological degeneracy).

The point gc2 ⇡ 0.52 is higher than almost all previous
results reported for the point beyond which the AFM
order vanishes, but it is close to where recent works have
suggested a transition from a gapless SL into a VBS [29,
39]. If there indeed is a gapless SL intervening between
the AFM and the VBS phases and its lowest excitation
is a triplet (as is the case, e.g., in the critical Heisenberg
chain), then a singlet-triplet crossing is indeed expected
at the SL–VBS transition, since the triplet is gapped and
the ground state is degenerate in the VBS phase.

To interpret the singlet-quintuplet crossing at gc1 ⇡
0.46, we again note that the nature of the low-lying gap-
less excitations reflect the properties of the ground state,
and a ground state transition can be accompanied by re-
arrangements of levels across sectors or within a sector
of fixed total spin. A singlet-quintuplet crossing is in-
deed present at the transition between a critical Heisen-
berg state (an 1D algebraic SL) and a long-range AFM
state in a spin chain with long-range unfrustrated inter-
actions and either unfrustrated [65] or frustrated [56, 60]
short-range interactions, as we discuss further in the SM

J2=0.5J1 exact VBS

Spin-1/2 chain J1-J2 model



Critical level crossings in two dimension

LEVEL SPECTROSCOPY IN A TWO-DIMENSIONAL . . . PHYSICAL REVIEW B 94, 144416 (2016)

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

 0  5  10  15  20  25  30

C (
τ )

τ

0.4

0.6

0.8

 0  0.05  0.1  0.15

∆^ (τ
m

ax
)

1/τmax

FIG. 2. Gap estimation for J/Q = 0.045, L = 64, S = 1, and
k = (π,0), the procedures and fitted functions are analogous to those
explained in Fig. 1. The estimated gap is "̂(∞) = 0.377 8(36).

remarkably good estimate of the critical point in several 1D
systems [13,33,35–37]. As for the 2D J -Q model, the triplet
excitation is gapless in the Néel phase (the lowest triplet being
a quantum rotor state with gap scaling as 1/L2 [9]), while it is
gapped in the VBS phase. In contrast, the lowest singlet gap of
a finite system decreases exponentially with the system size in
the VBS phase, while it converges to a finite value in the Néel
phase. Therefore, the lowest triplet, which is at k = (π,π ), and
singlet, at k = (π,0) and (0,π ), cross each other at a coupling
which converges to the transition point in the thermodynamic
limit.

Figure 3 presents our results, with examples of level
crossings shown in the inset and the finite-size drift of
the crossing points g∗(L) analyzed in the main figure. The
crossing points have been fitted to a constant (the infinite-size
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FIG. 3. Extrapolation of the transition point from the coupling
g∗(L) at the crossing between the lowest triplet and singlet gaps.
A power-law fit, g∗(L) − gc ∝ L−σ , for 10 ! L ! 64 gives gc =
0.043 01(8) and σ = 2.00(1) (with χ 2/Ndof ≈ 1.4). The inset shows
triplet (triangles) and singlet (squares) gaps for L = 16, 24, and 32
(top to bottom).
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FIG. 4. Scaling of the gap at the crossing point. A fit to the
form L"∗ = a + bL−τ for 16 ! L ! 64 gives τ = 0.26(4) (with
χ 2/Ndof ≈ 1.8).

critical point) with a power-law correction ∝ L−σ , with σ =
2.00(1). The critical point gc = g∗(L → ∞) = 0.043 01(8), or
(J/Q)c = 0.044 94(9), is in reasonably good agreement with
a recent, more precise estimate (J/Q)c = 0.044 68(4) [26].
Before discussing the information contained in the correction
exponent σ , in Fig. 4 we present data for the gap at the crossing
point. Given that the expected dynamic exponent z = 1, we
here graph the crossing gap " = "s = "t multiplied by the
system size L, and again fit with a power-law correction;
∝ L−τ with τ = 0.26(4).

Given the above results and the scaling hypothesis intro-
duced in [26], we analyze the scaling of the lowest triplet
(µ = t) and singlet (µ = s) gaps "µ(δ,L) with the distance
δ = g − gc from the DQC point using

"µ(δ,L) = L−1fµ(δL1/ν,δL1/ν ′
,L−ω), (7)

where ν ≈ 0.45 and ν ′ ≈ 0.58 are the values from Ref. [26]
of the exponents governing the correlation length and the
U(1) scale, respectively, and ω is the exponent of the leading
irrelevant field (for which a small value, ω ≈ 0.3, was found
in scaling of other quantities in Ref. [26]). The functions
fµ should approach constants when δ → 0, up to additive
size corrections from the L−ω dependence (and higher-order
corrections not included here).

To analyze the finite-size scaling of the gaps, we begin in
the standard way by Taylor expanding the postulated scaling
functions fµ in Eq. (7) to leading order in the relevant and
irrelevant fields. For the singlet and triplet cases we have

L"s = as + bsδL
1/ν + csδL

1/ν ′ + dsL
−ωs , (8)

L"t = at + btδL
1/ν + ctδL

1/ν ′ + dtL
−ωt , (9)

where we have used the expected value of the dynamic
exponent, z = 1, and allow for the possibility of different
correction exponents, ωs and ωt , for the two gaps. In principle
the leading irrelevant corrections could arise from the ratio
L1/ν ′−1/ν of the arguments δL1/ν and δL1/ν ′

of fµ, in which
case we can just replace the exponents ωs or ωt as appropriate
by 1/ν − 1/ν ′.
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Figure 7. (a), (b) Low-energy spectrum of the Hubbard model versus Sz(Sz + 1)
obtained for t/U = 0.05 (a) and t/U = 0.25 (b) on an N = 18 honeycomb
cluster. Values for twice the one-particle gap, 211P, are given (in (b), such a
value is indicated by the horizontal dashed line). (c), (d) Low-energy spectrum
for the CORE effective model (see the main text) versus S(S + 1), obtained on
the same 18-site cluster, again for t/U = 0.05 (c) and t/U = 0.25 (d). In all
panels, different symbols correspond to different points in the Brillouin zone: 0
point at the center, sixfold degenerate A point and twofold degenerate K point at
the corners (see the inset in (b)). Lowest energy levels in all cases are zoomed in
the insets.
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(for general k) are about eight times larger. Blocks of this size can still be handled in
Lanczos calculations (the smaller one rather easily on a standard workstation).
To test the basis construction, it is useful to check the sum of the sub-block sizes,

which should equal the total number of states in the block. For L= 4 there are 822 states
with k= (0,0), which equals the sum of all the reflection-block sizes in Table 3.

4.4.2. The Néel state and its quantum rotor excitations

We now illustrate 2D Lanczos calculations with results for the Heisenberg model. Al-
though the small lattices accessible with this method are not sufficient for quantitatively
accurate extrapolations to the thermodynamic limit, the calculations do illustrate some
important aspects of systems with Néel order (beyond what we discussed in the frame-
work of spin-wave theory in Sec. 2.1). We introduce the quantum rotor mapping of the
low-energy states of finite systems, and based on these discuss the magnetic susceptibil-
ity. We also calculate the sublattice magnetization.

Two-spin model of quantum-rotor states. If there is antiferromagnetic order, the
spins on sublattice A are predominantly oriented in the same direction, and the ones on
sublattice B are predominantly in the direction opposite to those on A. If the number
of spins N is finite and the symmetry is not broken, the over-all direction, defined,
e.g., by the sublattice A spins, is not fixed, however. This situation can be captured
by considering the sum of the spins on the individual sublattices A and B [169],

SA =∑
i∈A
Si, SB =∑

i∈B
Si, (217)

as two fixed-length spins SA = SB = N/2 (more precisely we would write, SA = SB =
msN for large N, but the constant is irrelevant), as illustrated in Fig. 48. The two large
spins are assumed to be antiferromagnetically coupled to each other in the simplest
possible rotationally invariant way, which is through an effective Heisenberg interaction;

HAB = JABSA ·SB = 1
2(S

2−S2A−S
2
B), (218)

where S= SA+SB is the total spin. Here S2A and S2B are just constants proportional to N2,
which can be neglected when we discuss excitation energies. However, these constants
imply hat the coupling constant JAB should be ∝ 1/N, in order for the total ground state
energy to be ∝ N. The ground state of (218) has total spin S = 0 and excitations with
S= 1,2, . . . at energies JABS(S+1)/2 above the ground state.
We define a new N-independent coupling Jeff = NJAB/2 and write the energies as

∆S = Jeff
S(S+1)

N
. (219)

These excitations are referred to as the tower of quantum rotor states. The states with
S#
√
N become degenerate as N → ∞, and combinations of them can then be formed

which are ground states with fixed direction of the Néel vector (in analogy with the infi-
nite number of momentum states required to localize a particle in quantum mechanics),
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We study the level structure of excitations at the “deconfined” critical point separating antiferromagnetic
and valence-bond-solid phases in two-dimensional quantum spin systems using the J -Q model as an example.
Energy gaps in different spin (S) and momentum (k) sectors are extracted from imaginary-time correlation
functions obtained in quantum Monte Carlo simulations. We find strong quantitative evidence for deconfined
linearly dispersing spinons with gapless points at k = (0,0), (π,0), (0,π ), and (π,π ), as inferred from two-spinon
excitations (S = 0 and S = 1 states) around these points. We also observe a duality between singlet and triplet
excitations at the critical point and inside the ordered phases, in support of an enhanced symmetry, possibly
SO(5).
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I. INTRODUCTION

Conventional quantum phase transitions between different
ground states of quantum many-body systems can be under-
stood within the Landau-Ginzburg-Wilson (LGW) paradigm,
according to which a critical point is described by an order
parameter whose fluctuation diverges [1,2]. Following intrigu-
ing numerical results pointing to violations of LGW predic-
tions [3,4], the deconfined quantum critical (DQC) point was
proposed as a scenario beyond the standard paradigm [5,6].
Here the low-energy physics is not described directly by order
parameters but by fractional degrees of freedom that emerge
(deconfine) on long length scales close to the DQC point.
These fractional objects should have prominent signatures
in excitation spectra and experimentally accessible spectral
functions. We here present a numerical study of low-energy
excitations at the DQC point of a two-dimensional (2D)
quantum magnet.

The DQC point considered here separates states with Néel
antiferromagnetic (AFM) order and spontaneous dimerization
(valence-bond-solid, VBS, order) [7], realized with the J -Q
spin-1/2 Hamiltonian [8]

H = −J
∑

〈ij〉
Pij − Q

∑

〈ijkl〉
PijPkl, (1)

where Pij = 1/4 − Si · Sj is a singlet projector on sites ij ,
〈ij 〉 denotes nearest-neighbor sites (links) on a periodic square
lattice with L2 sites, and 〈ijkl〉 denotes a pair of links on
a 2 × 2 site plaquette. The summations are over all links
and plaquettes; thus H maintains all the symmetries of the
square lattice. The Q = 0 case is the standard AFM-ordered
Heisenberg model [9], and when Q/J is sufficiently large,
Q/J ! 22, projection of correlated singlets leads to columnar
dimerization and loss of AFM order. In contrast to frustrated
Heisenberg systems that may also harbor VBS states and
DQC points [10–12], the J -Q model is not affected by sign
problems and can be studied using quantum Monte Carlo
(QMC) simulations on large lattices [13].

The existence of the DQC point has been addressed in nu-
merous studies of the J -Q model [8,13–21], 3D close-packed
loop [22], and dimer [23] models (which provide effective
descriptions of quantum spins), and lattice versions of the
proposed [5,6] noncompact CP1 DQC field theory [19,24,25].
Unusual scaling behaviors were observed in these studies that
were not predicted within the DQC theory but which can now
be accounted for by a scaling hypothesis incorporating the two
divergent length scales of the theory, a standard correlation
length and a scale related to emergent U(1) symmetry of the
VBS fluctuations [26]. While there are still important unsettled
questions remaining, e.g., on the fundamental origins of the
anomalous scaling [22,26] and an apparent emergent SO(5)
symmetry [27], there is now little doubt that the transition is
continuous (instead of weakly first order, as had been claimed
in some studies [15,19,24]).

Dynamical properties of DQC systems have not been
addressed in direct numerical calculations. The J -Q model
offers unique opportunities to study deconfined excitations
and the quantum dynamics of confinement. The deconfined
excitations should be spinons carrying spin S = 1/2 [5,6].
Going into the ordered phases, pairs of spinons become
confined (bound) into S = 1 magnons which are gapped in
the VBS phase and gapless in the AFM phase. The existence
of spinons has been inferred from studies of S = 1 states in
QMC simulations [26,28]. However, the spinon dispersion
relation has not been computed and it has not been directly
confirmed that the lowest singlets and triplets are degenerate,
as they should be in an infinite lattice with two independently
propagating spinons. This degeneracy may not even be perfect,
due to weak (logarithmic) interactions between vortexlike
spinons [6].

Here we report QMC studies of the level spectrum of the
J -Q model at its DQC point. We analyze gaps extracted from
correlation functions, thus characterizing the level spectrum of
spinons and scaling behaviors as bound states (magnons) form
in the ordered phases. Our study reveals gapless critical S = 0
and S = 1 excitations at k = (0,0),(π,0),(0,π ), and (π,π ),
and all these points are characterized by linear dispersion with
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FIG. 3. (a) The gap-crossing points from Fig. 2 graphed
vs L

�2. For the singlet-triplet (red squares) and singlet-
quintuplet (green circles) data sets, the black lines go through
the L = 8, 10 points, while the colored curves are of the
form gc(L) = gc(1) + aL

�2(1 + bL
�!) with gc2(1) ⇡ 0.519,

gc1(1) ⇡ 0.463, and ! ⇡ 4. (b) Size-scaled gaps at
the singlet-quintuplet (�c1) and singlet-triplet (�c2) cross-
ing points along with fits of the form L�(L) = c + dL

��,
where �1 ⇡ 2 and �2 ⇡ 1.5.

after crossing the other singlet (which has other quan-
tum numbers related to the lattice symmetries) that is
lower in what we will argue is the AFM phase. The insets
of Fig. 2 show results also for L = 6 and 8 in the region
around the level crossings that we will analyze (the higher
gaps for L = 4 are not shown for clarity). Using polyno-
mial fits to the DMRG data points, we extract crossing
points gc1(L) between the singlet and the quintuplet, as
well as gc2(L) between the singlet and the triplet. The
singlet-singlet crossings taking place close to gc1(L) are
discussed in the SM [64]; their size dependence is simi-
lar to gc1(L). For g & gc1(L) there are also other levels
in the energy range of Fig. 2, including singlets, but the
S = 0, 1, 2 gaps graphed are the lowest with these spins
up to and beyond the largest g shown.

As L increases the two sets of crossing points drift to-
ward two di↵erent asymptotic values. For the singlet-
triplet crossings, we have considered di↵erent extrapola-
tion procedures with gc2(L), all of which deliver gc2 ⇡
0.52 when L ! 1. It is natural to test whether the
finite-size correction to gc2 is consistent with the L

�2

drift in the frustrated Heisenberg chain [54–56]; a behav-
ior also found in the 2D J-Qmodel in Ref. 59. In Fig. 3(a)
we graph the data versus L

�2 along with a line drawn

through the L = 8 and L = 10 points, as well as a fitted
curve including a higher-order correction. Although we
have only four points and there are three free parameters,
it is not guaranteed that the fit should match the data as
well as it does. With a leading L

�1 correction the best
fit is far from good. Therefore, we take the former fit as
evidence that the asymptotic drift is at least very close to
L
�2. The fit with the subleading correction in Fig. 3(a)

gives gc2 = 0.519; a minute change from the straight-
line extrapolation. Based on the di↵erences between the
two extrapolations and roughly estimated errors on the
individual crossing points (which arise from the DMRG
extrapolations, as discussed in SM [64]), the final result
is gc2 = 0.519± 0.002.

Plotting the singlet-quintuplet crossing points in the
same graph in Fig. 3(a), the overall behavior is similar
to the singlet-triplet points, but it is clear that they do
not drift as far as to gc2. We find that the L

�2 form ap-
plies also here; see the SM [64] for further analysis of the
corrections for both gc1 and gc2. A rough extrapolation
by a line drawn through the L = 8 and L = 10 points
gives gc1 ⇡ 0.465, and when including a correction, of the
same form as in the singlet-triplet case, the extrapolated
value moves only slightly down to gc1 ⇡ 0.463. Based on
this analysis we conclude that gc1 = 0.463± 0.002.

In Fig. 3(b) we analyze the crossing gaps, multiplied
by L in order to make clearly visible the leading behavior
and well-behaved corrections. All gaps close as L�1, i.e.,
the dynamic exponent z = 1 at both critical points. We
have also analyzed the gaps in the regime gc1 < g < gc2

(not shown), and it appears that the lowest S = 0, 1, 2
gaps all scale as L

�1 throughout. This phase should
therefore be a gapless (algebraic) SL, instead of a Z2 SL
with nonzero triplet gap for L ! 1 [28] and singlet gap
vanishing exponentially (due to topological degeneracy).

The point gc2 ⇡ 0.52 is higher than almost all previous
results reported for the point beyond which the AFM
order vanishes, but it is close to where recent works have
suggested a transition from a gapless SL into a VBS [29,
39]. If there indeed is a gapless SL intervening between
the AFM and the VBS phases and its lowest excitation
is a triplet (as is the case, e.g., in the critical Heisenberg
chain), then a singlet-triplet crossing is indeed expected
at the SL–VBS transition, since the triplet is gapped and
the ground state is degenerate in the VBS phase.

To interpret the singlet-quintuplet crossing at gc1 ⇡
0.46, we again note that the nature of the low-lying gap-
less excitations reflect the properties of the ground state,
and a ground state transition can be accompanied by re-
arrangements of levels across sectors or within a sector
of fixed total spin. A singlet-quintuplet crossing is in-
deed present at the transition between a critical Heisen-
berg state (an 1D algebraic SL) and a long-range AFM
state in a spin chain with long-range unfrustrated inter-
actions and either unfrustrated [65] or frustrated [56, 60]
short-range interactions, as we discuss further in the SM



Targeting excited states with finite size DMRG

2

-�0

FIG. 1. Illustration of the e↵ective Hamiltonian for the first
excited state H1

e↵, defined below Eq. (1). Red and gray circles
represent the targeted state | 1i and the ground state | 0i,
respectively, and the blue squares show the original Hamilto-
nian as a matrix-product operator. The hatched area is the
e↵ective eigenstate U†

1 | 1i, where U1 projects to the canonical
MPS for | 1i without the hatched area.

a singlet-singlet crossing was found at the transition be-
tween a critical state and a long-range AFM state in a
Heisenberg chain with long-range interactions [56], we
interpret both gc1 and gc2 as locations of ground-state
transitions (at which the lowest excitations also change).
Our interpretation, backed up by calculations of gaps and
the AFM order parameter, is that the ground state is a
gapless (algebraic) SL for gc1  g  gc2, as in one of
the scenarios proposed in Refs. 29 and 38 (and previ-
ously discussed qualitatively also in Ref. 59). Our value
of gc1 is in the middle of the range g = 0.4 ⇠ 0.5 where
most recent studies have put the end of the AFM phase
[27–29, 38], and gc2 is close to the VBS-ordering point in
Refs. 29 and 38.

DMRG calculations.—The DMRG method [36] is a
powerful tool for computing the ground state | 0i of a
many-body Hamiltonian. By solving a Hamiltonian He↵

in a relevant low-entangled subspace of the full Hilbert
space, one can obtain an e↵ective wavefunction, through
which the most relavent subsapce is selected for the next
iteration. A series of such subspace projectors produces
the ground state as a matrix product state (MPS), i.e.,
the wavefunction coe�cients are traces of products of lo-
cal matrices of chosen size m [37, 60].

The lowest excited state | 1i can also be targeted with
DMRG [52] provided that | 0i has been pre-calculated.
The only di↵erence from a ground-state DMRG algo-
rithm is that one has to maintain the orthogonality
condition h 1| 0i = 0 at each step. Upon reformu-
lating the Hamiltonian for the lowest excited state as
H1 = H � �0| 0ih 0|, where �0 is the eigenvalue of H
corresponding to | 0i, one can write down the e↵ective
Hamiltonian equation in the DMRG procedure as

h
U

†
1 (H � �0| 0ih 0|)U1

i
U

†
1 | 1i = �1U

†
1 | 1i, (1)

where U1 projects onto the canonical MPS [37] for | 1i
without the center two sites, as illustrated in Fig. 1, and
�1 is the eigenvalue for | 1i. We can therefore define an
e↵ective Hamiltonian H

1
e↵ ⌘ U

†
1 (H � �0| 0ih 0|)U1.

Similarly, given that | ii for all i < j (�i < �j) have
been pre-calculated, we observe that one can compute
the next eigenstate j as an MPS with a given number of

kept Schmidt states m using a modified Hamiltonian

Hj = H �
j�1X

i=0

�i| iih i|. (2)

Here H
j
e↵U

†
j | ji = �jU

†
j | ji as in Eq. (1). In practice

such a DMRG scheme will break down (i.e., unreasonably
large m has to be used) when the eigenstates far from the
bottom of the spectrum begin to violate the area law.
The cylinder geometry, with open and periodic bound-

aries in the x and y direction, respectively, is known to
be suitable for 2D DMRG [61] calculations and we use
it here on 2L ⇥ L lattices with even L. In this work we
employ a DMRG algorithm with U(1) symmetry, i.e., the
total spin z component Sz is conserved. We generate up
to ten S

z = 0 states and obtain the total spin S by direct
computation of the expectation value of S2.

An advantage of focusing on the level spectrum is the
well known fact that the energy converges much faster
with the number m of Schmidt states than other phys-
ical observables, and also as a function of the number
of sweeps in the DMRG procedure. We here apply very
stringent convergence criteria and also extrapolate away
the remaining finite-m errors based on calculations for
several values of m up to m = 12000. The DMRG pro-
cedures and extrapolations are further discussed in Sup-
plemnetal Material (SM) [62].

Results.—Figure 2 shows singlet (�s) and triplet (�t)
gaps versus g for several system sizes, graphed in two re-
gions in order to clearly show the crossing points, gc1(L),
between the two lowest singlet excitations as well as that
between the lowest singlet and triplet, gc2(L). To reliably
converge the second singlet excitation is demanding, and
we therefore present singlet-singlet crossing results only
for L = 4, 6, 8, while for the singlet-triplet crossing we
also have L = 10 results.

We fit polynomials to the data and interpolate for the
crossing points. Upon close examination, we find that the
singlet-singlet crossings are avoided level crossings be-
tween states that have eigenvalue +1 for all square-lattice
symmetry operations (translation in the y-direction and
reflection about the x and y axis). For cylinders of size
(2L+1)⇥L (L even) we instead find a real level crossing,
with the lower state for g above the crossing value being
odd with respect to reflection about the y-axis. For the
2L ⇥ L systems that we focus on here, the smallest gap
between the levels at the avoided crossings are very small
and we use fits to the apparently crossing levels.

As L increases the two sets of crossing points drift to-
ward two di↵erent asymptotic points. For the singlet-
triplet crossings, we have considered several di↵erent ex-
trapolation procedures with gc2(L), all of which deliver
gc2 ⇡ 0.52 when L ! 1. It is natural to test whether
the finite-size correction to gc2 is consistent with the L�2

drift in the frustrated Heisenberg chain [53–55]; a behav-
ior also found in the 2D J-Qmodel in Ref. 58. In Fig. 3(a)
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INTRODUCTION

The frustrated J1 � J2 Heisenberg model on square
lattice is notorious for its unsolving ground state phase
diagram. Until now, numerous groups have tried various
methods to attack this model, however their conclusions
controdict each other, therefore a concensus has not yet
been reached in the community. Among these debating,
there are two most intersting qustions to answer, what
is the nature of the intermediate phase, and where and
how does this phase start. In fact people commonly be-
lieved that J2 2 (0.45 : 0.61] is roughly the size of the
intermediate phase, and that at J2 ⇡ 0.61 there is a first
order phase transition that terminates the intermediate
paramagnetic region.

The brutal di�culty in solving this model definitely is
that it not only su↵ers from the sign problem but also has
very strongly finite size e↵ect. Therefore current numer-
ical reliable methods such as the Density Matrix Renor-
malization Group (DMRG) method and the Variational
Monte Carlo (VMC) method all found tricky in drawing
a definitive conclusion.

In this paper, we take an unique way to conquer the
above di�culty and make a precise prediction of the po-
sitions of the quantum phase transition. Our determina-
tion for the onset of the intermediate phase is signaled by
the switching of the order of the lowest energy singlet and
triplet above the (finite size) ground state, because the
proposed Valence Bond Solid (VBS) states in the inter-
mediate regeme have four fold ground state degeneracy
on a torus. Such detection method of quantum phase
transition using low lying energy level crossing has been
explored widely in one dimensional systems, recently, it
has been applied to study the deconfined quantum criti-
cality in two dimension, where the gaps are extrapolated
using the immaginary time spin-spin and dimer-dimer
correlation functions. For the J1 � J2 model with severe
sign problem, the most viable way to estimate the sin-
glet and triplet gap is through the unbiased DMRG cal-
culation on a finite width cylinder and apply finite size
scaling (FSS) to extrapolate the quantum critical point
in the thermodynamic limit.

DMRG CALCULATION OF THE EXCITED
STATES

DMRG method is an iterative numerical method that
optimize the ground state wavefunction via a successive
projection of the exponentially growing Hilbert space to
a controlable subspace, solving the Hamiltonian in that
subspace and feed the solution back to correct the pre-
viously used projection operators. This iterative pro-
cedure eventually converges, therefore one obtains the
ground state wavefunction in the form of a matrix prod-
uct state, where the wavefunction coe�cients are calcu-
lated by product of a set of local matrices. Once knowing
the converged ground state, we can target the lowest en-
ergy eigenstate of the Hamiltonian that is orthogonal to
| 0i, by definition, this should be the first excited state
| 1i. This procedure of getting excited state is essentially
targeting the ground state of a modified Hamiltonian
H1 = H � e0| 0ih 0|, where e0 is the eigenvalue of the
ground state | 0i of Hamiltonian H (H| 0i = e0| 0i).
In a similar streamline, one can successivly computing a
tower of low lying eigenstates, using a modified Hamilto-
nian

Hi = H �
i�1X

j=0

ej | jih j |, (1)

given that | ji for all j < i is converged, at least for
a given m (the number of Schmidt states kept), and
H| ji = ej | ji. In practice such a mechanism for DMRG
will break down when the eigenstate in the midle of the
spectum no longer satisfy the area law.

To serve our purpose of getting the lowest singlet and
triplet gap, we only need to compute | 0(S = 0)i and
| 1(S = 0)i in the singlet sector and | 0(S = 1)i in the
triplet sector. However if the MPS wavefunction only
conserves the z component of total spin S

z =
P

i S
z
i , we

need three states | i(Sz = 0)i (i = 0, 1, 2) in the S
z = 0

sector, and only one state | 0(Sz = 1)i in the S
z = 1

sector for the AF phase, since close to the critical point
| 1(Sz = 0)i is one of the triplet states where S

z = 0
and | 2(Sz = 0)i is the lowest singlet excited state.

<latexit sha1_base64="Jr1trmsWOmSa6wQ4ArByPh1qWKI=">AAACHXicbVBNTwIxEO3iN36hHr00gokXyS4x6oWExIMcNRElYXHTLQMUut1N2zUhC3/Ei3/FiweN8eDF+G8sCwcFXzKZl/dm0s7zI86Utu1vK7OwuLS8srqWXd/Y3NrO7ezeqjCWFGo05KGs+0QBZwJqmmkO9UgCCXwOd37/YuzfPYBULBQ3ehBBMyAdwdqMEm0kL3dSqHqsXD12VRx4Sa/sjO4ZBq83dCPFvJ4riehwcPmkpdqw4OXydtFOgeeJMyV5NMWVl/t0WyGNAxCacqJUw7Ej3UyI1IxyGGXdWEFEaJ90oGGoIAGoZpJeN8KHRmnhdihNCY1T9fdGQgKlBoFvJgOiu2rWG4v/eY1Yt8+bCRNRrEHQyUPtmGMd4nFUuMUkUM0HhhAqmfkrpl0iCdUm0KwJwZk9eZ7clorOabF0XcpXLqdxrKJ9dICOkIPOUAVV0RWqIYoe0TN6RW/Wk/VivVsfk9GMNd3ZQ39gff0Ae7yiOg==</latexit>

Hi = H �
Pi

j=1 ej | jih j |
<latexit sha1_base64="yUrFyQqQqkegugDr1UmWNY5mIhs="></latexit>

Hi =
PN

j=1 ej | jih j |�
Pi

j=1 ej | jih j |



Critical level crossings in square lattice J1-J2  model
HJ1�J2 = J1

�

�i,j�

SiSj + J2

�

��i,j��

SiSj

Valence Bond SolidGapless Spin LiquidAntiferromagnet

0 g/𝜶0.46 0.52similar to gc1ðLÞ. For g≳ gc1ðLÞ there are also other levels
in the energy range of Fig. 2, including singlets, but the
S ¼ 0, 1, 2 gaps graphed are the lowest with these spins up
to and beyond the largest g shown.
As L increases the two sets of crossing points drift

toward two different asymptotic values. For the singlet-
triplet crossings, we have considered different extrapolation
procedures with gc2ðLÞ, all of which deliver gc2 ≈ 0.52
when L → ∞. It is natural to test whether the finite-size
correction to gc2 is consistent with the L−2 drift in the
frustrated Heisenberg chain [54–56], a behavior also found
in the 2D J-Q model in Ref. [59]. In Fig. 3(a) we graph the
data versus L−2 along with a line drawn through the L ¼ 8
and L ¼ 10 points, as well as a fitted curve including
a higher-order correction. Although we have only four
points and there are three free parameters, it is not
guaranteed that the fit should match the data as well as
it does. With a leading L−1 correction the best fit is far from
good. Therefore, we take the former fit as evidence that the
asymptotic drift is at least very close to L−2. The fit with
the subleading correction in Fig. 3(a) gives gc2 ¼ 0.519, a
minute change from the straight-line extrapolation. Based
on the differences between the two extrapolations and
roughly estimated errors on the individual crossing points
(which arise from the DMRG extrapolations, as discussed
in Supplemental Material [61]), the final result is
gc2 ¼ 0.519$ 0.002.
Plotting the singlet-quintuplet crossing points in the

same graph in Fig. 3(a), the overall behavior is similar
to the singlet-triplet points, but it is clear that they do not
drift as far as to gc2. We find that the L−2 form applies
also here; see the Supplemental Material [61] for
further analysis of the corrections for both gc1 and gc2.
A rough extrapolation by a line drawn through the L ¼ 8

and L ¼ 10 points gives gc1 ≈ 0.465, and when including
a correction, of the same form as in the singlet-triplet
case, the extrapolated value moves only slightly down to
gc1 ≈ 0.463. Based on this analysis we conclude that
gc1 ¼ 0.463$ 0.002.
In Fig. 3(b) we analyze the crossing gaps, multiplied by

L in order to make clearly visible the leading behavior and
well-behaved corrections. All gaps close as L−1, i.e., the
dynamic exponent z ¼ 1 at both critical points. We have
also analyzed the gaps in the regime gc1 < g < gc2 (not
shown), and it appears that the lowest S ¼ 0, 1, 2 gaps all
scale as L−1 throughout. This phase should therefore be a
gapless (algebraic) SL, instead of a Z2 SL with nonzero
triplet gap for L → ∞ [28] and singlet gap vanishing
exponentially (due to topological degeneracy).
The point gc2 ≈ 0.52 is higher than almost all previous

results reported for the point beyond which the AFM order
vanishes, but it is close to where recent works have
suggested a transition from a gapless SL into a VBS
[29,39]. If there indeed is a gapless SL intervening between
the AFM and the VBS phases and its lowest excitation is a
triplet (as is the case, e.g., in the critical Heisenberg chain),
then a singlet-triplet crossing is indeed expected at the
SL-VBS transition, since the triplet is gapped and the
ground state is degenerate in the VBS phase.
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FIG. 3. (a) The gap-crossing points from Fig. 2 graphed vs L−2.
For the singlet-triplet (red squares) and singlet-quintuplet
(green circles) data sets, the black lines go through the L ¼ 8,
10 points, while the colored curves are of the form gcðLÞ ¼
gcð∞Þ þ aL−2ð1þ bL−ωÞwith gc2ð∞Þ ≈ 0.519, gc1ð∞Þ ≈ 0.463,
and ω ≈ 4. (b) Size-scaled gaps at the singlet-quintuplet (Δc1) and
singlet-triplet (Δc2) crossing points along with fits of the form
LΔðLÞ ¼ cþ dL−σ , where σ1 ≈ 2 and σ2 ≈ 1.5.
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Figure 7. (a), (b) Low-energy spectrum of the Hubbard model versus Sz(Sz + 1)
obtained for t/U = 0.05 (a) and t/U = 0.25 (b) on an N = 18 honeycomb
cluster. Values for twice the one-particle gap, 211P, are given (in (b), such a
value is indicated by the horizontal dashed line). (c), (d) Low-energy spectrum
for the CORE effective model (see the main text) versus S(S + 1), obtained on
the same 18-site cluster, again for t/U = 0.05 (c) and t/U = 0.25 (d). In all
panels, different symbols correspond to different points in the Brillouin zone: 0
point at the center, sixfold degenerate A point and twofold degenerate K point at
the corners (see the inset in (b)). Lowest energy levels in all cases are zoomed in
the insets.
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similar to gc1ðLÞ. For g≳ gc1ðLÞ there are also other levels
in the energy range of Fig. 2, including singlets, but the
S ¼ 0, 1, 2 gaps graphed are the lowest with these spins up
to and beyond the largest g shown.
As L increases the two sets of crossing points drift

toward two different asymptotic values. For the singlet-
triplet crossings, we have considered different extrapolation
procedures with gc2ðLÞ, all of which deliver gc2 ≈ 0.52
when L → ∞. It is natural to test whether the finite-size
correction to gc2 is consistent with the L−2 drift in the
frustrated Heisenberg chain [54–56], a behavior also found
in the 2D J-Q model in Ref. [59]. In Fig. 3(a) we graph the
data versus L−2 along with a line drawn through the L ¼ 8
and L ¼ 10 points, as well as a fitted curve including
a higher-order correction. Although we have only four
points and there are three free parameters, it is not
guaranteed that the fit should match the data as well as
it does. With a leading L−1 correction the best fit is far from
good. Therefore, we take the former fit as evidence that the
asymptotic drift is at least very close to L−2. The fit with
the subleading correction in Fig. 3(a) gives gc2 ¼ 0.519, a
minute change from the straight-line extrapolation. Based
on the differences between the two extrapolations and
roughly estimated errors on the individual crossing points
(which arise from the DMRG extrapolations, as discussed
in Supplemental Material [61]), the final result is
gc2 ¼ 0.519$ 0.002.
Plotting the singlet-quintuplet crossing points in the

same graph in Fig. 3(a), the overall behavior is similar
to the singlet-triplet points, but it is clear that they do not
drift as far as to gc2. We find that the L−2 form applies
also here; see the Supplemental Material [61] for
further analysis of the corrections for both gc1 and gc2.
A rough extrapolation by a line drawn through the L ¼ 8

and L ¼ 10 points gives gc1 ≈ 0.465, and when including
a correction, of the same form as in the singlet-triplet
case, the extrapolated value moves only slightly down to
gc1 ≈ 0.463. Based on this analysis we conclude that
gc1 ¼ 0.463$ 0.002.
In Fig. 3(b) we analyze the crossing gaps, multiplied by

L in order to make clearly visible the leading behavior and
well-behaved corrections. All gaps close as L−1, i.e., the
dynamic exponent z ¼ 1 at both critical points. We have
also analyzed the gaps in the regime gc1 < g < gc2 (not
shown), and it appears that the lowest S ¼ 0, 1, 2 gaps all
scale as L−1 throughout. This phase should therefore be a
gapless (algebraic) SL, instead of a Z2 SL with nonzero
triplet gap for L → ∞ [28] and singlet gap vanishing
exponentially (due to topological degeneracy).
The point gc2 ≈ 0.52 is higher than almost all previous

results reported for the point beyond which the AFM order
vanishes, but it is close to where recent works have
suggested a transition from a gapless SL into a VBS
[29,39]. If there indeed is a gapless SL intervening between
the AFM and the VBS phases and its lowest excitation is a
triplet (as is the case, e.g., in the critical Heisenberg chain),
then a singlet-triplet crossing is indeed expected at the
SL-VBS transition, since the triplet is gapped and the
ground state is degenerate in the VBS phase.
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FIG. 2. Gaps to the relevant S ¼ 0, 1, and 2 excitations vs g for
L ¼ 10. The insets show the regions of the level crossings of
interest for L ¼ 6, 8, 10 (gaps decreasing with increasing L). The
curves show polynomial fits.
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FIG. 3. (a) The gap-crossing points from Fig. 2 graphed vs L−2.
For the singlet-triplet (red squares) and singlet-quintuplet
(green circles) data sets, the black lines go through the L ¼ 8,
10 points, while the colored curves are of the form gcðLÞ ¼
gcð∞Þ þ aL−2ð1þ bL−ωÞwith gc2ð∞Þ ≈ 0.519, gc1ð∞Þ ≈ 0.463,
and ω ≈ 4. (b) Size-scaled gaps at the singlet-quintuplet (Δc1) and
singlet-triplet (Δc2) crossing points along with fits of the form
LΔðLÞ ¼ cþ dL−σ , where σ1 ≈ 2 and σ2 ≈ 1.5.
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FIG. 1. Ground-state phase diagram of square-lattice J1-
J2 Heisenberg model (J1 = 1) obtained by the RBM+PP
method.
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FIG. 2. System-size dependence of correlation ratio for (a)
spin-spin and (b) dimer-dimer correlations, which are used to
detect the phase boundary of Néel-AF and VBS, respectively.
In (a), the 18× 18 data are added to reinforce the result.

VBS breaks lattice symmetry, QSL does not break any.
Clearly and notably, QSL is stabilized in a finite region
of J2 around J2 = 0.5. The phase transition between
VBS and stripe-AF at JV-S

2 is of 1st order, which is char-
acterized by the kink in the ground state energy, while
the other two transitions are continuous (Fig. 12 in Ap-
pendix C). Below, we describe the procedure to deter-
mine the continuous phase transition points.

1. Phase boundary determined by correlation ratio

Results for the correlation ratios, RNéel and RVBS, are
shown in Figs. 2(a) and 2(b), respectively (see Figs. 13
and 14 in Appendix C for the raw data of correlation
functions). We see clear crossings of curves for three
sizes at nearly the same points at J2 = JNéel

2 ≈ 0.49 for
RNéel and at J2 = JVBS

2 ≈ 0.54 for RVBS. This standard
procedure strongly supports that the two transitions as-
sociated with the Néel-AF and VBS ordering take place

at the different points close to these system-size indepen-
dent crossings. It supports the existence of an interme-
diate phase without any long-range ordering, i.e., QSL
phase in the range 0.49 ! J2 ! 0.54.

2. Phase boundary determined by level spectroscopy

The level spectroscopy method was applied to the 2D
J1-J2 Heisenberg model before [24]. They interpreted
the crossing between the lowest singlet and triplet exci-
tations as the VBS-order boundary, following Ref. 47.
In addition, they found the singlet-quintuplet crossing
and interpreted it as a signal of the disappearance of
the AF long-range order, because the transition from the
AF long-range order to quasi-long-range order in one-
dimensional Heisenberg model with long-range interac-
tion shows a similar behavior [24, 48]. These two cross-
ings extrapolated to L → ∞ limit gave different J2 val-
ues: J2 = 0.463(2) and J2 = 0.519(2) for the singlet-
quintuplet and singlet-triplet crossings, respectively.

To critically crosscheck the consistency with the above
correlation ratio result, we also reexamine the level spec-
troscopy analysis as a complementary check. We here
enjoy the advantage of the momentum resolution in ad-
dition (contrary to Ref. 24). Figure 3 shows J2 depen-
dence of the excitation energies ∆ for sizes (a) 12 × 12
and (b) 16×16 at high-symmetry momenta. The singlet-
quintuplet and singlet-triplet crossings signaling the AF-
QSL and QSL-VBS transitions, respectively, are high-
lighted by arrows. The size extrapolation of the crossing
points is shown in Fig. 4(a). We use L−2 scaling as in
Refs. 24 and 47. The extrapolated thermodynamic val-
ues are J2 = 0.493(2) and J2 = 0.532(2) for the singlet-
quintuplet and singlet-triplet crossings, respectively. The
values are close to those of Ref. 24 above. Tiny differ-
ences may well be ascribed to the smaller system sizes
calculated in Ref. 24 than ours. As for the singlet-triplet
crossing, our result is also consistent with a more recent
estimate by the variational Monte Carlo (VMC) method,
which gives J2 = 0.542(2) [49].

More importantly, our phase boundary estimated by
the level spectroscopy has a striking quantitative agree-
ment with the correlation ratio result described above.
It is of great significance to see the one-to-one correspon-
dence between the ground-state phases and the excitation
structures. We then safely conclude that a finite QSL re-
gion around J2 = 0.5 emerges (see Supplementary Note 1
in Appendix D for additional noteworthy features found
in the level spectroscopy).

Figure 4(b) further shows the size dependence of the
excitation gap ∆ at the crossing points. ∆ × L seems
to converge at a finite value as L → ∞ for both cross-
ings. Therefore, the two critical points corresponding to
AF-QSL and QSL-VBS transitions become gapless in the
thermodynamic limit with the scaling ∆ ∝ 1/L.
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FIG. 1. Triplet and singlet gaps for L = 30 (top) and L = 94
(bottom) for different values of the frustrating ratio J2/J1 in the
one-dimensional J1-J2 model. The exact results for L = 30 are also
shown for comparison (black crosses).

consistent with zero within a few error bars). These results are
shown in Fig. 2. In the vicinity of the transition, the triplet
gap is exponentially small, and therefore, it is extremely hard
to detect a finite value from an unbiased size scaling. In this
respect, the transition is much better located by looking at the
level crossing.

Being confident that our variational method is able to
reproduce the correct features of the lowest-energy triplet
and singlet excitations, we move to the most interesting two-
dimensional model. First of all, we report in Fig. 3 our results
for the 2L × L geometry used in Ref. [30] (the only difference
is that, here, we consider periodic boundary conditions in
both directions, suitable for a translational-invariant wave
function). Here, we find a level crossing between the triplet
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FIG. 2. Size scaling of the triplet and singlet gaps of the one-
dimensional J1-J2 model for two values of J2/J1.
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FIG. 3. Triplet [with q = (π ,π )] and singlet [with q = (π , 0)]
gaps for 2L × L clusters with L = 6 (top) and L = 10 (bottom) for
different values of the frustrating ratio J2/J1.

with q = (π ,π ) and the singlet with q = (π , 0), similar to
what was obtained within the density-matrix renormalization
group. We would like to mention that, within this geome-
try, the crossing point moves from J2/J1 ≈ 0.51 for L = 6
to J2/J1 ≈ 0.535 for L = 10, in qualitative agreement with
Ref. [30]. Similar results can be obtained within L × L clus-
ters (see Fig. 4). The advantage of this kind of geometry,
besides having all the point-group symmetries of the square
lattice, is that the crossing point does not move substan-
tially when changing the value of L. The size scaling of the
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A consensus has been reached for a gapless SL phase in square lattice J1-J2 model 
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Shackleton et al (will appear tonight) proposed a field theory to look into this scenario 



• Open boundary serves as 
pinning field and breaks Z2 
symmetry of the Hamiltonian, 
the ground state is unique in 
PS phase


• In addition to singlet-triplet and 
singlet-quintuplet level 
crossings, there is singlet gap 
minimum, signaling vanishing 
domain wall energy (the end of 
PS phase)


• The drifting of critical value 
follows perfectly a 1/L² 
correction. The spin liquid 
region, although small, is 
unlikely to shrink to zero
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Using the density-matrix renormalization group method for the ground state and excitations of the Shastry-
Sutherland spin model, we demonstrate the existence of a narrow quantum spin liquid phase between the pre-
viously known plaquette-singlet and antiferromagnetic states. Our conclusions are based on finite-size scaling
of excited level crossings and order parameters. Together with previous results on candidate models for decon-
fined quantum criticality and spin liquid phases, our results point to a unified quantum phase diagram where
the deconfined quantum-critical point separates a line of first-order transitions and a gapless spin liquid phase.
The frustrated Shastry-Sutherland model is close to the critical point but slightly inside the spin liquid phase,
while previously studied unfrustrated models cross the first-order line. We also argue that recent heat capacity
measurements in SrCu2(BO3)2 show evidence of the proposed spin liquid at pressures between 2.6 and 3 GPa.

The quasi two-dimensional (2D) S = 1/2 quantum magnet
SrCu2(BO3)2 [1–3] has emerged [4–9] as the most promising
material for realizing the deconfined quantum-critical point
(DQCP) [10–12], where a gapped state with a spontaneously
formed singlet pattern meets a gapless antiferromagnetic (AF)
state in a phase transition associated with fractionalized ex-
citations (spinons). The intralayer interactions of the Cu
spins correspond to the Shastry-Sutherland (SS) model [13],
with highly frustrated AF interdimer (J) and intradimer (J’)
Heisenberg couplings. This model has three known ground
states versus g = J/J

0; a dimer singlet (DS) state for small
g [13], a Néel AF state for large g, and a two-fold degenerate
plaquette-singlet (PS) state for ↵ 2 [0.68, 0.77] [3, 6, 14, 15].

At ambient pressure SrCu2(BO3)2 is in the DS phase [1, 2]
but it had been anticipated that the other SS phases may be
reached under high pressure [16]. Recent heat capacity [7, 8],
neutron scattering [4], and Raman [9] experiments indeed
detected phase transitions and excitations that confirm some
variant [17] of the PS phase (from 1.7 to 2.5 GPa at temper-
atures below 2 K) and an AF phase (between 3 and 4 GPa
below 4 K). A direct PS–AF transition may then be expected
at low-temperature between 2.6 and 3 GPa [18].

Here we show that the above picture is incomplete. Using
the density-matrix renormalization group (DMRG) method
[19], we study the ground state and low-lying excitations of
the SS model. Based on the lattice size dependence of the
level spectrum and order parameters, we conclude that there
is a narrow gapless spin liquid (SL) phase intervening between
the PS and AF phases. In light of this finding, the lack of signs
of any phase transition between 2.6 and 3 GPA in the recent
heat capacity measurements on SrCu2(BO3)2 [7, 8] opens the
intriguing prospect of an SL in this material.

DMRG calculations.—The SS model with AF couplings J

between first neighbor spins hiji and J
0 on a subset of second

neighbors hiji0 is illustrated in Fig. 1. The Hamiltonian is [13]

H = J

X

hiji

Si · Sj + J
0
X

hiji0
Si · Sj , (1)

here on Lx ⇥ Ly cylinders [20, 21] with open and periodic
boundary conditions in the x and y direction, respectively, and
Ly ⌘ L = 2n, Lx = 2L. In this geometry, the model has a
preferred singlet pattern which minimizes the boundary en-
ergy in the PS phase; thus the two-fold degeneracy is broken
and the ground state is unique, as illustrated in Fig. 1.

We have developed efficient procedures for calculating not
only the ground state with full SU(2) symmetry [22, 23], but
also successively generating excited states by orthogonalizing
to previous states [24–26]. We have run the DMRG calcu-
lations with stringent convergence criteria for given Schmidt
number m and used sufficiently large m for reliably extrapo-
lating to discarded weight ✏m = 0 (illustrated in the Supple-
mental Material [27]) for L up to 10, 12, or 14 depending on
quantity. Any remaining errors in the results are small on the
scale of the graph symbols in the figures presented below.

We focus on g 2 [0.7, 0.9], which according to previous
works straddles the PS and AF phases. The ground state of
the system is always a singlet, and we will analyze the gaps
�(S) to the lowest excited singlet (S = 0), triplet (S = 1),
and qintuplet (S = 2). Finite-size crossings of excited levels
with different spin have often been used as indicators of quan-
tum phase transitions in spin chains [28–30], and this method
was also applied to the 2D J-Q [31] and J1-J2 [25, 32, 33]

(a) (b)

Figure 1. The SS lattice with open x and periodic y boundary condi-
tions. The lengths Lx and Ly are both even. Nearest neighbors are
coupled at strength J by Eq. (1) and the blue diagonal links repre-
sent the dimer couplings J 0. The open edges break the Z2 symmetry
of the PS phase, thus inducing a singlet density pattern as indicated
schematically by the thickness of the red lines.
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Figure 2. (a) The lowest singlet and triplet gaps vs g in the neighbor-
hood of the expected quantum phase transition out of the PS phase.
(b) The lowest singlet and quintuplet gaps for g inside the AF phase,
close to its quantum phase transition.

Heisenberg models. Here we will study level crossings with
the aim of detecting the transitions out of the PS phase and
into the AF state, following Ref. 25 closely. We also study the
PS and AF order parameters to further corroborate the quan-
tum phases and phase transitions.

We graph singlet and triplet gaps in Fig. 2(a) and similarly
singlet and quintuplet gaps in Fig. 2(b), in g windows where
gap crossings are observed. In Fig. 3 we analyze the gap
crossing points as well as the singlet minimum that is also
observed in Fig. 2(a). Given the previous empirical obser-
vations of finite-size drifts of crossing points in 2D systems
[25, 31], we graph the results versus 1/L

2 and find almost per-
fect linear behaviors in this variable. Interesting, the singlet-
triplet crossings and the singlet minimum both extrapolate to
a point gc1 ⇡ 0.79, while the singlet-quintuplet points scale
to a higher value; gc2 ⇡ 0.82.

It was previously shown [25, 30] that the crossing point
between the lowest singlet and quintuplet levels is a useful
finite-size estimator for a quantum phase transition into an
AF phase, given that the lowest S > 0 states are Ander-
son quantum rotors, separated from the ground state by gaps
�A(S) / S(S+1)/L

2 (in 2D), while the singlet excited state
is unrelated to the rotor tower and should be at higher energy.
In fact, the singlet should correspond to the gapped amplitude
(“Higgs”) mode in the AF state [6]. In contrast, in other pu-
tative phases adjacent to the AF phase (in the SS model and
many other models), the S = 2 state should be above the
lowest S = 0 excitation. Thus, we identify the extrapolated
singlet-quintuplet crossing point gc2 ⇡ 0.82 with a quantum
phase transition into the AF state.
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Figure 3. Locations of gap crossings and singlet minimums, with the
lines showing linear-in-1/L2 fits. The L = 4 singlet-quintuplet point
is at g ⇡ 1.1, falling very close to the fitted line. The extrapolated
critical points are gc1 = 0.787± 0.002 and gc2 = 0.820± 0.002.

Following the previous work on the J1-J2 model [25], we
identify the extrapolated singlet-triplet crossing point gc1 ⇡
0.79 with the transition out of the PS state. The singlet min-
imum by itself is consistent with the PS gap vanishing at a
DQCP and becoming the gapped amplitude mode in the AF
phase [6]. However, an AF phase starting at gc1 is inconsistent
with the significantly higher singlet-quintuplet crossing point
gc2. Below we will show additional evidence of a gapless SL
phase for g 2 (gc1, gc2).

Though the separation between the transition points gc1 ⇡
0.79 and gc2 ⇡ 0.82 is small, an eventual flow toward a com-
mon point for larger systems appears unlikely, given the ab-
sence of significant corrections to the 1/L

2 forms in Fig. 3.
The singlet-triplet and singlet-quintuplet crossings both match
those previously identified in the J1-J2 Heisenberg model
[25], where several studies using different numerical tech-
niques now have reached a consensus on the existence of a
gapless SL phase between a columnar dimerized phase and the
AF phase [23, 25, 32–34]. A quantum field theory was very
recently proposed to account for this SL phase [35]. The same
level crossings were also previously found at the transition
from a gapless critical state to either a dimerized state (singlet-
triplet crossing) or an AF state (singlet-quintuplet crossing)
in a frustated Heisenberg chain with long-range interactions
[25, 30]. In light of all these results for related models and the
distinct gc1 and gc2 points identified here, a gapless SL phase
in the SS model is plausible.

In Fig. 4 we analyze the size dependence of the singlet gaps
for g in and close to the putative SL phase. At g = 0.80,
which should be inside the SL phase, the gaps are consistent
with asymptotic 1/L scaling. The results for g = 0.78 and
0.82, close to gc1 and gc2, respectively, also are consistent
with linear scaling. Thus, our results suggest a dynamic expo-
nent z = 1 for the SL phase and its quantum phase transitions,
though slightly higher z (as has been argued at the DQCP in
the J1-J2 model [35]) cannot be ruled out. The finite-size sin-
glet gap minimums [Fig. 2(a) and Fig. 3] would be explained
if z = 1 in the SL phase and z > 1 at gc1. We have triplet gaps
for L up to 10 and they also are consistent with 1/L scaling
in the SL phase.
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Figure 2. (a) The lowest singlet and triplet gaps vs g in the neighbor-
hood of the expected quantum phase transition out of the PS phase.
(b) The lowest singlet and quintuplet gaps for g inside the AF phase,
close to its quantum phase transition.

Heisenberg models. Here we will study level crossings with
the aim of detecting the transitions out of the PS phase and
into the AF state, following Ref. 25 closely. We also study the
PS and AF order parameters to further corroborate the quan-
tum phases and phase transitions.

We graph singlet and triplet gaps in Fig. 2(a) and similarly
singlet and quintuplet gaps in Fig. 2(b), in g windows where
gap crossings are observed. In Fig. 3 we analyze the gap
crossing points as well as the singlet minimum that is also
observed in Fig. 2(a). Given the previous empirical obser-
vations of finite-size drifts of crossing points in 2D systems
[25, 31], we graph the results versus 1/L

2 and find almost per-
fect linear behaviors in this variable. Interesting, the singlet-
triplet crossings and the singlet minimum both extrapolate to
a point gc1 ⇡ 0.79, while the singlet-quintuplet points scale
to a higher value; gc2 ⇡ 0.82.

It was previously shown [25, 30] that the crossing point
between the lowest singlet and quintuplet levels is a useful
finite-size estimator for a quantum phase transition into an
AF phase, given that the lowest S > 0 states are Ander-
son quantum rotors, separated from the ground state by gaps
�A(S) / S(S+1)/L

2 (in 2D), while the singlet excited state
is unrelated to the rotor tower and should be at higher energy.
In fact, the singlet should correspond to the gapped amplitude
(“Higgs”) mode in the AF state [6]. In contrast, in other pu-
tative phases adjacent to the AF phase (in the SS model and
many other models), the S = 2 state should be above the
lowest S = 0 excitation. Thus, we identify the extrapolated
singlet-quintuplet crossing point gc2 ⇡ 0.82 with a quantum
phase transition into the AF state.
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Figure 3. Locations of gap crossings and singlet minimums, with the
lines showing linear-in-1/L2 fits. The L = 4 singlet-quintuplet point
is at g ⇡ 1.1, falling very close to the fitted line. The extrapolated
critical points are gc1 = 0.787± 0.002 and gc2 = 0.820± 0.002.

Following the previous work on the J1-J2 model [25], we
identify the extrapolated singlet-triplet crossing point gc1 ⇡
0.79 with the transition out of the PS state. The singlet min-
imum by itself is consistent with the PS gap vanishing at a
DQCP and becoming the gapped amplitude mode in the AF
phase [6]. However, an AF phase starting at gc1 is inconsistent
with the significantly higher singlet-quintuplet crossing point
gc2. Below we will show additional evidence of a gapless SL
phase for g 2 (gc1, gc2).

Though the separation between the transition points gc1 ⇡
0.79 and gc2 ⇡ 0.82 is small, an eventual flow toward a com-
mon point for larger systems appears unlikely, given the ab-
sence of significant corrections to the 1/L

2 forms in Fig. 3.
The singlet-triplet and singlet-quintuplet crossings both match
those previously identified in the J1-J2 Heisenberg model
[25], where several studies using different numerical tech-
niques now have reached a consensus on the existence of a
gapless SL phase between a columnar dimerized phase and the
AF phase [23, 25, 32–34]. A quantum field theory was very
recently proposed to account for this SL phase [35]. The same
level crossings were also previously found at the transition
from a gapless critical state to either a dimerized state (singlet-
triplet crossing) or an AF state (singlet-quintuplet crossing)
in a frustated Heisenberg chain with long-range interactions
[25, 30]. In light of all these results for related models and the
distinct gc1 and gc2 points identified here, a gapless SL phase
in the SS model is plausible.

In Fig. 4 we analyze the size dependence of the singlet gaps
for g in and close to the putative SL phase. At g = 0.80,
which should be inside the SL phase, the gaps are consistent
with asymptotic 1/L scaling. The results for g = 0.78 and
0.82, close to gc1 and gc2, respectively, also are consistent
with linear scaling. Thus, our results suggest a dynamic expo-
nent z = 1 for the SL phase and its quantum phase transitions,
though slightly higher z (as has been argued at the DQCP in
the J1-J2 model [35]) cannot be ruled out. The finite-size sin-
glet gap minimums [Fig. 2(a) and Fig. 3] would be explained
if z = 1 in the SL phase and z > 1 at gc1. We have triplet gaps
for L up to 10 and they also are consistent with 1/L scaling
in the SL phase.
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FIG. 3. (a) The gap-crossing points from Fig. 2 graphed
vs L

�2. For the singlet-triplet (red squares) and singlet-
quintuplet (green circles) data sets, the black lines go through
the L = 8, 10 points, while the colored curves are of the
form gc(L) = gc(1) + aL

�2(1 + bL
�!) with gc2(1) ⇡ 0.519,

gc1(1) ⇡ 0.463, and ! ⇡ 4. (b) Size-scaled gaps at
the singlet-quintuplet (�c1) and singlet-triplet (�c2) cross-
ing points along with fits of the form L�(L) = c + dL

��,
where �1 ⇡ 2 and �2 ⇡ 1.5.

after crossing the other singlet (which has other quan-
tum numbers related to the lattice symmetries) that is
lower in what we will argue is the AFM phase. The insets
of Fig. 2 show results also for L = 6 and 8 in the region
around the level crossings that we will analyze (the higher
gaps for L = 4 are not shown for clarity). Using polyno-
mial fits to the DMRG data points, we extract crossing
points gc1(L) between the singlet and the quintuplet, as
well as gc2(L) between the singlet and the triplet. The
singlet-singlet crossings taking place close to gc1(L) are
discussed in the SM [64]; their size dependence is simi-
lar to gc1(L). For g & gc1(L) there are also other levels
in the energy range of Fig. 2, including singlets, but the
S = 0, 1, 2 gaps graphed are the lowest with these spins
up to and beyond the largest g shown.

As L increases the two sets of crossing points drift to-
ward two di↵erent asymptotic values. For the singlet-
triplet crossings, we have considered di↵erent extrapola-
tion procedures with gc2(L), all of which deliver gc2 ⇡
0.52 when L ! 1. It is natural to test whether the
finite-size correction to gc2 is consistent with the L

�2

drift in the frustrated Heisenberg chain [54–56]; a behav-
ior also found in the 2D J-Qmodel in Ref. 59. In Fig. 3(a)
we graph the data versus L

�2 along with a line drawn

through the L = 8 and L = 10 points, as well as a fitted
curve including a higher-order correction. Although we
have only four points and there are three free parameters,
it is not guaranteed that the fit should match the data as
well as it does. With a leading L

�1 correction the best
fit is far from good. Therefore, we take the former fit as
evidence that the asymptotic drift is at least very close to
L
�2. The fit with the subleading correction in Fig. 3(a)

gives gc2 = 0.519; a minute change from the straight-
line extrapolation. Based on the di↵erences between the
two extrapolations and roughly estimated errors on the
individual crossing points (which arise from the DMRG
extrapolations, as discussed in SM [64]), the final result
is gc2 = 0.519± 0.002.

Plotting the singlet-quintuplet crossing points in the
same graph in Fig. 3(a), the overall behavior is similar
to the singlet-triplet points, but it is clear that they do
not drift as far as to gc2. We find that the L

�2 form ap-
plies also here; see the SM [64] for further analysis of the
corrections for both gc1 and gc2. A rough extrapolation
by a line drawn through the L = 8 and L = 10 points
gives gc1 ⇡ 0.465, and when including a correction, of the
same form as in the singlet-triplet case, the extrapolated
value moves only slightly down to gc1 ⇡ 0.463. Based on
this analysis we conclude that gc1 = 0.463± 0.002.

In Fig. 3(b) we analyze the crossing gaps, multiplied
by L in order to make clearly visible the leading behavior
and well-behaved corrections. All gaps close as L�1, i.e.,
the dynamic exponent z = 1 at both critical points. We
have also analyzed the gaps in the regime gc1 < g < gc2

(not shown), and it appears that the lowest S = 0, 1, 2
gaps all scale as L

�1 throughout. This phase should
therefore be a gapless (algebraic) SL, instead of a Z2 SL
with nonzero triplet gap for L ! 1 [28] and singlet gap
vanishing exponentially (due to topological degeneracy).

The point gc2 ⇡ 0.52 is higher than almost all previous
results reported for the point beyond which the AFM
order vanishes, but it is close to where recent works have
suggested a transition from a gapless SL into a VBS [29,
39]. If there indeed is a gapless SL intervening between
the AFM and the VBS phases and its lowest excitation
is a triplet (as is the case, e.g., in the critical Heisenberg
chain), then a singlet-triplet crossing is indeed expected
at the SL–VBS transition, since the triplet is gapped and
the ground state is degenerate in the VBS phase.

To interpret the singlet-quintuplet crossing at gc1 ⇡
0.46, we again note that the nature of the low-lying gap-
less excitations reflect the properties of the ground state,
and a ground state transition can be accompanied by re-
arrangements of levels across sectors or within a sector
of fixed total spin. A singlet-quintuplet crossing is in-
deed present at the transition between a critical Heisen-
berg state (an 1D algebraic SL) and a long-range AFM
state in a spin chain with long-range unfrustrated inter-
actions and either unfrustrated [65] or frustrated [56, 60]
short-range interactions, as we discuss further in the SM



• Singlet gap and triplet gap within the putative SL phase are consistent 
with 1/L scaling, system sizes are too small to check possibility of a 
slightly higher z

Singlet and triplet gaps close to the SL phase
3

0.0

0.2

0.4

0.6

0.0 0.1 0.2

Δ
(S

=
0
)

1/L

g=0.84
0.82
0.80
0.78
0.76

Figure 4. Singlet gaps vs inverse system size. Lines with zero in-
tercept have been fitted to the g = 0.78, 0.80, and 0.82 data. At
g = 0.78 the system is slightly inside the PS phase, and the linear
form should not apply asymptotically due to the gap (note that the
g = 0.76 data flatten out clearly). At g = 0.84 the system is in the
AF phase and the singlet represents the gapped amplitude mode.

We next study order parameters. We use the standard AF
magnetization, m

2
s = L

�4
P

ij �ijhSi · Sji, where i, j are
sites in the central L ⇥ L area of a 2L ⇥ L system and
�ij = ±1 is the staggered phase. To detect PS order we define
Qr ⌘ 1

2 (Pr + P�1
r ), with Pr a cyclic permutation operator

on the four spins of a plaquette at r. Given the boundary-
induced plaquette pattern (Fig. 1), we can detect the PS order
as the difference of hQri on two adjacent ’empty’ SS plaque-
ttes [36]. Thus, we define mp = hQR �QR0i, where R and
R0 are both close to the center of the cylinder (the landscape of
Qr values is shown in the Supplemental Material [27]). Both
order parameters are graphed versus 1/L in Fig. 5.

Second-order polynomial extrapolations of the AF order
parameter in Fig. 5 show that m

2
s vanishes for g ⇡ 0.82.

The polynomial form is strictly appropriate only inside the
AF phase, while at a critical point m

2
s / 1/L

1+⌘ should in-
stead apply asymptotically. The g = 0.82 data can indeed be
almost perfectly fitted to this power law with ⌘ ⇡ 0.20, thus
providing further evidence for the AF phase starting at the ex-
trapolated singlet-quintuplet point gc2 ⇡ 0.82, significantly
above the previous estimates.

As shown in the inset of Fig. 5, the PS order increases
rapidly with L inside the PS phase (g = 0.74, 0.76, 0.78), re-
flecting large fluctuations and no stable order in small systems
even with the symmetry-breaking cylinder edges (see Supple-
mental Material [27]). The boundary induced PS order close
to the edges also first increases with L for values of g outside
the PS phase, thus causing a non-monotonic behavior which
is seen clearly for g = 0.82 and 0.84. The central plaquettes
where mp is defined are close to the edge for small L, and
only for larger L can these plaquettes reflect the behavior of a
disordered bulk. At g = 0.80, mp for L = 14 also falls below
the value for L = 12, indicating that indeed mp ! 0 when
L ! 1, as it should in the SL phase.

DQCP and unified phase diagram.—The originally pro-
posed DQCP scenario is generic, with the critical point typ-
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Figure 5. Squared AF order parameter vs inverse system size for
several g values. The corresponding PS order parameters are shown
in the inset. The curves with colors matching the m2

s symbols for g =
0.82 and 0.84 are second-order polynomials, while the black curve
fitted to the g = 0.82 data is / L�(1+⌘) with ⌘ = 0.20. Fitting
to the mp data is not meaningful, but the non-monotonic behavior
for g = 0.80-0.84 is explained by boundary PS order outside the PS
phase (Supplemental Material [27]) and mp ! 0 for L ! 1.

ically reachable by tuning a single parameter [10]. Large-
scale quantum Monte Carlo studies of several variants of J-
Q Hamiltonians [12] have indeed found direct transitions be-
tween the AF ground state and a four-fold degenerate colum-
nar dimerized state [37–48]. Similar results have been ob-
tained with related classical loop [49, 50] and dimer [51]
models. In most of these models, no clear signs of dis-
continuities were observed, though unusual scaling viola-
tions have prompted proposals of a weak first-order transition
[38, 45, 52] or other scenarios [42, 47]. One proposal is that
the DQCP is unreachable (e.g., existing only in space-time di-
mensionality slightly less than 3), described by a nonunitary
conformal field theory [53–58].

In some variants of the J-Q model, clearly first-order tran-
sitions were observed [5, 59, 60]. The “checker-board” J-Q
(CBJQ) model [5] (and a closely related loop model [61]) has
a Z2 breaking PS phase like that in the SS model. A spin-flop-
like transition with emergent O(4) symmetry of the combined
O(3) AF and scalar PS order parameters was found, with no
signs of a conventional coexistence state with tunneling bar-
riers up to the largest length scales studied. This unusual be-
havior indicates close proximity to an O(4) DQCP [5, 6].

Lee et al. recently considered a proxy of the excitation gap
with the IDMRG method, studying correlation lengths of op-
erators with the symmetries of the excited SS levels of interest
[6]. Following Ref. 25, they identified both crossing points
discussed here (Figs. 2 and 3), but these points were not ex-
trapolated to infinite size. It was nevertheless argued that the
singlet-triplet and singlet-quintuplet crossings will drift to a
common DQCP with increasing system size, in the SS model
as well as in the J1-J2 model. However, in a very recent work,
Shackleton et al. revisited the J1-J2 model and constructed a
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• A second order polynomial fit to ms² at 
g=0.82 gives a slightly negative value, 
means no AFM order at g=0.82, a power 
law fit  produce η=0.2


• Within PS phase g=0.74 to 0.78, mp 
increase quickly with L, reflecting large 
fluctuations and no stable order in small 
systems


• Outside PS phase at g=0.82, 0.84, mp 
increase first then decrease with L, 
reflecting a disordered bulk


• At g=0.80, mp starts to turn downwards 
at L=14, indicating vanishing plaquette 
order, thus within the SL
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Figure 4. Singlet gaps vs inverse system size. Lines with zero in-
tercept have been fitted to the g = 0.78, 0.80, and 0.82 data. At
g = 0.78 the system is slightly inside the PS phase, and the linear
form should not apply asymptotically due to the gap (note that the
g = 0.76 data flatten out clearly). At g = 0.84 the system is in the
AF phase and the singlet represents the gapped amplitude mode.

We next study order parameters. We use the standard AF
magnetization, m

2
s = L

�4
P

ij �ijhSi · Sji, where i, j are
sites in the central L ⇥ L area of a 2L ⇥ L system and
�ij = ±1 is the staggered phase. To detect PS order we define
Qr ⌘ 1

2 (Pr + P�1
r ), with Pr a cyclic permutation operator

on the four spins of a plaquette at r. Given the boundary-
induced plaquette pattern (Fig. 1), we can detect the PS order
as the difference of hQri on two adjacent ’empty’ SS plaque-
ttes [36]. Thus, we define mp = hQR �QR0i, where R and
R0 are both close to the center of the cylinder (the landscape of
Qr values is shown in the Supplemental Material [27]). Both
order parameters are graphed versus 1/L in Fig. 5.

Second-order polynomial extrapolations of the AF order
parameter in Fig. 5 show that m

2
s vanishes for g ⇡ 0.82.

The polynomial form is strictly appropriate only inside the
AF phase, while at a critical point m

2
s / 1/L

1+⌘ should in-
stead apply asymptotically. The g = 0.82 data can indeed be
almost perfectly fitted to this power law with ⌘ ⇡ 0.20, thus
providing further evidence for the AF phase starting at the ex-
trapolated singlet-quintuplet point gc2 ⇡ 0.82, significantly
above the previous estimates.

As shown in the inset of Fig. 5, the PS order increases
rapidly with L inside the PS phase (g = 0.74, 0.76, 0.78), re-
flecting large fluctuations and no stable order in small systems
even with the symmetry-breaking cylinder edges (see Supple-
mental Material [27]). The boundary induced PS order close
to the edges also first increases with L for values of g outside
the PS phase, thus causing a non-monotonic behavior which
is seen clearly for g = 0.82 and 0.84. The central plaquettes
where mp is defined are close to the edge for small L, and
only for larger L can these plaquettes reflect the behavior of a
disordered bulk. At g = 0.80, mp for L = 14 also falls below
the value for L = 12, indicating that indeed mp ! 0 when
L ! 1, as it should in the SL phase.

DQCP and unified phase diagram.—The originally pro-
posed DQCP scenario is generic, with the critical point typ-
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Figure 5. Squared AF order parameter vs inverse system size for
several g values. The corresponding PS order parameters are shown
in the inset. The curves with colors matching the m2

s symbols for g =
0.82 and 0.84 are second-order polynomials, while the black curve
fitted to the g = 0.82 data is / L�(1+⌘) with ⌘ = 0.20. Fitting
to the mp data is not meaningful, but the non-monotonic behavior
for g = 0.80-0.84 is explained by boundary PS order outside the PS
phase (Supplemental Material [27]) and mp ! 0 for L ! 1.

ically reachable by tuning a single parameter [10]. Large-
scale quantum Monte Carlo studies of several variants of J-
Q Hamiltonians [12] have indeed found direct transitions be-
tween the AF ground state and a four-fold degenerate colum-
nar dimerized state [37–48]. Similar results have been ob-
tained with related classical loop [49, 50] and dimer [51]
models. In most of these models, no clear signs of dis-
continuities were observed, though unusual scaling viola-
tions have prompted proposals of a weak first-order transition
[38, 45, 52] or other scenarios [42, 47]. One proposal is that
the DQCP is unreachable (e.g., existing only in space-time di-
mensionality slightly less than 3), described by a nonunitary
conformal field theory [53–58].

In some variants of the J-Q model, clearly first-order tran-
sitions were observed [5, 59, 60]. The “checker-board” J-Q
(CBJQ) model [5] (and a closely related loop model [61]) has
a Z2 breaking PS phase like that in the SS model. A spin-flop-
like transition with emergent O(4) symmetry of the combined
O(3) AF and scalar PS order parameters was found, with no
signs of a conventional coexistence state with tunneling bar-
riers up to the largest length scales studied. This unusual be-
havior indicates close proximity to an O(4) DQCP [5, 6].

Lee et al. recently considered a proxy of the excitation gap
with the IDMRG method, studying correlation lengths of op-
erators with the symmetries of the excited SS levels of interest
[6]. Following Ref. 25, they identified both crossing points
discussed here (Figs. 2 and 3), but these points were not ex-
trapolated to infinite size. It was nevertheless argued that the
singlet-triplet and singlet-quintuplet crossings will drift to a
common DQCP with increasing system size, in the SS model
as well as in the J1-J2 model. However, in a very recent work,
Shackleton et al. revisited the J1-J2 model and constructed a
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Figure 4. Singlet gaps vs inverse system size. Lines with zero in-
tercept have been fitted to the g = 0.78, 0.80, and 0.82 data. At
g = 0.78 the system is slightly inside the PS phase, and the linear
form should not apply asymptotically due to the gap (note that the
g = 0.76 data flatten out clearly). At g = 0.84 the system is in the
AF phase and the singlet represents the gapped amplitude mode.

We next study order parameters. We use the standard AF
magnetization, m

2
s = L

�4
P

ij �ijhSi · Sji, where i, j are
sites in the central L ⇥ L area of a 2L ⇥ L system and
�ij = ±1 is the staggered phase. To detect PS order we define
Qr ⌘ 1

2 (Pr + P�1
r ), with Pr a cyclic permutation operator

on the four spins of a plaquette at r. Given the boundary-
induced plaquette pattern (Fig. 1), we can detect the PS order
as the difference of hQri on two adjacent ’empty’ SS plaque-
ttes [36]. Thus, we define mp = hQR �QR0i, where R and
R0 are both close to the center of the cylinder (the landscape of
Qr values is shown in the Supplemental Material [27]). Both
order parameters are graphed versus 1/L in Fig. 5.

Second-order polynomial extrapolations of the AF order
parameter in Fig. 5 show that m

2
s vanishes for g ⇡ 0.82.

The polynomial form is strictly appropriate only inside the
AF phase, while at a critical point m

2
s / 1/L

1+⌘ should in-
stead apply asymptotically. The g = 0.82 data can indeed be
almost perfectly fitted to this power law with ⌘ ⇡ 0.20, thus
providing further evidence for the AF phase starting at the ex-
trapolated singlet-quintuplet point gc2 ⇡ 0.82, significantly
above the previous estimates.

As shown in the inset of Fig. 5, the PS order increases
rapidly with L inside the PS phase (g = 0.74, 0.76, 0.78), re-
flecting large fluctuations and no stable order in small systems
even with the symmetry-breaking cylinder edges (see Supple-
mental Material [27]). The boundary induced PS order close
to the edges also first increases with L for values of g outside
the PS phase, thus causing a non-monotonic behavior which
is seen clearly for g = 0.82 and 0.84. The central plaquettes
where mp is defined are close to the edge for small L, and
only for larger L can these plaquettes reflect the behavior of a
disordered bulk. At g = 0.80, mp for L = 14 also falls below
the value for L = 12, indicating that indeed mp ! 0 when
L ! 1, as it should in the SL phase.

DQCP and unified phase diagram.—The originally pro-
posed DQCP scenario is generic, with the critical point typ-

0.00

0.04

0.08

0.12

0.00 0.05 0.10 0.15

m
2 s

1/L

0.76
0.78
0.80
0.82
0.84

0.0

0.1

0.2

0.3

0.4

0.00 0.05 0.10 0.15

m
p

0.74
0.76
0.78
0.80
0.82
0.84

Figure 5. Squared AF order parameter vs inverse system size for
several g values. The corresponding PS order parameters are shown
in the inset. The curves with colors matching the m2

s symbols for g =
0.82 and 0.84 are second-order polynomials, while the black curve
fitted to the g = 0.82 data is / L�(1+⌘) with ⌘ = 0.20. Fitting
to the mp data is not meaningful, but the non-monotonic behavior
for g = 0.80-0.84 is explained by boundary PS order outside the PS
phase (Supplemental Material [27]) and mp ! 0 for L ! 1.

ically reachable by tuning a single parameter [10]. Large-
scale quantum Monte Carlo studies of several variants of J-
Q Hamiltonians [12] have indeed found direct transitions be-
tween the AF ground state and a four-fold degenerate colum-
nar dimerized state [37–48]. Similar results have been ob-
tained with related classical loop [49, 50] and dimer [51]
models. In most of these models, no clear signs of dis-
continuities were observed, though unusual scaling viola-
tions have prompted proposals of a weak first-order transition
[38, 45, 52] or other scenarios [42, 47]. One proposal is that
the DQCP is unreachable (e.g., existing only in space-time di-
mensionality slightly less than 3), described by a nonunitary
conformal field theory [53–58].

In some variants of the J-Q model, clearly first-order tran-
sitions were observed [5, 59, 60]. The “checker-board” J-Q
(CBJQ) model [5] (and a closely related loop model [61]) has
a Z2 breaking PS phase like that in the SS model. A spin-flop-
like transition with emergent O(4) symmetry of the combined
O(3) AF and scalar PS order parameters was found, with no
signs of a conventional coexistence state with tunneling bar-
riers up to the largest length scales studied. This unusual be-
havior indicates close proximity to an O(4) DQCP [5, 6].

Lee et al. recently considered a proxy of the excitation gap
with the IDMRG method, studying correlation lengths of op-
erators with the symmetries of the excited SS levels of interest
[6]. Following Ref. 25, they identified both crossing points
discussed here (Figs. 2 and 3), but these points were not ex-
trapolated to infinite size. It was nevertheless argued that the
singlet-triplet and singlet-quintuplet crossings will drift to a
common DQCP with increasing system size, in the SS model
as well as in the J1-J2 model. However, in a very recent work,
Shackleton et al. revisited the J1-J2 model and constructed a
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Figure 4. Singlet gaps vs inverse system size. Lines with zero in-
tercept have been fitted to the g = 0.78, 0.80, and 0.82 data. At
g = 0.78 the system is slightly inside the PS phase, and the linear
form should not apply asymptotically due to the gap (note that the
g = 0.76 data flatten out clearly). At g = 0.84 the system is in the
AF phase and the singlet represents the gapped amplitude mode.

We next study order parameters. We use the standard AF
magnetization, m

2
s = L

�4
P

ij �ijhSi · Sji, where i, j are
sites in the central L ⇥ L area of a 2L ⇥ L system and
�ij = ±1 is the staggered phase. To detect PS order we define
Qr ⌘ 1

2 (Pr + P�1
r ), with Pr a cyclic permutation operator

on the four spins of a plaquette at r. Given the boundary-
induced plaquette pattern (Fig. 1), we can detect the PS order
as the difference of hQri on two adjacent ’empty’ SS plaque-
ttes [36]. Thus, we define mp = hQR �QR0i, where R and
R0 are both close to the center of the cylinder (the landscape of
Qr values is shown in the Supplemental Material [27]). Both
order parameters are graphed versus 1/L in Fig. 5.

Second-order polynomial extrapolations of the AF order
parameter in Fig. 5 show that m

2
s vanishes for g ⇡ 0.82.

The polynomial form is strictly appropriate only inside the
AF phase, while at a critical point m

2
s / 1/L

1+⌘ should in-
stead apply asymptotically. The g = 0.82 data can indeed be
almost perfectly fitted to this power law with ⌘ ⇡ 0.20, thus
providing further evidence for the AF phase starting at the ex-
trapolated singlet-quintuplet point gc2 ⇡ 0.82, significantly
above the previous estimates.

As shown in the inset of Fig. 5, the PS order increases
rapidly with L inside the PS phase (g = 0.74, 0.76, 0.78), re-
flecting large fluctuations and no stable order in small systems
even with the symmetry-breaking cylinder edges (see Supple-
mental Material [27]). The boundary induced PS order close
to the edges also first increases with L for values of g outside
the PS phase, thus causing a non-monotonic behavior which
is seen clearly for g = 0.82 and 0.84. The central plaquettes
where mp is defined are close to the edge for small L, and
only for larger L can these plaquettes reflect the behavior of a
disordered bulk. At g = 0.80, mp for L = 14 also falls below
the value for L = 12, indicating that indeed mp ! 0 when
L ! 1, as it should in the SL phase.

DQCP and unified phase diagram.—The originally pro-
posed DQCP scenario is generic, with the critical point typ-
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ically reachable by tuning a single parameter [10]. Large-
scale quantum Monte Carlo studies of several variants of J-
Q Hamiltonians [12] have indeed found direct transitions be-
tween the AF ground state and a four-fold degenerate colum-
nar dimerized state [37–48]. Similar results have been ob-
tained with related classical loop [49, 50] and dimer [51]
models. In most of these models, no clear signs of dis-
continuities were observed, though unusual scaling viola-
tions have prompted proposals of a weak first-order transition
[38, 45, 52] or other scenarios [42, 47]. One proposal is that
the DQCP is unreachable (e.g., existing only in space-time di-
mensionality slightly less than 3), described by a nonunitary
conformal field theory [53–58].

In some variants of the J-Q model, clearly first-order tran-
sitions were observed [5, 59, 60]. The “checker-board” J-Q
(CBJQ) model [5] (and a closely related loop model [61]) has
a Z2 breaking PS phase like that in the SS model. A spin-flop-
like transition with emergent O(4) symmetry of the combined
O(3) AF and scalar PS order parameters was found, with no
signs of a conventional coexistence state with tunneling bar-
riers up to the largest length scales studied. This unusual be-
havior indicates close proximity to an O(4) DQCP [5, 6].

Lee et al. recently considered a proxy of the excitation gap
with the IDMRG method, studying correlation lengths of op-
erators with the symmetries of the excited SS levels of interest
[6]. Following Ref. 25, they identified both crossing points
discussed here (Figs. 2 and 3), but these points were not ex-
trapolated to infinite size. It was nevertheless argued that the
singlet-triplet and singlet-quintuplet crossings will drift to a
common DQCP with increasing system size, in the SS model
as well as in the J1-J2 model. However, in a very recent work,
Shackleton et al. revisited the J1-J2 model and constructed a
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form should not apply asymptotically due to the gap (note that the
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We next study order parameters. We use the standard AF
magnetization, m

2
s = L
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ij �ijhSi · Sji, where i, j are
sites in the central L ⇥ L area of a 2L ⇥ L system and
�ij = ±1 is the staggered phase. To detect PS order we define
Qr ⌘ 1

2 (Pr + P�1
r ), with Pr a cyclic permutation operator

on the four spins of a plaquette at r. Given the boundary-
induced plaquette pattern (Fig. 1), we can detect the PS order
as the difference of hQri on two adjacent ’empty’ SS plaque-
ttes [36]. Thus, we define mp = hQR �QR0i, where R and
R0 are both close to the center of the cylinder (the landscape of
Qr values is shown in the Supplemental Material [27]). Both
order parameters are graphed versus 1/L in Fig. 5.

Second-order polynomial extrapolations of the AF order
parameter in Fig. 5 show that m

2
s vanishes for g ⇡ 0.82.

The polynomial form is strictly appropriate only inside the
AF phase, while at a critical point m

2
s / 1/L

1+⌘ should in-
stead apply asymptotically. The g = 0.82 data can indeed be
almost perfectly fitted to this power law with ⌘ ⇡ 0.20, thus
providing further evidence for the AF phase starting at the ex-
trapolated singlet-quintuplet point gc2 ⇡ 0.82, significantly
above the previous estimates.

As shown in the inset of Fig. 5, the PS order increases
rapidly with L inside the PS phase (g = 0.74, 0.76, 0.78), re-
flecting large fluctuations and no stable order in small systems
even with the symmetry-breaking cylinder edges (see Supple-
mental Material [27]). The boundary induced PS order close
to the edges also first increases with L for values of g outside
the PS phase, thus causing a non-monotonic behavior which
is seen clearly for g = 0.82 and 0.84. The central plaquettes
where mp is defined are close to the edge for small L, and
only for larger L can these plaquettes reflect the behavior of a
disordered bulk. At g = 0.80, mp for L = 14 also falls below
the value for L = 12, indicating that indeed mp ! 0 when
L ! 1, as it should in the SL phase.

DQCP and unified phase diagram.—The originally pro-
posed DQCP scenario is generic, with the critical point typ-
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ically reachable by tuning a single parameter [10]. Large-
scale quantum Monte Carlo studies of several variants of J-
Q Hamiltonians [12] have indeed found direct transitions be-
tween the AF ground state and a four-fold degenerate colum-
nar dimerized state [37–48]. Similar results have been ob-
tained with related classical loop [49, 50] and dimer [51]
models. In most of these models, no clear signs of dis-
continuities were observed, though unusual scaling viola-
tions have prompted proposals of a weak first-order transition
[38, 45, 52] or other scenarios [42, 47]. One proposal is that
the DQCP is unreachable (e.g., existing only in space-time di-
mensionality slightly less than 3), described by a nonunitary
conformal field theory [53–58].

In some variants of the J-Q model, clearly first-order tran-
sitions were observed [5, 59, 60]. The “checker-board” J-Q
(CBJQ) model [5] (and a closely related loop model [61]) has
a Z2 breaking PS phase like that in the SS model. A spin-flop-
like transition with emergent O(4) symmetry of the combined
O(3) AF and scalar PS order parameters was found, with no
signs of a conventional coexistence state with tunneling bar-
riers up to the largest length scales studied. This unusual be-
havior indicates close proximity to an O(4) DQCP [5, 6].

Lee et al. recently considered a proxy of the excitation gap
with the IDMRG method, studying correlation lengths of op-
erators with the symmetries of the excited SS levels of interest
[6]. Following Ref. 25, they identified both crossing points
discussed here (Figs. 2 and 3), but these points were not ex-
trapolated to infinite size. It was nevertheless argued that the
singlet-triplet and singlet-quintuplet crossings will drift to a
common DQCP with increasing system size, in the SS model
as well as in the J1-J2 model. However, in a very recent work,
Shackleton et al. revisited the J1-J2 model and constructed a
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g = 0.78 the system is slightly inside the PS phase, and the linear
form should not apply asymptotically due to the gap (note that the
g = 0.76 data flatten out clearly). At g = 0.84 the system is in the
AF phase and the singlet represents the gapped amplitude mode.

We next study order parameters. We use the standard AF
magnetization, m

2
s = L

�4
P

ij �ijhSi · Sji, where i, j are
sites in the central L ⇥ L area of a 2L ⇥ L system and
�ij = ±1 is the staggered phase. To detect PS order we define
Qr ⌘ 1

2 (Pr + P�1
r ), with Pr a cyclic permutation operator

on the four spins of a plaquette at r. Given the boundary-
induced plaquette pattern (Fig. 1), we can detect the PS order
as the difference of hQri on two adjacent ’empty’ SS plaque-
ttes [36]. Thus, we define mp = hQR �QR0i, where R and
R0 are both close to the center of the cylinder (the landscape of
Qr values is shown in the Supplemental Material [27]). Both
order parameters are graphed versus 1/L in Fig. 5.

Second-order polynomial extrapolations of the AF order
parameter in Fig. 5 show that m

2
s vanishes for g ⇡ 0.82.

The polynomial form is strictly appropriate only inside the
AF phase, while at a critical point m

2
s / 1/L

1+⌘ should in-
stead apply asymptotically. The g = 0.82 data can indeed be
almost perfectly fitted to this power law with ⌘ ⇡ 0.20, thus
providing further evidence for the AF phase starting at the ex-
trapolated singlet-quintuplet point gc2 ⇡ 0.82, significantly
above the previous estimates.

As shown in the inset of Fig. 5, the PS order increases
rapidly with L inside the PS phase (g = 0.74, 0.76, 0.78), re-
flecting large fluctuations and no stable order in small systems
even with the symmetry-breaking cylinder edges (see Supple-
mental Material [27]). The boundary induced PS order close
to the edges also first increases with L for values of g outside
the PS phase, thus causing a non-monotonic behavior which
is seen clearly for g = 0.82 and 0.84. The central plaquettes
where mp is defined are close to the edge for small L, and
only for larger L can these plaquettes reflect the behavior of a
disordered bulk. At g = 0.80, mp for L = 14 also falls below
the value for L = 12, indicating that indeed mp ! 0 when
L ! 1, as it should in the SL phase.

DQCP and unified phase diagram.—The originally pro-
posed DQCP scenario is generic, with the critical point typ-
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ically reachable by tuning a single parameter [10]. Large-
scale quantum Monte Carlo studies of several variants of J-
Q Hamiltonians [12] have indeed found direct transitions be-
tween the AF ground state and a four-fold degenerate colum-
nar dimerized state [37–48]. Similar results have been ob-
tained with related classical loop [49, 50] and dimer [51]
models. In most of these models, no clear signs of dis-
continuities were observed, though unusual scaling viola-
tions have prompted proposals of a weak first-order transition
[38, 45, 52] or other scenarios [42, 47]. One proposal is that
the DQCP is unreachable (e.g., existing only in space-time di-
mensionality slightly less than 3), described by a nonunitary
conformal field theory [53–58].

In some variants of the J-Q model, clearly first-order tran-
sitions were observed [5, 59, 60]. The “checker-board” J-Q
(CBJQ) model [5] (and a closely related loop model [61]) has
a Z2 breaking PS phase like that in the SS model. A spin-flop-
like transition with emergent O(4) symmetry of the combined
O(3) AF and scalar PS order parameters was found, with no
signs of a conventional coexistence state with tunneling bar-
riers up to the largest length scales studied. This unusual be-
havior indicates close proximity to an O(4) DQCP [5, 6].

Lee et al. recently considered a proxy of the excitation gap
with the IDMRG method, studying correlation lengths of op-
erators with the symmetries of the excited SS levels of interest
[6]. Following Ref. 25, they identified both crossing points
discussed here (Figs. 2 and 3), but these points were not ex-
trapolated to infinite size. It was nevertheless argued that the
singlet-triplet and singlet-quintuplet crossings will drift to a
common DQCP with increasing system size, in the SS model
as well as in the J1-J2 model. However, in a very recent work,
Shackleton et al. revisited the J1-J2 model and constructed a
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form should not apply asymptotically due to the gap (note that the
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AF phase and the singlet represents the gapped amplitude mode.

We next study order parameters. We use the standard AF
magnetization, m

2
s = L
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P

ij �ijhSi · Sji, where i, j are
sites in the central L ⇥ L area of a 2L ⇥ L system and
�ij = ±1 is the staggered phase. To detect PS order we define
Qr ⌘ 1

2 (Pr + P�1
r ), with Pr a cyclic permutation operator

on the four spins of a plaquette at r. Given the boundary-
induced plaquette pattern (Fig. 1), we can detect the PS order
as the difference of hQri on two adjacent ’empty’ SS plaque-
ttes [36]. Thus, we define mp = hQR �QR0i, where R and
R0 are both close to the center of the cylinder (the landscape of
Qr values is shown in the Supplemental Material [27]). Both
order parameters are graphed versus 1/L in Fig. 5.

Second-order polynomial extrapolations of the AF order
parameter in Fig. 5 show that m

2
s vanishes for g ⇡ 0.82.

The polynomial form is strictly appropriate only inside the
AF phase, while at a critical point m

2
s / 1/L

1+⌘ should in-
stead apply asymptotically. The g = 0.82 data can indeed be
almost perfectly fitted to this power law with ⌘ ⇡ 0.20, thus
providing further evidence for the AF phase starting at the ex-
trapolated singlet-quintuplet point gc2 ⇡ 0.82, significantly
above the previous estimates.

As shown in the inset of Fig. 5, the PS order increases
rapidly with L inside the PS phase (g = 0.74, 0.76, 0.78), re-
flecting large fluctuations and no stable order in small systems
even with the symmetry-breaking cylinder edges (see Supple-
mental Material [27]). The boundary induced PS order close
to the edges also first increases with L for values of g outside
the PS phase, thus causing a non-monotonic behavior which
is seen clearly for g = 0.82 and 0.84. The central plaquettes
where mp is defined are close to the edge for small L, and
only for larger L can these plaquettes reflect the behavior of a
disordered bulk. At g = 0.80, mp for L = 14 also falls below
the value for L = 12, indicating that indeed mp ! 0 when
L ! 1, as it should in the SL phase.

DQCP and unified phase diagram.—The originally pro-
posed DQCP scenario is generic, with the critical point typ-
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0.82 and 0.84 are second-order polynomials, while the black curve
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ically reachable by tuning a single parameter [10]. Large-
scale quantum Monte Carlo studies of several variants of J-
Q Hamiltonians [12] have indeed found direct transitions be-
tween the AF ground state and a four-fold degenerate colum-
nar dimerized state [37–48]. Similar results have been ob-
tained with related classical loop [49, 50] and dimer [51]
models. In most of these models, no clear signs of dis-
continuities were observed, though unusual scaling viola-
tions have prompted proposals of a weak first-order transition
[38, 45, 52] or other scenarios [42, 47]. One proposal is that
the DQCP is unreachable (e.g., existing only in space-time di-
mensionality slightly less than 3), described by a nonunitary
conformal field theory [53–58].

In some variants of the J-Q model, clearly first-order tran-
sitions were observed [5, 59, 60]. The “checker-board” J-Q
(CBJQ) model [5] (and a closely related loop model [61]) has
a Z2 breaking PS phase like that in the SS model. A spin-flop-
like transition with emergent O(4) symmetry of the combined
O(3) AF and scalar PS order parameters was found, with no
signs of a conventional coexistence state with tunneling bar-
riers up to the largest length scales studied. This unusual be-
havior indicates close proximity to an O(4) DQCP [5, 6].

Lee et al. recently considered a proxy of the excitation gap
with the IDMRG method, studying correlation lengths of op-
erators with the symmetries of the excited SS levels of interest
[6]. Following Ref. 25, they identified both crossing points
discussed here (Figs. 2 and 3), but these points were not ex-
trapolated to infinite size. It was nevertheless argued that the
singlet-triplet and singlet-quintuplet crossings will drift to a
common DQCP with increasing system size, in the SS model
as well as in the J1-J2 model. However, in a very recent work,
Shackleton et al. revisited the J1-J2 model and constructed a



• Plaquette landscape at g=0.75 and g=0.80 for size L=6 and 10, where 
enhanced boundary plaquette order with increasing L is clearly visible

Plaquette order landscape in SS model
3

Figure S3. Landscape of plaquette singlet strengths in systems of size L = 6 (left) and L = 10 (right), for g = 0.75 (inside the PS phase) in
(a) and (b), and for g = 0.80 (in the SL phase) in (c) and (d). The colored squares correspond to the expectation value hQRi of the plaquette
operator defined in the main paper for the plaquettes at lattice coordinate R. The SS dimer couplings J 0 are indicated with the blue lines. In
addition to the color coding shown on the vertical bar, the actual numerical values of hQRi are also displayed inside each square.

2. Role of cylinder edges

As shown in Fig. 1 in the main paper, the PS ordering pat-
tern is unique on the cylindrical lattices used here. The cylin-
der edges act as a Z2 symmetry-breaking field, allowing us to
study the PS order parameter mp directly, instead of using the
squared order parameter in a system with unbroken symmetry.
This approach was discussed in detail in Ref. 36 in the con-
text of a different system, and it was argued that it is the best
way to study the order parameters of ’singletized’ phases with
methods that use symmetry-breaking boundary conditions.

Fig. S3 shows examples of the singlet pattern forming on
two different lattices sizes, L = 6 and L = 10, both inside
the PS phase at g = 0.75 and in the SL phase at g = 0.80.
In the PS phase, we can observe that the alternating pattern of
strong and weak empty plaquettes (those without the SS di-
agonal couplings J

0) is much stronger in the larger systems.
This order enhancement with increasing L in the PS phase
was already seen in the size dependent mp, defined as the
difference between central adjacent empty plaquettes, in the
inset of Fig. 5 in the main paper. The strengthening of the
PS order clearly reflects the diminishing quantum fluctuations
with increasing system size in the presence of the symmetry-
breaking edge field. Note that the edge order also strengthens
with increasing L.

Turning now to the results in the SL phase, Fig. S3(c) and
S3(d), here as well we observe how the edge order is signif-
icantly stronger in the larger system. The bulk order param-
eter, defined in the center of the system, is also stronger in
the larger system. However, as seen in the inset of Fig. 5
in the main paper, for the largest system size considered for
g = 0.80, L = 14, mp has turned downward. This non-
monotonic behavior outside the PS phase can naturally be ex-
plained as a competition between the always present (for any
g) symmetry breaking at the cylinder edge and the decay of
this ’artificial’ order in the central part of the system as L in-
creases. The initial increase with L for small systems is due
to the strengthening of the edge order with L even when the
system is in the SL or AF phase. The eventual down-turn of
the order parameter for larger systems is a sign of this edge
effect not extending to the bulk, i.e., that the system is not in
the PS phase.

It is difficult to imagine any realistic mechanism that would
cause mp to turn back up as L increases further after the peak
value has been reached and mp has begun to decrease with
L. Therefore, we regard the observation of a maximum in mp

for a given L as a definite indicator of the system not being
in the PS phase. Our results for g = 0.80-0.84 in Fig. 5 all
exemplify this behavior.

g=0.75

g=0.80



• For energies third order polynomial fits without linear term are employed, to 
ensure monatomic behavior. For order parameters, fits are polynomial without 
constraint

Convergence of eigen energies and order parameters
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• The two models (SS and J1-J2) have different symmetries (translation), both SL phases have 
gapless singlet and triplet excitations, and continuous transitions to neighboring AFM and 
VBS phases


• Turn on another relevant field operator of the same symmetry can tune the transition in the 
two-parameter plane and across the Deconfined Quantum Critical Point

Discussions and conclusions
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Figure 6. Unified phase diagram, where the DQCP separates a line
of first-order PS–AF transitions and an extended SL phase. The PS–
SL and SL–AF transition may both be continuous DQCP-like tran-
sitions. The dashed horizontal lines illustrate cuts through the phase
diagram when a single parameter g is tuned; corresponding the CBJQ
model (top line) and the SS model (bottom line).

quantum field theory of a possible gapless SL phase and a
DQCP separating it from the AF state [35].

A narrow SL in the SS model suggests proximity of this
phase to the DQCP discussed by Lee et al [6], which then
most likely should be the same DQCP as the one influenc-
ing the O(4) transition in the CBJQ model [5]. Moreover, it
has recently been argued that the DQCP is actually a multi-
critical point [62]; a second relevant scaling field with all the
symmetries of the Hamiltonian was detected in the conven-
tional critical J-Q model. The renormalization-group flow
therefore turns toward a first-order transition when a certain
interaction is turned on in such a way as to maintain a sign-
free path integral [59]. It is possible that the interaction with
the opposite sign could instead open up an SL phase. Taken
together, all these observations suggest the unified phase di-
agram schematically illustrated in Fig. 6. The two parame-
ters (g, h) correspond to two relevant symmetric fields, and in
models with just one tuning parameter, e.g., the CBJQ and SS
models, either the first-order line or the SL phase is traversed.

Summary and Discussion.—Our DMRG results can consis-
tently be explained by a previously not anticipated SL phase
between the known PS and AF phases of the SS model. Our
gap scaling results indicate a gapless SL with z = 1, and for
the SL–AF transition we have estimated the anomalous di-
mension ⌘ ⇡ 0.20 for the critical AF order parameter.

The PS–SL point gc1 ⇡ 0.79 is above the PS–AF point
gc ⇡ 0.765 obtained with tensor product states [14] (where
the system is infinite but the results may be affected by small
tensors) but is not at significant variance with the more recent
IDMRG (infinite-size DMRG, where only Ly is finite) calcu-
lation [6], where gc ⇡ 0.77 for L = 12 and an increase in gc

with L was observed (see Table 1 of Ref. 6). The tensor tech-
nique used in Ref. 14 has a bias to ordered phases, which may
force AF order into the fragile SL phase. In Ref. 6 the AF
order parameter was not studied, and its appearance only at
higher g (above those reported) may have been missed. While
these works did not consider any other phase intervening be-
tween the PS and AF phases, an early field theory of the SS
model within an 1/Si expansion (with Si = 1/2 being the

target spin value) contains phases not detected numerically to
date, including a gapped SL but no gapless SL [63].

Given our results and the existence of a gapless SL in the
closely related J1-J2 model [23, 25, 32–35], such SLs may be
ubiqutous between symmetry-breaking singlet and AF phases.
It was previously argued that the commonly studied Dirac SLs
should be unstable on bipartite lattices and lead to DQCPs
[6, 64], and the SL identified here may then fall outside this
framework [35]. In our general scenario, in multi-parameter
models the SL may be shrunk to a multi-critical DQCP fol-
lowed by a first-order direct PS–AF transition, which is an al-
ternative to the scenario of an unreachable, non-unitary DQCP
[53–58] (though in principle there could also be a triple point
instead of the DQCP in Fig. 6).

The DQCP as a point separating a line of first order tran-
sitions and an extended SL phase is a compelling scenario
also considering that the J-Q models can be continuously
deformed into conventional frustrated models. In the CPJQ
model, the Q terms could reside on the empty SS plaquettes.
By gradually turning off the Q terms and turning on the J

0

terms, the unusual first-order PS–AF transition with emergent
O(4) symmetry of the CBJQ model [5] should evolve as if the
upper dashed line in Fig. 6 moved down, and eventually the
SL phase of the SS model should appear. We plan to study
such combined models in the future.

An SL phase in the SS model may explain the absence of
any observed phase transition in SrCu2(BO3)2 at pressures 2.6
to 3 GPa [7, 8], between the regions where there is strong
evidence for PS and AF phases. Since SrCu2(BO3)2 samples
can be made with very low concentration of impurities, unlike
many other potential spin liquid materials, an SL phase would
be a very significant development.
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deliver results without any approximations other than statistical 
errors. The projector method is used for T = 0 spin-rotationally 
averaged quantities, while the SSE method is more efficient  
for Sz-basis observables when the temperature is scaled  
as T ∝ 1/L, as appropriate for finite-size scaling at a quantum 
phase transition with dynamic exponent z = 1 and also for a first-
order transition. Both QMC techniques are further described in 
the Methods.

To demonstrate a PSS ground state we first study a conventional 
dimer order parameter

∑ μ μ ŷ= − ⋅ + ̂ ̂ = ̂μ μD
L

xS r S r1 ( 1) ( ) ( ), , (2)r

r
2

where r = (rx, ry). In a VBS, ≠ =D D0, 0x y  for x-oriented bond 
order and x ↔ y for the y orientation. Because a singlet plaquette 
can be regarded as a resonance between horizontal and vertical 
bond pairs, a two-fold degenerate PSS (with higher singlet density 
on even or odd rows in in Fig. 1) should have ∣ ∣ = ∣ ∣ ≠D D 0x y .  
On a finite lattice the symmetry is not broken, and the system 
fluctuates between the two states. We use the projector method to 
generate the probability distribution P(Dx, Dy). While strictly not 
a quantum mechanical observable, this distribution nevertheless 
properly reflects the fluctuations and symmetries of the system. 
Results on either side of the AFM–PSS transition (the location of 
which will be determined below) are shown in Fig. 2. We see the 
two-fold symmetry of a PSS, instead of the four-fold symmetry of 
the columnar VBS9,35.

In the original J–Q model with Q terms on all plaquettes, 
the AFM–VBS transition appears to be continuous16 and, in 
accord with the DQCP theory, an emergent U(1) symmetry of 
its microscopically Z4 invariant VBS order parameter has been 
confirmed5,7,35. The proposed field theory description with spi-
nons coupled to an U(1) gauge field3,4 therefore seems viable. 
Unusual finite-size scaling behaviours not contained within the 
theory (but not contradicted by it) have also been observed10,15,16 
(and interpreted by some as a weak first-order transition7,8,11). An 
interesting proposal is that the O(3) symmetry of the AFM and 
the emergent U(1) symmetry of the VBS may combine into an 
SO(5) symmetry exactly at the critical point20,36. In a spin-planar 
J–Q model, it has instead been demonstrated that the U(1) AFM 
order parameter and the emergent U(1) VBS symmetry combine 
into a emergent O(4) symmetry26. In yet another example, it was 
proposed that a system with O(3) AFM order and Z2 Kekule VBS 
state exhibits a DQCP with emergent SO(4) symmetry27. The 
O(3) and Z2 symmetries apply also to the CBJQ model, and we 
therefore pay attention to a potential O(4) or SO(4) symmetry 
(and we cannot distinguish between these, as we only test for the 
rotational symmetry).

Finite-size scaling
To analyse the AFM–PSS transition we perform SSE calculations 
at T = 1/L and use order parameters defined solely with the Sz spin 
components:

∑ ∑ϕ θ= = Πm
L

S m
L

r r q q1 ( ) ( ), 2 ( ) ( ) (3)z
z

p
z

r q
2 2

where z and p mark the AFM and PSS order parameters, respec-
tively. In mz, r runs over all L2 lattice sites and ϕ(r) = ±1 is the  
staggered AFM sign. In mp, we have defined an operator

Π ŷ ŷ= + ̂ + + ̂+S S x S S xq q q q q( ) ( ) ( ) ( ) ( ) (4)z z z z z

for detecting plaquette modulation, and the index q runs over the 
lower-left corners of the Q plaquettes in Fig. 1. The signs θ(q) = ±1 
correspond to even or odd plaquette rows.

We will primarily analyse the Binder cumulants
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shown in Fig. 3a, where the coefficients are chosen such that, for 
L → ∞, Uz → 1, Up → 0 in the AFM phase while Uz → 0, Up → 1 in 
the PSS. If there is a single transition, we can use the crossing point 
at which Uz(g, L) = Up(g, L) to define a finite-size transition point. 
We also study the more commonly used crossing points of curves 
for two different system sizes, L/2 and L, locating the g value where 
Uz(g, L/2) = Uz(g, L) or Up(g, L/2) = Up(g, L). The three definitions 
should flow to the same gc when L → ∞.

From the slopes of the cumulants we can extract the correlation-
length exponents νz and νp (refs. 16,37):
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U g L g
U g L g
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zp

zp

zp g g L( )c

where gc(L) is the relevant (L/2, L) cross point. The derivatives can 
be evaluated directly in the QMC simulations.

The analysis is presented and explained in Fig. 3. We find 
gc = 0.2175 ± 0.0001 from the cross point estimators in Fig. 3b. Most 
notably, in Fig. 3c the order parameters at their respective Binder 
crossing points do not vanish as L → ∞. This coexistence of AFM 
and PSS order is a conventional indicator of a first-order transition. 
The exponents 1/νz and 1/νp provide further useful information: at 
a classical first-order transition, 1/ν → d in d dimensions, and in 
a 2 + 1-dimensional quantum system we might expect 1/νz,p → 3. 

J

a b

QJ′ J

Fig. 1 | Quantum spin models discussed in this work. a, In the SS model, 
nearest-neighbour Heisenberg interactions J compete with next-nearest-
neighbour couplings (diagonal lines). b, In the CBJQ model, the J′ terms 
are replaced by the four-spin Q terms in equation (1).

g = 0.20
PSS

g = 0.24
AFM

Fig. 2 | Demonstration of a two-fold degenerate PSS state.  
The distribution P(Dx, Dy) in the ground state of the CBJQ model is  
shown at g!=!0.20 (PSS phase) and g!=!0.24 (AFM phase). The results  
were obtained in projector QMC simulations on L!=!96 lattices.
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• In low-T specific heat measurement, there is absence of finite temperature 
Ising type phase transition at pressures 2.6 to 3 Gpa, which is right between 
PS and AFM phases, supporting the scenario of a SL

Specific heat measurement of SCBO

2

Figure 1. Phases of the SS model and SrCu2(BO3)2. (a) Schematic T = 0 phase diagram of the SS model [10, 17]. (b) Experimental (P, T )
phase diagram of SrCu2(BO3)2 (crystal structure in the inset) revealed by high pressure heat capacity measurements. Examples of C(T )/T
curves are given in (c-f). The green open symbols in (b) mark the location Th of the hump in C/T for different samples (indicted by different
symbols). The purple curve shows Th for the 20-spin SS model with P -linear couplings close to those of Ref. [11]; J 0(P ) = [75�8.3P/GPa]
K and J(P ) = [46.7 � 3.7P/GPa] K. For P ⇡ 1.7 � 2.4 GPa a second peak at lower T appears, exemplified in (d), which indicates the
transition into the PS phase. Upon further compression, the system first enter a regime where the experimental setups (Methods) cannot reach
sufficiently low T to observe the second peak. The peak is again detectable around 3 GPa and becomes more prominent while moving to higher
T with increasing P . This behavior, shown in (e,f), suggests [26] a quasi-2D AF system ordering at T > 0 due to weak inter-layer couplings.
The phase boundaries extracted from the second peak are indicated by half-filled red squares and diamonds (PS phase) and blue filled squares
and half-filled circles (AF phase). The low-T data in (c,d) are fitted (black curves) to the form C/T = a0 + a1T

2 + (a2/T
3)e��/T [25],

giving gaps � displayed in Fig. 2(a). In (e,f) fits are shown (red curves) without gap term; C/T = a0 + a1T
2.

pressures investigated, we observe a broad maximum that we
will refer to as the hump. Starting at P ⇡ 1.7 GPa, a smaller
peak emerges at lower T and prevails up to 2.4 GPa. We will
argue that this peak signals the PS phase transition. Upon
further increasing P , the small peak is no longer detected at

temperatures accesible in the experiment. A different, broader
hump appears between 3 and 4 GPa, below which there is a
peak at T ⇡ 2 � 3.5 K that we interpret as an AF transition.
AF order was previously detected only at P > 4 GPa at T as
high as ⇡ 120 K [11]. This high-T phase is different from the
new low-T AF phase—see Supplemental Information.

The C/T hump is known from previous studies at ambi-
ent pressure [25], where it is the result of the spins forming
the correlations that eventually lead to the dimer singlets as
T ! 0. As shown in Fig. 1(b), the hump temperature Th(P )
exhibits a minimum at P ⇡ 2.5 GPa. We have computed
C(T ) of the SS model by exact diagonalization (ED) of the
Hamiltonian on a 20-site lattice (Methods and Supplemental
Information) and extracted Th(↵). As shown in Fig. 1(b), we
achieve a remarkably good match with the experiments when
converting ↵ to P by using P -linear J(P ) and J

0(P ) [11].

In the 2D Heisenberg model the hump appears at T ⇡ J/2
[26] where significant short-range AF correlations start to
build up. In general, the hump indicates a temperature scale
where correlations set in that remove significant entropy from
the system. The Th(P ) minimum can be regarded as the point
of highest frustration, with the energy scale being lowered
due to the competing effects of the two couplings (see also
Refs. [27, 28]). The peak that we associate with PS ordering
appears in this pressure region, suggesting singlet formation
driven by strong frustration.
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phenomena15–17, our interest in the Shastry–Sutherland model lies 
first in the presence of two first-order QPTs, from the dimer phase to 
a plaquette phase at J/JD = 0.675(2) and thence to an ordered Néel anti-
ferromagnet at J/JD = 0.765(15)14, and second in the fact that applying a 
hydrostatic pressure to SrCu2(BO3)2 acts to control J/JD, revealing both 
transitions at respective pressures of approximately 19 kbar (ref. 18)  
and 27 kbar (ref. 19).

To investigate the possibility of a critical point in SrCu2(BO3)2, we 
perform high-precision measurements of the specific heat using 
an a.c. calorimetry technique29. Large single crystals of SrCu2(BO3)2 
were grown by a floating-zone method (Methods). Samples of masses 
up to 36 mg were cut, patterned with metallic strips for calorimetry 
and mounted in a clamp cell allowing hydrostatic pressures up to 
26.5 kbar and in applied magnetic fields up to 9 T. Details of our a.c. 
measurement procedures are provided in Methods and Extended Data  
Fig. 1.

Results: zero field
Starting at zero magnetic field, the pressure-induced evolution of 
the specific heat, shown as C(T)/T, is illustrated in Fig. 1b. As quan-
tified in Fig. 2a, C(T)/T at low pressures shows an exponential rise 
to a broad maximum at a temperature, Tmax, that tracks the gap to 
the triplon or bound-triplon excitations of the dimer phase17. With 
increasing P, this peak moves gradually lower and becomes pro-
portionately narrower, but between 18 and 20  kbar it becomes 
extremely tall and narrow (Figs. 1b, 2a), bearing all the character-
istics of a critical point. After reaching a lowest measured value of 
3.4 K at P = 20 kbar, Tmax rises with increasing pressure and the peak 
broadens again (Fig. 2b), indicating that the singular behaviour has 
terminated. A second small peak appears around 2 K for P ≥ 18 kbar 
(Figs. 1b, 2a, b) and persists to our upper pressure limit. We expect that 
this feature marks the thermal transition out of the plaquette phase 
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Fig. 1 | Specific heat of water and of SrCu2(BO3)2, shown together with 
calculated critical properties of the Shastry–Sutherland model. a, Specific 
heat of water, C(P, T), shown as a function of pressure and temperature. The 
black line marks the first-order phase boundary separating liquid (lower left) 
from vapour (upper left) and the black star marks the critical point.  
b, Experimental data for the specific heat, C(P, T)/T, of SrCu2(BO3)2. Below 
18 kbar is the dimer product phase and above 20 kbar is the plaquette phase. 
The two lines of maxima meet at the critical point at approximately 19 kbar and 
3.3 K. The inset shows the orthogonal-dimer geometry of the Shastry–
Sutherland model, which is realized by the Cu2+ ions (S = 1/2) in SrCu2(BO3)2.  
c, Specific heat obtained by iPEPS calculations with D = 20 performed for the 
Shastry–Sutherland model with different values of the coupling ratio, J/JD, 

which in SrCu2(BO3)2 was shown to be an approximately linear function of the 
applied pressure18. d, Correlation length, ξ, obtained by iPEPS with D = 20 and 
expressed in units of the lattice constant, a. ξ becomes large only at the 
finite-temperature critical point; the dashed black line shows the locus of 
maxima of ξ( J/JD) at each fixed temperature, and terminates when ξ/a < 1. We 
note that the colour scales in c and d are truncated such that they do not include 
the peak values of C/T and ξ. e, Dimer spin–spin correlation function, #Si · Sj$, 
showing a discontinuity with J/JD at low temperatures but continuous 
behaviour throughout the supercritical regime. The dashed black line, the 
equivalent of the critical isochore in water, shows the locus of points where this 
order parameter is constant at its critical-point value, #Si · Sj$ = −0.372(30).
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