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Goal: Find ’Baker and Cat maps’ of many body quantum physics!

@ A proof of random-matrix spectral form factor for a kicked spin chain
PRL 121, 264101 (2018); arXiv:2012.12254

@ Exact local dynamical correlation functions in dual-unitary models:
An example of exact ergodic hierarchy of quantum many-body dynamics
PRL 123, 210601 (2019),

@ Dynamical complexity (entanglement entropy PRX 9, 021033 (2019),
operator entropy SciPost Phys. 8, 067 (2020)), and structural /
perturbative stability of quantum ergodicity PRX 11, 011022 (2021).
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Consider a unitary gate on a two-qudit system U € U(d?) and define the
following duality transformation
via reshuffling of basis states

Gl @ Ui @ k) = (k| @ (¢|U]i) ® |5) -

«0O)» «4F»r» « =)




Consider a unitary gate on a two-qudit system U € U(d?) and define the
following duality transformation

~U— U ,
via reshuffling of basis states

(l @ (|03 @ |k) = (k| @ ((|U]i) ® |5) .

koo
i J

We call a gate dual-Unitary, if not only U is unitary, i.e.

vut=u'U =1,
but also U is unitary




XX

forward fusion rules

Ut = Ut =

€ 9

dual fusion rules




Dual unitary quantum circuits

One step of a quantum circuit is a unitary over ((Cd)
where

®2L
U=0°"°

U° =U%", U° =1, UM,
and I, is a periodic translation ITp|i1) ® |iz) - - |ie) = |iz) ® |is)

- Jig) @ ).
(here t =2 and L = 6)
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Dual unitary quantum circuits

where

One step of a quantum circuit is a unitary over (C*)®2L

U =U°U°
U° =U®*,

U° = o UCTL,
and Tl is a periodic translation IL¢|i1) ® [i2) - - - [ie) = |i2) ® |i3)

- lie) @ i)

(here t =2 and L = 6)
Similarly we define dual quantum circuit propagator over (Cd)®2t

U = 7L, 0111,
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Dual unitary quantum circuits

One step of a quantum circuit is a unitary over ((Cd)®2L
where

U =1U°U°

U = U®*

U° = Mo, UCTL,
and TI; is a periodic translation TI¢|i1) ® |i2) - - - |ie) = |i2) @ |i3)

e lie) @ lin).

(here t =2 and L = 6)
Similarly we define dual quantum circuit propagator over ((Cd)@m

U = U%' I, U®'11},.
Clearly we have duality of traces

t 1L
trU0" =t U™,
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Dual unitary quantum circuits

One step of a quantum circuit is a unitary over ((Cd)®2L
U=0U°"°
where
U° =U®", U° =1 UL,
and II; is a periodic translation Ilg|i1) ® |i2) - - - |ie) = |i2) ® |ig) - - - |ig) @ |i1).

(here t = 2 and L = 6)
Similarly we define dual quantum circuit propagator over (C%)®2*
U = U1, U®'11,.

Clearly we have duality of traces

trU* = tr U
DUC generalize the self-dual kicked Ising model PRL 121, 264101 (2018)
where exact RMT expression for the spectral form factor was derived. .

See also [Gopalakrishnan and Lamacraft, PRB 100, 064309 (2019)]
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Spectral Form Factor in Floquet Systems

The spectrum {¢,} of a unitary one-period propagator
U =T exp(—i fol H(t)dt) as a gas in one dimension
Spectral density:

p@) =3 6e—pn), N =2

Spectral pair correlation function (2-point function):
1 27 L L
r@) =5 | deple+30)p(p —50) — 1.
T Jo

Spectral Form Factor (SFF) (Fourier transform of 2-point function):

2 27 ] .
K(t) = '/;/7 d’ﬁr(ﬁ)eltﬁ:Zelt(wm'_wn)—N26t’o
0 m,n

= |0U')" = N80, teZ
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Spectral Form Factor in Floquet Systems

The spectrum {y,} of a unitary one-period propagator
U = T exp(—i [, H(t)dt) as a gas in one dimension

Spectral density:

2
=T s, N=28

Spectral pair correlation function (2-point function):
1 2m 1 1
r(@) == [ dep(e+39)p(p — 39) — 1.
2m Jo

Spectral Form Factor (SFF) (Fourier transform of 2-point function):

— N2 o Zt'& it(om—pn) 2
K(t) = o dir(9) Ze —N76,0
0

m,n

= |wU']" = N80, teZ

Caveat: SFF is not self-averaging! Consider instead K (t) = E[K(¢)].
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Comparision to RMT spectral form factors

RMT (No time reversal symmetry):
Kcur(t) =t, t<N.
RMT (With time teversal symmetry):
Koor(t) = 2t — tlog(1 4 2t/N), t<N.

Random (uncorrelated, Poissonian) spectrum {¢y }:

KPoisson = N
RMT vs Real System:
AL B E[K(t)] =E {Ze““’”“’“}
m,n
® o o
< C Saturation K(t) ~ N beyond
. &6 Heisenberg time ¢t > tu = N =
| 1/Ap.
; | Non-universal (system-specific) be-
JCT tH: e " haviour below FEhrenfest/Thouless

time t < t.
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Spectral Form Factor in DUC

K(t, L) = Ey[jtr U] = Eyuftr (UT @ UT)] = tr[(E.[UT @ UT))¥)

Theorem [Bertini, Kos, P, arXiv:2012.12254]:

For i.i.d. local 1-qubit gates w, with nonvanishing probability density in
arbitrary small ball in SU(2) around the identity v = 1, and for any dual
unitary 2-qubit gates U other than the SWAP, we have

t—1 t—1 /
Jim K (t) = dim {2_2)034-5’2_;)034'5054—#21?’1’/8 € {z,y,2},¢ € {0, 1}}

=i

« T 1
0f =12, ®07 @ Log—2-—1 € End((C*)®*), 1€ o Lo
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Dynamical correlation functions in DUC

Writing the orthonormal set of local observables as a®, a =0,...,d? — 1,
tr [(aa)Taﬁ] = dd,, 5 and choose a® = 1, so all other a® are traceless,
we shall be interested in the following space-time correlator

af
- 2
Daﬁ(xay:t) = dQLLtr [a;‘[[}*tag[[jt] — {O— (x —y,t) 2y even 7

C’iﬂ(a: —y,t) 2y odd

O NIE = Nw N No W

]
I
i
it
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Property 1

If U is dual-unitary, the dynamical correlations are non-zero for ¢ < L/2 only
on the edges of a lightcone spreading at speed +1
CoP (1) = ba,n C° (vt,1),

v==4, o, #0.

o 1
CHAt = 5t
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The light cone correlations C’iB (t,t) and C*?(—t, t) are given by

1
CeP(ut,t) = Str [Mit(aﬁ)a“],
where we introduced the linear maps over End(C?)

Mi(a) = >

= tr; [UT(a®1)U] = }1@

1 1
M_(a) = Strs Uta®aU] = d@.
tr;[A] denote partial traces over i-th site (i = 1, 2).

=)

Many body quantum chaos
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Dynamical correlations tamed!

Decay of correlations is given in terms of d? — 1 eigenvalues A1 o of single
qudit channel (d? x d* matrix) M, and d*> — 1 eigenvalues A_ o of M_

d2— 1 aﬂ
Da‘%m,y,t):{ et gl Sl

)2 2y even
d271 o 2
Ou—y,t 27—1 C+[77( +7) !
(One eigenvalue is always A0 = 1, with eigenoperator a

2y odd
Classification of ergodic behaviours

=1.)
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Dynamical correlations tamed!

Decay of correlations is given in terms of d? — 1 eigenvalues A1 o of single
qudit channel (d? x d* matrix) M, and d*> — 1 eigenvalues A_ o of M_

2
5. tzd271 Cozﬂ
D*¥(z,y,t) =4 7"

_77()\,,7)% 2y even
Oz —y,t Zd2 i (A +,v)2t 2y odd

(One eigenvalue is always A0 = 1, with eigenoperator a

Classification of ergodic behaviours

@ Non-interacting dynamics

=1.)

all A, 4 =1 (example: SWAP Uli) ® |5)

= 17) ® 1))
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Dynamical correlations tamed!

Decay of correlations is given in terms of d> — 1 eigenvalues Ay o of single
qudit channel (d? x d* matrix) M, and d* — 1 eigenvalues A_ o of M_.

27 (a3
Do (ary,t) = J Pt Tt €5, (0-)* 2y even
bR - — o
Ou—y,t Zil,:ll C+,B7(>\+,v)2t 2y odd

(One eigenvalue is always A0 = 1, with eigenoperator a’ = 1.)

Classification of ergodic behaviours:
@ Non-interacting dynamics:
all A,y =1 (example: SWAP Uli) ® |j) = |j) ® |i))
@ Non-ergodic (and generically non-integrable) behavior:
3 additional eigenvalue equal to one A,,, =1, v # 0.
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Dynamical correlations tamed!

Decay of correlations is given in terms of d> — 1 eigenvalues Ay o of single
qudit channel (d? x d* matrix) M, and d* — 1 eigenvalues A_ o of M_.

2.1 o 5
D (z,y,t) = Sy=st Z“/z:ll 2%, (A-7)* 2y even
r - — o
Oz —y,t 25:11 C+,B7(>\+n)2t 2y odd

(One eigenvalue is always A0 = 1, with eigenoperator a’ = 1.)

Classification of ergodic behaviours:
@ Non-interacting dynamics:
all A,y =1 (example: SWAP Uli) ® |j) = |j) ® |i))
@ Non-ergodic (and generically non-integrable) behavior:
3 additional eigenvalue equal to one A,,, =1, v # 0.

@ Ergodic but non-mixing behavior:
all Ay 420 # 1, but Iy #0, |\ 4| = 1.
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Dynamical correlations tamed!

Decay of correlations is given in terms of d> — 1 eigenvalues Ay o of single
qudit channel (d? x d* matrix) M, and d* — 1 eigenvalues A_ o of M_.

2 -
Oy—a,t Zd:ll & (/\7,7)% 2y even
d2— (e
690*?/’75 Z-y:ll C+7B»y(>\+,'y)2t 2y odd

Daﬁ(mvyat) = {

(One eigenvalue is always A0 = 1, with eigenoperator a’ = 1.)

Classification of ergodic behaviours:
@ Non-interacting dynamics:
all A,y =1 (example: SWAP Uli) ® |j) = |j) ® |i))
@ Non-ergodic (and generically non-integrable) behavior:
3 additional eigenvalue equal to one A,,, =1, v # 0.
@ Ergodic but non-mixing behavior:
all Ay 420 # 1, but Iy #0, |\ 4| = 1.
@ Ergodic and mixing behavior:
all Ay 20| < 1.
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We can provide a complete classification only for d = 2:
U=e(uy@u)-VIJ]- (v- @vy),
where ¢, J € R, ut+,v+ € SU(2) and
4
Relevant examples:

V[J]:exp[_i(faz ® Uz-i—%ay ®o'+Jo"® 0‘2)]
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We can provide a complete classification only for d = 2:
U=e(uy@u)-VIJ]- (v- @vy),
where ¢, J € R, ut+,v+ € SU(2) and
Relevant examples:

V[J]zexl’[_i(gffz ® Uz-i—%ay ®o'+Jo"® JZ)]

@ SWAP gate U = V[r/4].
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Problem: Classify all Dual Unitary gates for a given dimension d

We can provide a complete classification only for d = 2:
U=e(uy@u)-VIJ]- (v- @vy),
where ¢, J € R, ug,v+ € SU(2) and

V[J] :exp[fi(goz ® aer%Uy ®a¥+Jo" ® O’Z)] .

Relevant examples:
@ SWAP gate U = V[r/4].
@ One parameter line of the trotterized XXZ chain

Uxxz = V[J],
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Problem: Classify all Dual Unitary gates for a given dimension d

We can provide a complete classification only for d = 2:
U=e(uy@u)-VIJ]- (v- @vy),
where ¢, J € R, ug,v+ € SU(2) and

V[J] :exp[fi(goz ® az+gay ®a¥+Jo" ® O’Z)] .

Relevant examples:
@ SWAP gate U = V[r/4].
@ One parameter line of the trotterized XXZ chain

Uxxz = V[J],
@ The maximally chaotic self-dual kicked Ising (SDKI) chain

—ihoZ iT o i T T iT oY —iho? i T oY
USDKI:eZUel4U®el4U .V[O].el4UeZU®eZ4U.
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Problem: Classify all Dual Unitary gates for a given dimension d

We can provide a complete classification only for d = 2:
U=e(up @u-) - VIJ]- (v-®v4),

where ¢, J € R, ut,v+ € SU(2) and
. U x x U z z
VI[J] :exp[—z(za ®o +Zay Qo'+Jo*®0c )}

Relevant examples:

@ SWAP gate U = V[r/4].

@ One parameter line of the trotterized XXZ chain

Uxxz = V[J],
@ The maximally chaotic self-dual kicked Ising (SDKI) chain

—iho? i T o® i iZoY

Jusp s i T oY —iho?
Uspki =e e€17®e? V[0 et T Re

See [Claeys & Lamacraft, PRL126, 100603 (2021)] for generalization (not
complete classification!) to higher d, and [Gutkin,Braun,Akila,Waltner,Guhr,
arXiv:2001.01298| for generalization of KI model to higher d.
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SFF in general (non-dual-unitary) brickwork circuits

Circuit models with local quench disorder:

1.75 1.3F

. 1.70 1.2

S 165 1.1

T 1.60 1.0

X 155 0.9
1.50

! 0.8

0 20 40 60 80 100
t t t
Distance to nearest dual-unitary gate to U decreases from left to right plot.
Data for L = 8,10, 12, 14, 16 suggest the conjecture
K(t)—t< ALe™ "', A, B> 0.
[unpublished, c.f. Garratt and Chalker, arXiv:2008.01697| =
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Operator entanglement in DUC

Analytic computation of Renyi-2 operator entanglement entropy for
spreading of local operators [Bertini, Kos & P, SciPost Phys. 2020]:

Eop(t) = at

where a = 2log d signals maximal chaos.

< L
5 t=55
Soosp T
palt.y:a) = trgllay (t)Xay (1) ||= ag 0 g6l " tT60
a 35 06
»t=175
0.4
0.2 — Pred. t=0c0
0. - - -
0. 0.2 0.4 0.6 0.8
J
= =) = = =
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Structural (perturbative) stability of DUC [PRX 11, 011022 (2021)]

) ©: G SN I S _

o—
(botylay(t) =
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Structural (perturbative) stability of DUC [PRX 11, 011022 (2021)]
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Reduced gates/circuits

The U(1)-noise averaged dynamical correlations
ihypof Fihy1,e07

cab(z,t) = Eqn; 1 Cab(,t),  Ujj1 = Ujjtre

can be formulated in terms of classical bistochastic brickwork Markov
circuits in the basis of diagonal operators |1), |0*) with elementary 2-gate

v -

€1 = g2 = 0 corresponds to dual-unutary/dual-bistochastic circuit.

0
&1

OO O =
~ 92 2 o
© a s o
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Reduced gates/circuits

The U(1)-noise averaged dynamical correlations
'th)t,a;+ihj+11to';+1

cab(z,t) = Eqn; 3 Cab(2,t),  Ujjr1 — Ujjtre

can be formulated in terms of classical bistochastic brickwork Markov
circuits in the basis of diagonal operators |1), |0*) with elementary 2-gate

1
w;:x: 0
0
0

€1 = €2 = 0 corresponds to dual-unutary/dual-bistochastic circuit.
Tilling representation of dynamical correlations:

0 0 O

a b

2 d|’
g

o
—

o 0
)

51,1/51,2/51,3(S1 4 e
(0.0 (1)) = > |saifsooaasod = + +...

B
s;jEtiles
-

$3,1|53,2/53,3|53 4 -

| |
+ + L+

(-1 S0 m- M- Hl=¢ [B-+ 8-/ B0 [B- B»
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Rigorous result on perturbative stability of reduced DUC

To fixed, say 2nd order in €1, €2, we get contributions from the no-loop
(skeleton) diagram

as well as from higher, loop diagrams
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Rigorous result on perturbative stability of reduced DUC

To fixed, say 2nd order in €1, 2, we get contributions from the no-loop
(skeleton) diagram

as well as from higher, loop diagrams

However, if

Ibfl

d
|a|>a+ , or |c\>c+‘e|

B

where o and 3 are, respectively, the largest singular values of

c e a f
(d 9>’ and (b 9)’

then the tile-sum can be explicitly evaluated and shown to be equal to sum
over skeleton diagrams. Convergence proven in ‘low density’ regime, while
conjectured at any density of perturbed gates.
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o First exact results on spectral statistics of extended quantum lattice
systems, when thermodynamic limit taken first

The main challenges for future work:
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o First exact results on spectral statistics of extended quantum lattice
systems, when thermodynamic limit taken first
e Exact results on spatio-temporal correlation functions:

from regular to ergodic and mizing dynamics

The main challenges for future work:

«A40>» 4AF>» 4«A=)>» «=)>» =




Conclusions

o First exact results on spectral statistics of extended quantum lattice
systems, when thermodynamic limit taken first

o Exact results on spatio-temporal correlation functions:
from regular to ergodic and mixing dynamics

e Strong indication that the results are structurally stable to
perturbations

The main challenges for future work:
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Conclusions

o First exact results on spectral statistics of extended quantum lattice
systems, when thermodynamic limit taken first

o Exact results on spatio-temporal correlation functions:
from regular to ergodic and mixing dynamics

e Strong indication that the results are structurally stable to
perturbations

The main challenges for future work:

o Exact results in finite systems, finite size corrections?
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Conclusions

o First exact results on spectral statistics of extended quantum lattice
systems, when thermodynamic limit taken first

o Exact results on spatio-temporal correlation functions:
from regular to ergodic and mixing dynamics

e Strong indication that the results are structurally stable to
perturbations

The main challenges for future work:
o Exact results in finite systems, finite size corrections?

o Statements about eigenstates:
dual unitary circuits as models where ETH can be proven?
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Conclusions

o First exact results on spectral statistics of extended quantum lattice
systems, when thermodynamic limit taken first

o Exact results on spatio-temporal correlation functions:
from regular to ergodic and mixing dynamics

e Strong indication that the results are structurally stable to
perturbations

The main challenges for future work:
o Exact results in finite systems, finite size corrections?

o Statements about eigenstates:
dual unitary circuits as models where ETH can be proven?

o Exactly solvable chaotic driven/dissipative chaos: Dual quantum
bistochastic Kraus cricuits?
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