2+1D exactly soluble tensor network model with quantized Hall conductance

Xiao-Gang Wen (MIT)

2021/04/20 IPAM

DeMarco Wen, arXiv:2102.13057

Simons Collaboration on Ultra-Quantum Matter

1/13

Xiao-Gang Wen (MIT)

2+1D exactly soluble tensor network model with quantized Hall conductance

Tensor network and spacetime path integral

• Most general quantum many-body systems well defined and local can be described by tensor network on a spacetime lattice.

$$Z_{\text{path integral}} = \sum_{i,j,k,...} T_{abij} T_{dejk} = \text{Tr} TTTT \dots$$

$$= \text{Tr} T^{(1)} T^{(1)} \dots$$
Tensor network renormalization:

$$I_{abcd} \rightarrow \widetilde{T}^{(1)}_{ab,cd,ef,gh}$$

$$\widetilde{T}^{(1)}_{ab,cd,ef,gh} \rightarrow T^{(1)}_{abcd}$$

$$T^{(1)}_{abcd} = U_a^{a'b'} U_b^{c'd'} U_c^{e'f'} U_d^{g'h'} \widetilde{T}^{(1)}_{a'b',c'd',e'f',g'h'} \xrightarrow{ab}$$

$$fixed-point tensor$$

$$T^{fixed} \propto \lim_{n \to \infty} T^{(n)}$$

$$gh \longrightarrow cd \quad gh \longrightarrow cd$$

We will concentrate on fixed-point tensors.

A general tensor network on spacetime complex

Re-triangulation invariant = exactly soluble \rightarrow renormalization group (RG) fixed point

Exactly soluble models from re-triangulation invariant (RG-fixed-point) tensor network

- With only edge variables $e_{ij} = g_{ij} \in G$ and C = 0, 1 \rightarrow lattice gauge theory
- With only edge variables $e_{ij} = g_{ij} \in G$ and C = 0, $e^{i\theta}$ \rightarrow Dijkgraaf-Witten gauge theory Dijkgraaf Witten, CMP, **129** 393 (90)
- With only generic edge and face variables e_{ij} , ϕ_{ijk} , as well as non-trivial tensors d, C
 - \rightarrow String-net models. Levin Wen, co
- With only vertex variable v_i = g_i ∈ G and C = e^{iθ}

 → exactly soluble models realizing symmetry-protected topological (SPT) orders

Chen Gu Liu Wen, arXiv:1106.4772

Levin Wen, cond-mat/0404617

Group cohomology theory of SPT states

- With only vertex variable, the tensor C in 2 + 1D becomes $C_{v_0v_1v_2v_3;\phi_{013}\phi_{123}} \rightarrow C_{g_0g_1g_2g_3}$, where $g_i \in G$.
- The linear algebraic equations become (with $w_v = d_{e_{01}}^{v_0 v_1} = 1$)

 $C_{g_1g_2g_3g_4}C_{g_0g_1g_3g_4}C_{g_0g_1g_2g_3} = C_{g_0g_2g_3g_4}C_{g_0g_1g_2g_4}$

which has no summation and becomes a linear equation after taking log. So it is easy to solve.

• if $C_{g_0g_1g_2g_3}$ is a solution, then the following $\widetilde{C}_{g_0g_1g_2g_3} = C_{g_0g_1g_2g_3} \frac{B_{g_0g_1g_2}B_{g_0g_2g_3}}{B_{g_0g_1g_3}B_{g_1g_2g_3}}$

is also a solution, is said to be equivalent to $C_{g_0g_1g_2g_3}$.

 This leads to group cohomology theory and the solution is the group cocycle → Group cohomology theory of SPT orders (which are classified by equivalent classes of group cocycles).

Chen Gu Liu Wen, arXiv:1106.4772

Infinite dimensional tensor network from continuous group

- For continuous group such as G = U(1), SU(2), we should not assume the solutions (the fixed-point tensors) $C_{g_0g_1g_2g_3}$ to be continuous function of g_i 's.
- We may assume $C_{g_0g_1g_2g_3}$ to be **measurable** functions (the limits of continuous function and can do path integral) Chen Gu Liu Wen, arXiv:1106.4772
- We may assume $C_{g_0g_1g_2g_3}$ to be **patch-wise continuous** function
- The above two very different setups give rise to the same set of equivalent classes (the same cohomology group Hⁿ⁺¹(G; U(1)))

How to write down patch-wise continuous 3-cocycles $C_{g_0g_1g_2g_3}$ for $g_i \in U(1) \rightarrow 2 + 1D U(1)$ SPT states. Using cochain-cocycle theory in algebraic topology

7/13

Xiao-Gang Wen (MIT) 2+1D exactly soluble tensor network model with quantized Hall conductance

Cochain-cocycle theory

- 0-cochain g_i is a field living on vertices $i: g_i : \{i\} \to G$, where G is the value of 1-cochain.
- 1-cochain a_{ij} is a field living on edges $\langle ij \rangle$: $a_{ij} : \{\langle ij \rangle\} \to G$.
- Derivative d: From an 0-cochain g_i, we can construct a 1-cochain: a_{ij} = g_i - g_j or a = dg. From an 1-cochain a_{ij}, we can construct a 2-cochain (living on faces (ijk)): b_{ijk} = a_{ij} - a_{ik} + a_{jk} or b = da.
- Cup product \smile : From a *m*-cochain *p* and a a *n*-cochain *q*, we can construct a *m* + *n*-cochain *s*: $s_{i_0,...,i_{m+n}} = p_{i_0,...,i_m}q_{i_m,...,i_{m+n}}$, which is written as $s = p \smile q$ or $s = pq \ne qp$.

For example $c_{i_0i_1i_2i_3} = a_{i_0i_1}b_{i_1i_2i_3}, \ c = a \smile b = ab.$

• Integration: $\int_{M^{2+1}} c = \sum_{\langle i_0 i_1 i_2 i_3 \rangle} \pm c_{i_0 i_1 i_2 i_3}$, where \pm depends on the orientations of $\langle i_0 i_1 i_2 i_3 \rangle$.

A 2+1D U(1) rotor model via spacetime path integral (*ie* tensor network)

• The tensor C_{ijkl} has a \mathbb{Z} -gauge invariance: $g_i \to g_i + n_i$, $n_i \in \mathbb{Z}$ and a global U(1) symmetry (invariance): $g_i \to g_i + h$.

• Exactly soluble on closed spacetime $e^{i2\pi k \int_{M^{2+1}} c} = 1$ if $\partial M^{2+1} = \emptyset$. Xiao-Gang Wen (MIT) 2+1D exactly soluble tensor network model with quantized Hall conductance 9/13

Why the path integral with $k \neq 0$ describes a gapped non-trivial U(1) SPT state?

• On spacetime with boundary $\partial M^{2+1} = B$:

 $Z = \int [\prod \mathrm{d}g_i] \mathrm{e}^{\mathrm{i} 2\pi k \int_{M^{2+1}} \mathrm{d}g \, \mathrm{d}\lfloor \mathrm{d}g \rceil} = \int [\prod \mathrm{d}g_i] \mathrm{e}^{\mathrm{i} 2\pi k \int_B g \, \mathrm{d}\lfloor \mathrm{d}g \rceil}$

where we have used dg d dg = d(g d dg). The path integral describes an low energy effective boundary theory. But the boundary effective theory (with action-amplitude $e^{i2\pi k \int_B g d\lfloor dg \rceil}$) is not U(1) invariant under $g_i \rightarrow g_i + h$ if $\partial B \neq \emptyset$.

- The effective 1 + 1D theory has U(1) symm. if space has no boundary, but break the U(1) symm. if the space has boundary.
- Add an 1 + 1D term $e^{-i2\pi k \int_B d(g\lfloor dg \rfloor)}$ to fix the U(1) symmetry:

 $\widetilde{Z} = \int [\prod \mathrm{d}g_i] \mathrm{e}^{\mathrm{i}2\pi k \int_B g \,\mathrm{d}\lfloor \mathrm{d}g \rceil - \mathrm{d}(g\lfloor \mathrm{d}g \rceil)} = \int [\prod \mathrm{d}g_i] \mathrm{e}^{-\mathrm{i}2\pi k \int_B \mathrm{d}g\lfloor \mathrm{d}g \rceil}$ But $e^{-i2\pi k \int_{B} d(g \lfloor dg \rfloor)}$ is not \mathbb{Z} -gauge invariant (when $\partial B \neq \emptyset$). Xiao-Gang Wen (MIT)

The ground state wavefunction

- If we view the spacetime boundary $B = \partial M^{2+1}$ as the space at a time slice, then the boundary term $e^{i2\pi k \int_B g \, d\lfloor dg \rceil} = \Phi(\{g_i\})$ actually give rise to a ground state wave function.
- Consider ground state wavefunction $\Phi(\{g_i\}; \theta_x, \theta_y)$ on a torus, with U(1) twisted boundary condition $g_{x,y} = g_{x+L_x,y} + \theta_x = g_{x,y+L_y} + \theta_y$
- The ground state wavefunction $\Phi(\{g_i\}; \theta_x, \theta_y)$ define a complex line-bundle over (θ_x, θ_y) -space (a torus). The Chern number of the line-bundle (the Berry phase of the ground states) is $2k \rightarrow$ the Hall conductance is $\sigma_{xy} = 2k\frac{e^2}{h}$ DeMarco Wen, arXiv:2102.13057
- The exactly soluble path integral

$$Z = \int [\prod_{i} \mathrm{d}g_{i}] \mathrm{e}^{\mathrm{i} 2\pi k \int_{M^{2+1}} \mathrm{d}g \, \mathrm{d}\lfloor \mathrm{d}g \rceil}$$

realizes a U(1)-SPT state with Hall conductance $\sigma_{xy} = 2k \frac{e^2}{h}$

Retrianglation invariant \rightarrow commuting projector H

• Start with a time slice, a time evolution is obtained by add a piece of spacetime and do the path integral.

Two ways to add pieces of spacetime have the same surface. \rightarrow Two way to apply Hamiltonian terms induce the same time evolution.

Can a commuting-projector Hamiltonian really gives rise to a Hall conductance?

- Kapustin and Fidkowski (arXiv:1810.07756): "We prove that neither Integer nor Fractional Quantum Hall Effects with nonzero Hall conductivity are possible in gapped systems described by Local Commuting Projector Hamiltonians."
- Our result: DeMarco Wen, arXiv:2102.13057 Commuting projector Hamiltonian of rotors can give rise to non-zero Hall conductance $\sigma_{xy} = 2k\frac{e^2}{h}$.

• The two results are consistent since in our model, each site has an **infinite dimensional Hilbert space**. This makes it possible to use a commuting projector Hamiltonian to realize a non-zero Hall conductance.