Workshop II: Tensor Network States and Applications, April 19 - 23, 2021

Deep Learning Quantum States For Hamiltonian Predictions

Shi-Ju Ran

Capital Normal University

0

Deep learning quantum states for Hamiltonian predictions

Xinran Ma,¹ Z. C. Tu,¹ and Shi-Ju Ran^{2, *}

¹Department of Physics, Beijing Normal University, Beijing 100875, China ²Department of Physics, Capital Normal University, Beijing 100048, China (Dated: December 19, 2020)

Xiran Ma

Prof Z.C Tu

arXiv:2012.03019

Interactions in quantum many-body systems lead to fruitful novel phenomena

Example: spin-1 antiferromagnetic Heisenberg sawtooth chain (simulated with DMRG)

Yuan Yang, Shi-Ju Ran^{*}, Xi Chen, Zhengzhi Sun, Shou-Shu Gong, Zhengchuan Wang^{*}, Gang Su^{*}. *Reentrance of Topological Phase in Spin-1 Frustrated Heisenberg Chain*. Phys. Rev. B **101**, 045133 (2020)

Challenges in simulating quantum many-body systems

region

Critical

Phase-2 $|\phi_3\rangle|\phi_4\rangle$ $|\phi_5\rangle$ $|\phi_1\rangle$ $|\phi_2\rangle$

learn

Q

Neural network is a powerful machine learning model ARTICLE

Mastering the game of Go without human knowledge

David Silver¹*, Julian Schrittwieser¹*, Karen Simonyan¹*, Ioannis Antonoglou¹, Aja Huang¹, Arthur Guez¹, Thomas Hubert¹, Lucas Baker¹, Matthew Lai¹, Adrian Bolton¹, Yutian Chen¹, Timothy Lillicrap¹, Fan Hui¹, Laurent Sifre¹, George van den Driessche¹, Thore Graepel¹ & Demis Hassabis¹

Can NN solve physical problems in a data-driven way?

 Opportunities to solve a new kind of problems in quantum physics, such as the inverse problems of solving Hamiltonian given the states

QubismNet for many-body Hamiltonian predictions

Basic ideas

• Main target: considering the Hamiltonian $\widehat{H}(\alpha)$ parametrized by α (e.g., coupling constant, magnetic field, etc.), predict α given the ground state $|\varphi(\alpha)\rangle$.

Convolutional neural network

• One of the most powerful machine learning model for processing images

What is Qubism?

• One-to-one mapping from quantum states to images

Qubism: self-similar visualization of many-body wavefunctions

Javier Rodríguez-Laguna^{1,2,5}, Piotr Migdał¹, Miguel Ibáñez Berganza³, Maciej Lewenstein^{1,4} and Germán Sierra³

 ¹ ICFO—Institute of Photonic Sciences, Castelldefels, Barcelona, Spain
² Mathematics Department, Universidad Carlos III de Madrid, Spain
³ IFT—Instituto de Física Teórica, UAM/CSIC, Cantoblanco, Madrid, Spain
⁴ ICREA—Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain E-mail: javier.rodriguez@icfo.es

New Journal of Physics 14 (2012) 053028 (30pp)

Figure 4. Top: ground state of the 1D spin-1/2 AF Heisenberg model with PBC for 12 spins. Bottom: the lowest energy excitations, which make up a triplet. White means zero probability, color intensity reflects the modulus of the wavefunction amplitude, whereas the hue marks the phase.

Illustrations of the images by the Qubism map from the ground states of the QIM, XY, and XXZ models

Learning from reduced density matrix

- One drawback of Qubism: the cost increases exponentially with the system size;
- Learn from the reduced density matrix (RMD) of a bulk with size $L_b \ll L$ (L=64 in practice);
- The ground states with large L are represented by matrix product states (MPS).

Training and testing accuracies on quantum chains

- Samples in the training set (to optimize the parameters in the NN);
- MSE: $\frac{1}{N} \sum_{n=1}^{N} |h_n^p h_n|^2$
- MSE error for the samples in the testing set (independently and identically distributed as the training samples, but are not fed to the NN) is small ~O(10⁻⁴~10⁻⁵)
- On QIM, criticality seems to have no effects to the predictions

Generalization power on 1D chains

- Generalization set: the states from different region (light yellow) from the training and test sets (light blue);
- We take the width for taking the generalizing set $\delta = 0.4$.
- When L is small, **stages** appears in the prediction curve, due to the **energy gaps** of the eigenstates of the Hamiltonian.
- The gaps are suppressed by **increasing** *L*, and the accuracies will also be improved.
- For the quantum Ising mode, the NN learns from the states away from the critical point, and can still well predict the magnetic field of the states in the critical vicinity;

Generalization power on 2D systems

Ο

XXZ

Generalization power on 2D systems

 Similar accuracies are achieved on the XXZ and XY models on the finite-size square lattice.

Size dependence of generalization power

- By fixing L_b=8, both the error and the strength of the fluctuations for the generalization set decreases with L.
- By fixing L=64, both the error and the strength of the fluctuations for the generalization set decreases with L_b.
- The error converges for $L_b \sim 6-8$, indicating the correlation length of the states.

Generalization power for different parameter gaps

- The generalization error increases with the parameter gap δ (the width of the region where we sample the generalization set).
- But at most, the error reaches $\varepsilon_g \sim 0.05$ for $\delta = 0.8$. For small δ , we have $\varepsilon_g \sim O(10^{-3})$ or less.

1D CNN performs more poorly than 2D CNN

- 1D CNN with Qubism map performs obviously more poorly than 2D CNN with Qubism map, particularly for the generalization set.
- This benefits from both the Qubism map and the superior power of CNN for processing 2D images.

Perspective II: TN machine learning

- TN is a young **quantum-inspired machine learning model**, such as supervised learning by MPS (E. Stoudenmire and D. J. Schwab, NIPS 2016).
- For machine learning, neural network (NN) still exhibits obvious advantages on the powers of expression and, particularly, generalization.

Model	MMIST train	MMIST test	Fashion-MMIST train	Fashion-MMIST test			
MPS machine [28]	1.0000	0.9855	0.99	0.88			
Unitary tree TN [9]	0.98	0.95	-	-			
Tree curtain model [35]	-	-	0.9538	0.8897			
Bayesian TN [15]	-	-	0.8950	0.8692			
EPS-SBS [7]	-	0.9885	-	0.886		Ye-Ming	Μ
PEPS [17]	-	-	-	0.883		Peng Zha	ang,
CNN-PEPS [17]	-	-	-	0.912		Ju Ran, a	rXiv
AlexNet [36]	-	-	-	0.8882			
ResNet [36]	-	-	-	0.9339			
sResMPS(+dropout)	1.0000	0.9898	0.9920	0.9076	Nor	linear TN m	odel
aResMPS(+ReLU,+dropout	t) 1.0000	0.9900	0.9999	0.9146			Gaci

Ye-Ming Meng, Jing Zhang, Peng Zhang, Chao Gao, and Shi-Ju Ran, arXiv:2012.11841.

Thank you for your attention!

0

 \frown

