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Tensor network and spacetime path integral

e Most general quantum many-body systems vell defined and local
can be described by tensor network on a spacetime lattice.
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We will concentrate on fixed-point tensors.
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A general tensor network on spacetime complex

e Degrees of freedom on vertices v, edges ey, faces vpi». 3
Tensor on vertices w,, edges, dev(?l"’l, and tetrahedrons C

Zoy1p = Z H LVZ(_J/ H dao™ X

Vo, i1, idota, e vertex g edge o
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So123 = 1, * (for orientations of (0123))
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Re-triangulation invariant = exactly soluble

— renormalization group (RG) fixed point

e Motivated by - :

Turaev-Viro state sum: 5 5
€02€03€04€23€24€34;$023P034 __ VOV JViVo JVIV3 JViV4
Cvo V2V3Va; P24 9234 - Wy d601 delz de13 de14
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e The 2 + 1D fixed-point tensors (the finite-dimension solution of
above non-linear algebraic equations) — fusion categories.
e The n+ 1D fixed-point tensors — fusion n — 1-categories.

e They classify n+ 1D topo. orders with gapped boundary
Kong Wen, arXiv:1405.5858
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Exactly soluble models from re-triangulation

invariant (RG-fixed-point) tensor network

e With only edge variables e¢;; = g € G and C = 0,1
— lattice gauge theory

e With only edge variables e; = g; € G and C =0, ¢!’ Hi
— Dijkgraaf-Witten gauge theory Dijkgraaf Witten, CMP, 129 393 (90)

e With only generic edge and face variables e;;, ¢jj,
as well as non-trivial tensors d, C
— String-net models. Levin Wen, cond-mat/0404617

e With only vertex variable v; = g; € G and C = ¢!’
— exactly soluble models realizing symmetry-protected
topological (SPT) orders
Chen Gu Liu Wen, arXiv:1106.4772
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Group cohomology theory of SPT states

e With only vertex variable, the tensor C in 2 + 1D becomes

€01€02€03 €12€13€23; 012 P023 )
CV0V1V2V3;¢013¢J123 - Cg0g1g2g3' where g; € G.

e The linear algebraic equations become (with w, = d°"* = 1)
C C = C C,

Cg1g2g3g4 80818384 —80818283 80828384 —80818284

which has no summation and becomes a linear equation after
taking log. So it is easy to solve.

o if Cgg.000, is a solution, then the following
~ Beg162Beog2e3

Cgog1g2g3 - Cgog1g2g3 B B
805183 glg2g3

is also a solution, is said to be equivalent to Cg 4 g4, -
e This leads to group cohomology theory and the solution is the

group cocycle — Group cohomology theory of SPT orders

(which are classified by equivalent classes of group cocycles).
Chen Gu Liu Wen, arXiv:1106.4772
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Infinite dimensional tensor network from

continuous group

e For continuous group such as G = U(1), SU(2), we should not
assume the solutions (the fixed-point tensors) C, gz gz, to be
continuous function of g;'s

- We may assume (.5, to be measurable functions

(the limits of continuous function and can do path integral)
Chen Gu Liu Wen, arXiv:1106.4772

- We may assume Cg 4,4, to be patch-wise continuous function

e The above two very different setups give rise to the same set of
equivalent classes (the same cohomology group H”H(G; U(l)))

How to write down patch-wise continuous 3-cocycles Cg g, g,g, for
gi € U(1l) » 2+ 1D U(1) SPT states.
Using cochain-cocycle theory in algebraic topology
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Cochain-cocycle theory

e 0-cochain g; is a field living on vertices iz g; : {i} — G,
where G is the value of 1-cochain.

e 1-cochain aj is a field living on edges (ij): a; : {(ij)} — G.

e Derivative d: From an 0-cochain g;, we can construct a 1-cochain:
aj =g —gjora=dg.
From an 1-cochain aj;, we can construct a 2-cochain (living on
faces (ijk)): bjx = a; — ai + aj or b = da.

e Cup product —: From a m-cochain p and a a n-cochain g, we
can construct a m -+ n-cochain s: Sivsrsimin = Pioyeeorion Qiomseesimin s
which is written as s = p — g or s = pg # qp.

For example ¢ ,i,iy = aiyi, biiis, €= a— b= ab.

e Integration: [, c = Z<i0,.1,2,.3> +Ciiinias
where + depends on the orientations of (iyi1/ri3).
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A 2+1D U(1) rotor model via spacetime path

integral (/e tensor network)

DeMarco Wen, arXiv:2102.13057

e On each vertex of spacetime complex, we have an “angle”
g €(—3.3), & ~ g +1 — a rotor model.

7 — E H(Cijkl)sjjkl _ C1271'l< 2 (ijkdy SEM i Cijil

et (ijkl)

83

80—
— /[H dgl_]ei27rkf/\/12+1 C./ Cijkl = ei27TkCgk/_
/ 8,

c (igd{dg}, co123 = (8o — &1)([&1 — &2 — &1 — g;} + & — &)

&

where | x| = nearest integer of x. ¢ is a 3-cocycle.

e The tensor Cj has a Z-gauge invariance: g; — gj + n;, n; € 7
and a global U(1) symmetry (invariance): g — g; + h.

e Exactly soluble on closed spacetime ¢!27 /w21 ¢ = 1 if M1 = ().
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Why the path integral with k # 0 describes a

gapped non-trivial U(1) SPT state?

e On spacetime with boundary OM?**! = B:

/[H dg’]e127rk Jy2+1 dgd|dg] _ /[H dg]e127rkf3gdeg

where we have used dgd|dg]| = d(gdeg}). The path integral
describes an low energy effective boundary theory. But the
boundary effective theory (with action-amplitude e!>7*/s&dldel ) js
not U(1) invariant under g; — g; + h if 9B # 0.

- The effective 1 + 1D theory has U(1) symm. if space has no
boundary, but break the U(1) symm. if the space has boundary.

- Add an 1 + 1D term e 127k Js d(eldel) to fix the U(1) symmetry:

/[H dgl]0127rk fBgd |dg]—d(g|dgl) /[H dgl]0—127rk fB dg|dg]

But ¢~ 127k Jg d(sLde1) s not 7-gauge invariant (when 0B # ().
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The ground state wavefunction

e If we view the spacetime boundary B = OM?*! as the space at a
time slice, then the boundary term e'?7</s8dldel — & ({g;})
actually give rise to a ground state wave function.

e Consider ground state wavefunction ®({g;}; ¢, ¢, ) on a torus, with
U(1) twisted boundary condition g, = gui1.y + 0x = &eyr1, +0,

e The ground state wavefunction ®({g;}; 0.6, ) define a complex
line-bundle over (6.6, )-space (a torus). The Chern number of the
line-bundle (the Berry phase of the ground states) is 2k — the Hall
conductance is Oxy = 2/(6712 DeMarco Wen, arXiv:2102.13057

e The exactly soluble path integral

7 — /[H dg’_]ei27rka2+1 dgd|dg]




Retrianglation invariant — commuting projector H

e Start with a time slice, a time evolution is obtained by add a piece
of spacetime and do the path integral.

> b

-
Commuting Hermitian Projectors

Two ways to add pieces of spacetime have the same surface. —
Two way to apply Hamiltonian terms induce the same time
evolution.
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Can a commuting-projector Hamiltonian really

gives rise to a Hall conductance?

e Kapustin and Fidkowski (arXiv:1810.07756):
“We prove that neither Integer nor Fractional Quantum Hall
Effects with nonzero Hall conductivity are possible in gapped
systems described by Local Commuting Projector Hamiltonians.”

[ ] OUF result: DeMarco Wen, arXiv:2102.13057
Commuting projector Hamiltonian of rotors can
. . 2
give rise to non-zero Hall conductance o,, = 2k<-.

e The two results are consistent since in our model, each site has an
infinite dimensional Hilbert space. This makes it possible to
use a commuting projector Hamiltonian to realize a non-zero Hall
conductance.
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