Quantum criticality and spin liquid phase in the Shastry-Sutherland model

Workshop II: Tensor Network States and Applications, IPAM, UCLA, April. 19, 2021

Ling Wang, Zhejiang University

Collaborators: Jianwei Yang, CSRC Anders Sandvik, BU & IOP

arXiv:2104.08887

Exact ground state of Shastry-Sutherland model

- Shastry-Sutherland proved that such defined model has an exact dimer singlet (DS) product ground state for $g = J/J' \le 0.5$ at S=1/2
- of the type given by Anderson

$$H = J \sum_{\langle i,j \rangle} \vec{S}_i \cdot \vec{S}_j + J' \sum_{\langle \langle l,m \rangle \rangle} \vec{S}_l \cdot \vec{S}_m$$

Shastry and Sutherland, Physica 108B, 1069 (1981)

• At that time, they call it Quantum Spin Liquid (QSL) phase, because its form is

PHYSICAL REVIEW B 87, 115144 (2013)

ensor network study of the Shastry-Sutherland model in zero magnetic field

Philippe Corboz¹ and Frédéric Mila²

¹Theoretische Physik, ETH Zürich, CH-8093 Zürich, Switzerland

orie des phénomènes physiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland

Received 13 December 2012; revised manuscript received 27 February 2013; published 27 March 2013)

 $\alpha = J'/J$ $\alpha_{c1} = 0.677(2)$ $\alpha_{c2} = 0.86(1)$

- phase
- and finds two first order phase transitions

agram for SS model

RL 2000) discovered the plaquette M phases

Using ED, Lauchili, Wessel and Sigrist (PRB 2002) found two-fold degeneracy of PS

• Using iPEPS, Corboz and Mila (PRB 2013) improves the accuracy of phase boundary

• Alsing iDMRG, Lee et al (PRX 2019), claim a Deconfined Quantum Criticality Point

Ind SrCu₂(BO₃)₂

Quantum Phases of SrCu₂(BO₃)₂ from High-Pressure Thermodynamics

hli⁷, C. Panagopoulos^{8,9}, S. S. Saxena⁸, . Hamel¹⁰, R. A. Sadykov^{11,12}, V. Pomjakushin², mjakushina¹⁵, M. Stingaciu¹⁵, K. Conder¹⁵

and Antiferromagnetic phases

Jing Guo[®],¹ Guangyu Sun[®],^{1,2} Bowen Zhao[®],³ Ling Wang[®],^{4,5} Wenshan Hong,^{1,2} Vladimir A. Sidorov,⁶ Nvsen M Qi Wu,¹ Shiliang Li,^{1,2,7} Zi Yang Meng^(D),^{1,8,7,*} Anders W. Sandvik^(D),^{3,1,†} and Liling Sun^(D),^{1,2,7,‡}

• Turn on pressure play the role of increasing g=J/J', produces plaquette singlet

(**k**

Rest of the talk

- Excited state critical level crossings in one and two dimensions to detect quantum phase transitions
- Targeting bulk excited eigenstates in finite size DMRG algorithm for quasi-two dimensional cylinder
- Critical level crossing analysis for the Shastry-Sutherland model, existence of a narrow SL phase straddles between PS and AFM states
- Other evidence of the SL phase, order parameters and gap scalings
- Discussions and conclusions

Critical level crossings in one dimension

Field theory predicts a drift of $g_c(L) = g_c(\infty) + aL^{-2}$

1/L

Critical level crossings in two dimension

Suwa, Sen and Sandvik, PRB 94, 144416 (2010)

0 **AFM VBS/QSL** g

Targeting excited states with finite size DMRG

- $H_i = H \sum_{j=1}^{i} e_j |\psi_j\rangle \langle \psi_j | \quad H |\psi_j\rangle = e_j |\psi_j\rangle$
- $H_i = \sum_{j=1}^N e_j |\psi_j\rangle \langle \psi_j| \sum_{j=1}^i e_j |\psi_j\rangle \langle \psi_j|$

- Wang and Sandvik, PRL 121, 107202 (2018)
 - Schollwock, Ann. Phys. 326, 96 (2011)
- DMRG/MPS is very successful in targeting the ground state
- Lowest excited state can be targeted "like a ground state" for the Hamiltonian H_i where the pre-calculated ground state space is projected out

Critical level crossings in square lattice J1-J2 model

g/**α**

0.52

0.46

Anderson Tower States in AFM

Yang et al. New J. Phys. 14 115027 (2012)

Critical level crossings in square lattice J1-J2 model

Ferrari and Becca, PRB 102, 014417 (2020) Poilblanc et al, SciPost Phys. 7, 041 (2019)

0

Critical level crossings in SS model

Yang, Sandvik and Wang, arXiv:2104.08887

- Open boundary serves as pinning field and breaksguzzriplet symmetry of the Hamiltomin, the ground state is enique in PS phase
- In addition to singlet-triplet and singlet-quintuplet level crossings, there is singlet gap minimum, signaling vanishing domain wall energy (the end of PS phase)
- The drifting of critical value follows perfectly a 1/L² correction. The spin liquid region, although small, is unlikely to shrink to zero

Singlet and triplet gaps close to the SL phase

 Singlet gap and triplet gap within the putative SL phase are consistent with 1/L scaling, system sizes are too small to check possibility of a slightly higher z

Plaquette order landscape in SS model

• Plaquette landscape at g=0.75 and g=0.80 for size L=6 and 10, where enhanced boundary plaquette order with increasing L is clearly visible

					_																		
	(b)	0.653 0.25 0.213 0.03	7 0.491 84 0.222	0.237 2 0.082	0.454 0.231	0.231 0.106	0.437 0.234	0.230 0.118	0.430 0.235	0.230 0.122	0.430 0.235	0.2 30 0.118	0.437 0.234	0.2 31 0.106	0.454 0.231	0.237	0.491	0.25 2 0.03	7 0.65 4 0.21	3			0.70
		0.653 0.25	67 0.491	0.236	0.454	0.231	0.437	0.229	0.430	0.229	0.430	0.229	0.437	0.231	0.454	0.236	5 0.491	0.25	7 0.65	3			0 65
		0.213 0.03	34 0.222	2 0.082	0.231	0.106	0.234	0.118	0.234	0.122	0.234	0.118	0.234	0.106	0.231	0.082	2 0.222	2 0.03	4 0.213	3			0.05
		0.653 0.25	67 0.491	0.237	0.454	0.231	0.437	0.229	0.430	0.229	0.430	0.229	0.437	0.231	0.454	0.237	0.491	0.25	7 0.65	3			0.60
		0.213 0.03	84 0.222	2 0.082	0.231	0.107	0.233	0.118	0.234	0.122	0.234	0.118	0.233	0.107	0.231	0.082	0.222	2 0.03	4 0.213	3			0.55
		0.653 0.25	0.491	0.237	0.454	0.231	0.437	0.230	0.430	0.229	0.430	0.230	0.437	0.231	0.454	0.237	0.491	0.25	7 0.65	3		_	0.50
		<mark>0.213</mark> 0.03	84 0.222	0.083	0.231	0.107	0.233	0.119	0.234	0.122	0.234	0.119	0.233	0.107	0.231	0.083	8 0.222	2 0.03	4 0.213	3			
7		0.653 0.25	0.491	0.237	0.454	0.231	0.437	0.230	0.429	0.230	0.429	0.230	0.437	0.231	0.454	0.237	0.491	0.25	7 0.65	3		_	0.45
		0.212 0.03	84 0.222	2 0.083	0.231	0.107	0.233	0.119	0.234	0.123	0.234	0.119	0.233	0.107	0.231	0.083	0.222	2 0.03	4 0.213	3			0.40
		0.653 0.25	67 <mark>0.491</mark>	0,237	0.454	0,231	0.437	0,230	0.430	0,230	0.430	0,230	0.437	0,231	0.454	0,237	0.491	0.25	7 0.65	3			0.35
	(A)	0.591 0.25	0.397	0.239	0.339	0.235	0.312	0.234	0.301	0.234	0.301	0.234	0.312	0.235	0.339	0.239	0.397	0.25	0.59	1			0.00
	(u)	0.237 0.09	0.228	3 0.176	0.232	0.214	0.233	0.232	0.234	0.237	0.234	0.232	0.233	0.214	0.232	0.176	5 0. 2 28	3 0.09	8 0.23	7		-	0.30
		0.591 0.25	0.397	0.238	0.340	0.234	0.313	0.233	0.301	0.233	0.301	0.233	0.313	0.234	0.340	0.238	0.397	0.25	0 0.59	1		_	0.25
		0.237 0.09	08 0.228	3 0.176	0.232	0.214	0.233	0.232	0.233	0.237	0.233	0.232	0.233	0.214	0.232	0.176	5 0. 2 28	0.09	8 0.23	7			0 20
		0.591 0.25	0.397	0.238	0.339	0.235	0.312	0.234	0.301	0.233	0.301	0.234	0.312	0.235	0.339	0.238	0.397	0.25	0 0.59	1		-	0.20
		0.237 0.09	08 0.228	3 0.176	0.231	0.214	0.233	0.232	0.233	0.237	0.233	0.232	0.233	0.214	0.231	0.176	5 0. 2 28	3 0.09	9 0.23	7		-	0.15
		0.592 0.25	0.397	0.238	0.339	0.235	0.312	0.234	0.301	0.234	0.301	0.234	0.312	0.235	0.339	0.238	0.397	0.25	0 0.59	1		_	0.10
		0.2 <mark>37</mark> 0.09	9 <mark>0.228</mark>	3 0.176	0.231	0.214	0.233	0.232	0.233	0.238	0.233	0.232	0.233	0.214	0.231	0.176	5 0. 2 28	3 0.09	9 0.23	7			
		0.592 0.25	0.397	0.239	0.339	0.235	0.312	0.234	0.301	0.234	0.301	0.234	0.312	0.235	0.339	0.239	0.397	0.25	0 0.592	2		-	0.05
		0.237 0.09	09 0.227	0.176	0.231	0.214	0.233	0.232	0.233	0.238	0.233	0.232	0.233	0.214	0.231	0.176	6 0.227	0.09	9 0.23	7			
		0.591 0.25	0.397	0,239	0.339	0,235	0.312	0 234	0.301	0,234	0.301	0,234	0.312	0,235	0.339	0,239	0.397	0.25	0 0.59	1		\checkmark	

• For energies third order polynomial fits without linear term are employed, to ensure monatomic behavior. For order parameters, fits are polynomial without 0.0492 constraint 0.10 ΄ ∫^{(ω)α} ∠ Ε 0.0490 (3) 2^S€ 0.0488 ⊦ 0.08 (a)

-128.6 2×10^{-5} 1×10^{-5} 5×10⁻⁶ 1×10^{-5} 0×10⁰ 0×10^{0} **Convergence of eigen energies and order parameters**

- The two models (SS and J1-J2) have different symmetries (translation), both SL phases have gapless singlet and triplet excitations, and continuous transitions to neighboring AFM and VBS phases
- Turn on another relevant field operator of the same symmetry can tune the transition in the $p_y \neq 0$ two-parameter plane and across the Deconfined Quantum Critical Point

Specific heat measurement of SCBO

nt, there is absence of finite temperature sures 2.6 to 3 Gpa, which is right between he scenario of a SL