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Example: spin-1 antiferromagnetic Heisenberg 

sawtooth chain (simulated with DMRG)

Yuan Yang, Shi-Ju Ran*, Xi Chen, Zhengzhi Sun, Shou-Shu Gong,

Zhengchuan Wang*, Gang Su*. Reentrance of Topological Phase in

Spin-1 Frustrated Heisenberg Chain. Phys. Rev. B 101, 045133 (2020)

Interactions in quantum many-body systems lead to 
fruitful novel phenomena



Challenges in simulating quantum many-body systems
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Learn the critical vicinity?
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Neural network is a powerful machine learning model



Can NN solve physical problems in a data-driven way?

• Opportunities to solve a new kind of problems in quantum physics, such as the 

inverse problems of solving Hamiltonian given the states

arXiv:2006.13297



QubismNet for many-body Hamiltonian predictions



Basic ideas

• Main target: considering the Hamiltonian ෡𝐻(𝛼) parametrized by 𝛼 (e.g., 

coupling constant, magnetic field, etc.), predict 𝛼 given the ground state 

| ۧ𝜑(𝛼) .

quantum states 

{| ۧ𝜑(𝛼) } or 

k-body reduced 

density matrices

images from 

Qubism map
deep CNN

Prediction of 𝛼



Convolutional neural network

• One of the most powerful machine learning model for processing images

LeNet-5 named 

after Yann LeCun



What is Qubism?

• One-to-one mapping from 

quantum states to images

Illustrations of the images by the Qubism map from the 

ground states of the QIM, XY, and XXZ models

Quantum Ising

XXZ

XY



Learning from reduced density matrix

• One drawback of Qubism: the cost increases exponentially with the system size;

• Learn from the reduced density matrix (RMD) of a bulk with size 𝐿𝑏 ≪ 𝐿 (𝐿=64

in practice );

• The ground states with large L are represented by matrix product states (MPS).

𝐿𝑏=2

𝐿=6



Training and testing accuracies on quantum chains

MSE

• Samples in the training set (to optimize the

parameters in the NN) ;

• MSE:
1

N
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2

• MSE error for the samples in the testing set

(independently and identically distributed as

the training samples, but are not fed to the NN) is

small ~O(10-4~10-5)

• On QIM, criticality seems to have no effects to

the predictions



Generalization power on 1D chains

• Generalization set: the states from different region
(light yellow) from the training and test sets (light
blue);

• We take the width for taking the generalizing set
𝛿 = 0.4.

• When 𝐿 is small, stages appears in the prediction
curve, due to the energy gaps of the eigenstates of
the Hamiltonian.

• The gaps are suppressed by increasing 𝑳, and the
accuracies will also be improved.

• For the quantum Ising mode, the NN learns from
the states away from the critical point, and can
still well predict the magnetic field of the states in
the critical vicinity;



Generalization power on 2D systems
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Generalization power on 2D systems

• Similar accuracies are achieved on

the XXZ and XY models on the

finite-size square lattice.



Size dependence of generalization power

• By fixing Lb=8, both the error and the

strength of the fluctuations for the

generalization set decreases with L.

• By fixing L=64, both the error and the

strength of the fluctuations for the

generalization set decreases with Lb.

• The error converges for Lb~6-8,

indicating the correlation length of the

states.



Generalization power for different parameter gaps

• The generalization error increases with the

parameter gap 𝛿 (the width of the region

where we sample the generalization set).

• But at most, the error reaches 𝜀𝑔~0.05 for 𝛿 =

0.8. For small 𝛿, we have 𝜀𝑔~𝑂 10−3 or less.



1D CNN performs more poorly than 2D CNN

• 1D CNN with Qubism map performs 

obviously more poorly than 2D CNN 

with Qubism map, particularly for 

the generalization set.

• This benefits from both the Qubism

map and the superior power of 

CNN for processing 2D images.



Summary

quantum states 
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excellent training, testing,

and generalization powers
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Perspective I: 
What else can be learned beyond parameters?

Easy to access



Perspective II: TN machine learning

• TN is a young quantum-inspired machine learning model, 
such as supervised learning by MPS (E. Stoudenmire and D. 
J. Schwab, NIPS 2016).

• For machine learning, neural network (NN) still exhibits 
obvious advantages on the powers of expression and, 
particularly, generalization.

Ye-Ming Meng, Jing Zhang,

Peng Zhang, Chao Gao, and Shi-

Ju Ran, arXiv:2012.11841.

Nonlinear TN model



Thank you for your attention!


