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Tensor network and spacetime path integral

• Most general quantum many-body systems well defined and local

can be described by tensor network on a spacetime lattice.

Zpath integral =
∑
i ,j ,k,...

TabijTdejk = TrTTTT ...

= TrT (1)T (1)...
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• Tensor network renormalization:

Tabcd → T̃
(1)
ab,cd ,ef ,gh

T̃
(1)
ab,cd ,ef ,gh → T

(1)
abcd

T
(1)
abcd = Ua′b′

a Uc ′d ′

b Ue′f ′

c Ug ′h′

d T̃
(1)
a′b′,c ′d ′,e′f ′,g ′h′

• Fixed-point tensor

T fixed ∝ lim
n→∞

T (n)

We will concentrate on fixed-point tensors.
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A general tensor network on spacetime complex
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• Degrees of freedom on vertices v , edges e01, faces v012.
Tensor on vertices wv , edges, dv0,v1

e01
, and tetrahedrons C

Z2+1D =
∑

v0,··· ;e01,··· ;φ012,···

∏
vertex

wv0︸︷︷︸
>0

∏
edge

dv0v1
e01︸︷︷︸
>0

×

∏
tetra

[C e01e02e03e12e13e23;φ012φ023

v0v1v2v3;φ013φ123︸ ︷︷ ︸
rank-14 complex tensor

]s0123

s0123 = 1, ∗ (for orientations of 〈0123〉)
0

3

2

4 11
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• Re-triangulation invariance
→ the fixed-point tensor∑

φ123

C e01e02e03e12e13e23;φ012φ023

v0v1v2v3;φ013φ123
C e12e13e14e23e24e34;φ123φ134

v1v2v3v4;φ124φ234

=
∑
e04

dv0v4
e04

∑
φ014φ024φ034

C e01e02e04e12e14e24;φ012φ024

v0v1v2v4;φ014φ124
C ∗e01e03e04e13e14e34;φ013φ034

v0v1v3v4;φ014φ134

C e02e03e04e23e24e34;φ023φ034

v0v2v3v4;φ024φ234
.
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Re-triangulation invariant = exactly soluble

→ renormalization group (RG) fixed point
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• Motivated by
Turaev-Viro state sum:

C e02e03e04e23e24e34;φ023φ034

v0v2v3v4;φ024φ234
=

∑
e01e12e13e14,v1

wv1d
v0v1
e01

dv1v2
e12

dv1v3
e13

dv1v4
e14∑

φ012φ013φ014φ123φ124φ134

C e01e02e03e12e13e23;φ012φ023

v0v1v2v3;φ013φ123
C ∗e01e02e04e12e14e24;φ012φ024

v0v1v2v4;φ014φ124

C e01e03e04e13e14e34;φ013φ034

v0v1v3v4;φ014φ134
C e12e13e14e23e24e34;φ123φ134

v1v2v3v4;φ124φ234

• The 2 + 1D fixed-point tensors (the finite-dimension solution of
above non-linear algebraic equations) → fusion categories.
• The n + 1D fixed-point tensors → fusion n − 1-categories.
• They classify n + 1D topo. orders with gapped boundary

Kong Wen, arXiv:1405.5858
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Exactly soluble models from re-triangulation

invariant (RG-fixed-point) tensor network

.

• With only edge variables eij = gij ∈ G and C = 0, 1
→ lattice gauge theory

• With only edge variables eij = gij ∈ G and C = 0, e iθ

→ Dijkgraaf-Witten gauge theory Dijkgraaf Witten, CMP, 129 393 (90)

• With only generic edge and face variables eij , φijk ,
as well as non-trivial tensors d ,C
→ String-net models. Levin Wen, cond-mat/0404617

• With only vertex variable vi = gi ∈ G and C = e iθ

→ exactly soluble models realizing symmetry-protected
topological (SPT) orders

Chen Gu Liu Wen, arXiv:1106.4772
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Group cohomology theory of SPT states

• With only vertex variable, the tensor C in 2 + 1D becomes
C e01e02e03e12e13e23;φ012φ023

v0v1v2v3;φ013φ123
→ Cg0g1g2g3 , where gi ∈ G .

• The linear algebraic equations become (with wv = dv0v1
e01

= 1)

Cg1g2g3g4Cg0g1g3g4Cg0g1g2g3 = Cg0g2g3g4Cg0g1g2g4

which has no summation and becomes a linear equation after
taking log. So it is easy to solve.

• if Cg0g1g2g3 is a solution, then the following

C̃g0g1g2g3 = Cg0g1g2g3

Bg0g1g2Bg0g2g3

Bg0g1g3Bg1g2g3

is also a solution, is said to be equivalent to Cg0g1g2g3 .

• This leads to group cohomology theory and the solution is the
group cocycle → Group cohomology theory of SPT orders
(which are classified by equivalent classes of group cocycles).

Chen Gu Liu Wen, arXiv:1106.4772
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Infinite dimensional tensor network from

continuous group

• For continuous group such as G = U(1), SU(2), we should not
assume the solutions (the fixed-point tensors) Cg0g1g2g3 to be
continuous function of gi ’s.

- We may assume Cg0g1g2g3 to be measurable functions
(the limits of continuous function and can do path integral)

Chen Gu Liu Wen, arXiv:1106.4772

- We may assume Cg0g1g2g3 to be patch-wise continuous function

• The above two very different setups give rise to the same set of
equivalent classes (the same cohomology group Hn+1

(
G ;U(1)

)
)

How to write down patch-wise continuous 3-cocycles Cg0g1g2g3 for
gi ∈ U(1) → 2 + 1D U(1) SPT states.
Using cochain-cocycle theory in algebraic topology
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Cochain-cocycle theory

• 0-cochain gi is a field living on vertices i : gi : {i} → G ,
where G is the value of 1-cochain.

• 1-cochain aij is a field living on edges 〈ij〉: aij : {〈ij〉} → G .

• Derivative d : From an 0-cochain gi , we can construct a 1-cochain:
aij = gi − gj or a = dg .
From an 1-cochain aij , we can construct a 2-cochain (living on
faces 〈ijk〉): bijk = aij − aik + ajk or b = da.

• Cup product ^: From a m-cochain p and a a n-cochain q, we
can construct a m + n-cochain s: si0,...,im+n = pi0,...,imqim,...,im+n ,
which is written as s = p ^ q or s = pq 6= qp.

For example ci0i1i2i3 = ai0i1bi1i2i3 , c = a ^ b = ab.

• Integration:
∫
M2+1 c =

∑
〈i0i1i2i3〉±ci0i1i2i3 ,

where ± depends on the orientations of 〈i0i1i2i3〉.
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A 2+1D U(1) rotor model via spacetime path

integral (ie tensor network)
DeMarco Wen, arXiv:2102.13057
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• On each vertex of spacetime complex, we have an “angle”
gi ∈ (−1

2
, 1

2
], gi ∼ gi + 1 → a rotor model.

Z =
∑
{gi}

∏
〈ijkl〉

(Cijkl)
sijkl = e i2πk

∑
〈ijkl〉 sgnijklcijkl

=

∫
[
∏
i

dgi ]e
i2πk

∫
M2+1 c , Cijkl = e i2πk cijkl .

c = dg dbdge, c0123 = (g0 − g1)(bg1 − g2e − bg1 − g3e+ bg2 − g3e)

where bxe = nearest integer of x . c is a 3-cocycle.

• The tensor Cijkl has a Z-gauge invariance: gi → gi + ni , ni ∈ Z
and a global U(1) symmetry (invariance): gi → gi + h.

• Exactly soluble on closed spacetime e i2πk
∫
M2+1 c = 1 if ∂M2+1 = ∅.
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Why the path integral with k 6= 0 describes a

gapped non-trivial U(1) SPT state?

• On spacetime with boundary ∂M2+1 = B :

Z =

∫
[
∏
i

dgi ]e
i2πk

∫
M2+1 dg dbdge =

∫
[
∏
i

dgi ]e
i2πk

∫
B g dbdge

where we have used dg dbdge = d(g dbdge). The path integral
describes an low energy effective boundary theory. But the
boundary effective theory (with action-amplitude e i2πk

∫
B g dbdge ) is

not U(1) invariant under gi → gi + h if ∂B 6= ∅.
- The effective 1 + 1D theory has U(1) symm. if space has no

boundary, but break the U(1) symm. if the space has boundary.

- Add an 1 + 1D term e− i2πk
∫
B d(gbdge) to fix the U(1) symmetry:

Z̃ =

∫
[
∏
i

dgi ]e
i2πk

∫
B g dbdge−d(gbdge) =

∫
[
∏
i

dgi ]e
− i2πk

∫
B dgbdge

But e− i2πk
∫
B d(gbdge) is not Z-gauge invariant (when ∂B 6= ∅).
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The ground state wavefunction

• If we view the spacetime boundary B = ∂M2+1 as the space at a
time slice, then the boundary term e i2πk

∫
B g dbdge = Φ({gi})

actually give rise to a ground state wave function.

• Consider ground state wavefunction Φ({gi}; θx , θy ) on a torus, with
U(1) twisted boundary condition gx ,y = gx+Lx ,y + θx = gx ,y+Ly + θy

• The ground state wavefunction Φ({gi}; θx , θy ) define a complex
line-bundle over (θx , θy )-space (a torus). The Chern number of the
line-bundle (the Berry phase of the ground states) is 2k → the Hall
conductance is σxy = 2k e2

h
DeMarco Wen, arXiv:2102.13057

• The exactly soluble path integral

Z =

∫
[
∏
i

dgi ]e
i2πk

∫
M2+1 dg dbdge

realizes a U(1)-SPT state with Hall conductance σxy = 2k e2

h
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Retrianglation invariant → commuting projector H

• Start with a time slice, a time evolution is obtained by add a piece
of spacetime and do the path integral.

Two ways to add pieces of spacetime have the same surface. →
Two way to apply Hamiltonian terms induce the same time
evolution.
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Can a commuting-projector Hamiltonian really

gives rise to a Hall conductance?

• Kapustin and Fidkowski (arXiv:1810.07756):
“We prove that neither Integer nor Fractional Quantum Hall
Effects with nonzero Hall conductivity are possible in gapped
systems described by Local Commuting Projector Hamiltonians.”

• Our result: DeMarco Wen, arXiv:2102.13057

Commuting projector Hamiltonian of rotors can
give rise to non-zero Hall conductance σxy = 2k e2

h
.

• The two results are consistent since in our model, each site has an
infinite dimensional Hilbert space. This makes it possible to
use a commuting projector Hamiltonian to realize a non-zero Hall
conductance.
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