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DMRG provides state-of-the-art results in many fields
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Tj; kinetic and on-site terms, Vs two-particle scatterings
We consider usually lattice models in real space (DMRG)
In quantum chemistry sites are electron orbitals (QC-DMRG)
In UHF QC spin-dependent inetractions (UHF-QCDMRG)
In relativistic quantum chemistry sites are spinors (4c-DMRG)
In nuclear problems sites are proton/neutron orbitals (JDMRG)
In k-space representation sites are momentum eigenstates (k-DMRG)
For particles in confined potential sites — Hermite polynoms
» Major aim: to obtain the desired eigenstates of H.

e Symmetries: Abelian and non-Abelian quantum numbers, double
groups, complex integrals, quaternion sym. etc

o # of block states: 1 000 — 60 000. Size of Hilbert space up to 108.
e In ab inito DMRG the CAS size is: 70 electrons on 70 orbitals.

e 1-BRDM and 2-BRDM can be extracted.



Tensor product approximation
State vector of a quantum system in the discrete tensor product spaces
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e In a spin-1/2 model «; € {J,1}.
e In a spin-1/2 fermionic model o; € {0, ], 1,1} }.

dimH, = O(q?) Curse of dimensionality!

o \We seek to reduce computational costs by parametrizing the tensors in
some data-sparse representation.



Tensor product representation

e A general tensor network representation of a tensor of order 5.




Matrix product state (MPS) representation / DMRG /TT

e A tensor of order 5 in Matrix Product State (MPS) representation.
Also know as Tensor Train (
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e The tensor U is given eIement—Wlse as

rd—1
U(al,...,ad) Z Z Al al,ml)Ag(ml,az,mz) Ad(md,l,ad).
mp=1 myg_1=1

e We get d component tensors of order 2 or 3 which yields a chain of
matrix products:

U(ag,...,oq) = Ar(a1)As(az) - Ag_1(ag—1)Aqg(aqg)
with [Ai(ai)]mf—17mi = Ai(mi—l, Qj, mi) € Cri-1xn,

e Ranks (m;) must be controlled.

Redundancy:
U(Oq, - ,ad) = Al(al)GG_lAz(ag) cee Adfl(adfl)Ad(Otd)



Matrix product state (MPS) representation / DMRG /TT

e A tensor of order 5 in Matrix Product State (MPS) representation.
Also know as Tensor Train (
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e The tensor U is given element—W|se as

rd—1
Ulas,...,aq Z Z A1(ag, m)As(my, az, mp) -+ - Ag(mg—1, ag).
m= 1 myg_1= 1

e We get d component tensors of order 2 or 3 which yields a chain of
matrix products:

U(ag,...,oq) = Ar(a1)Az(az) - Ag_1(ag—1)Aqg(aqg)
with [Ai(ai)]mi—l,mi = A,-(m,-,l, Qj, mi) S Cri-1xri,
e Ranks (m;) must be controlled.

Affleck, Kennedy, Lieb, Tasaki (87); Fannes, Nachtergale, Werner (91), White (92),
Rémmer, Ostlund (94); Vidal (03); Verstraete (04); Oseledets, Tyrtyshnikov, (09)



Extension of MPS to higher dimensional cases: PEPS
White, Noack (1996), Verstraete, Cirac, Murg (2004)

» For 2D systems MPS representation is not optimal

» Short range interactions become also long range
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» Entanglement in all 4 direction — tensor product states needed!
> Use tensors A'[a]m,.my.ms.ma
» Projected Entangled-Pair State (PEPS)



Higher dimensional loop-free networks (Ex.: Tree-TNS)
Corboz, Vidal (2009), Murg, Verstraete, O.L, Noack (2010, 2014), Nakatani, Chan (2013)
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Schematic plot of a higher dimensional network, for example, the tree
tensor network state (TTNS). Each node is represented by a tensor A; of
order z; + 1, with z; is a site dependent coordination number.

e The network supposed to reflect the entanglement structure of the
molecule as much as possible.

e Maximal distance between two sites, 2A, scales logarithmically with d
for z > 2.

e Expected crossover between MPS and TTNS: one step scales as D1,
while z = 1 for the boundary sites



T3NS a new tensor format Gunst, Verstraete, Wooters, O.L., van Neck (2018)
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Resource requirements and complexity

DMRG | T3NS
CPU time: O (k*D?+ k2D?) | O (K°D? + k3D*)
Memory: O (k*D?) O (k*D? + kD?)
Disk: O (KD?) O (D2 + kD

» k : number of orbitals
» D: bond dimension

» The underlined terms correspond with the complexity of the most
intensive part of the algorithm, i.e. the matrix-vector product used
in the iterative solver.



One- (p;) and two-orbital (p;;) reduced density matrix
)= > Carroan lo1-an)

> p;; is calculated by taking the trace of |W)(W| over all local bases
except for a; and a;, the bases of sites i and j, i.e.,

Pi,j([ai, Og], [O‘:'v O‘J/]) = C<X1,---7<Xf7---,04j,---7a/\/ C:;l,...,a;,...,a’ Loy

e
ar,. Tyeees
» In the MPS representation, calculation of p;; corresponds to the
contraction of the network except at sites / and j.

» This can be decomposed as a sum of projector operators based on
the free variables o; and o;.

» p; and p; ; can be constructed from operators describing transitions
between single-site basis states.



Relative entropy and mutual information

COV(A1, A7) = (A1 ® Az) — (A1) (A2) = Tr(p12 — p1 @ p2)(A1 ® Ag)
Uncorr: for all Ay, Ay : COV(A1, A2) =0 iff  p1o = pr @ po
Spec: p12 = [Yr2) (V12| = [¥12) = 3 VAL @ [¢2,0)
Uncorr: [h12) = [v1,i) @ [t2,7)
Correlation expressed by the state only

ha2(p12) = D(p12|lp1 @ p2) = S(p1) + S(p2) — S(p12)
where

D(pllp’) = Trp(Inp —Inp'),  S(p) = —Trplnp

Spec: p12 = |12) (V12|

ha(p12) = S(p1) + S(p2) — S(p12) = 25(p1) = 25(p2)

since
5(p12) = 0,5(p1) = S(p2)
Notion of entanglement, no classical analogue



Tensor topology optimization: ), /; x d; (Ex. LiF 6/25)

Entanglement localization (MPS)

Energetical ordering (MPS dj=|i—j
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> Reordering orbitals by minimizing the entanglement distance:
laise = 32 1y % [i = 4|7,
» Apply spectral graph theory: Fiedler vector x = (x1,...xn) is the
solution that minimizes F(x) = xLx = >l — xj)?, with
> ;xi=0and Y, x? =1, and the graph Laplacian is
L =D — | with D,',,' = Zj /,',j.
The second eigenvector of the Laplacian is the Fiedler vector.

» also see recent work of Dupuy and Friesecke



Change of basis and entanglement (1D Hubbard Model)
Xiang (1996); Nishimoto, Jeckelmann, Gebhard, Noack (2002); oL, Sélyom (2003)

Entropy behavior: Uu=0 U=o0
momentum space: Irot = Zp S5,=0 Itot = NIn4
real space: Itot = NIn4 Irot = Nn?2
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momentum space exact at U = 0, crossover with U



g-ology and entanglement

Ehler, Sélyom, O.L., Noack (2015)

Momentum space
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Basis states transformation applied to the Hamiltonian
Murg, Verstraete, O.L., Noack (2010)

H= ZTUC cJ+ZVUk/c i ckcy

ijkl
The function E(U) can be expressed as

E(U) =) T(W)i(clg)+ > V(U)julc! cf cear) with

ij ijkl
uTUt
= (U U)V(U U).

<t b

U)
(V)

The correlation functions <c,-ch> and {c Tchckc/> are calculated with

respect to the original state and are not dependent on the parameters in
U. With the function E(U) in this form, its gradient can be calculated.

Numerically, this was found not stable.

Similarly basis rotation based on the one-particle reduced density matrix
Rissler, Noack, White (2006)



Redefinition of the fermionic modes by a linear transformation

e Linear transformations of a set of fermionic annihilation operators {c;}
to a new set {d;} satisfying the canonical anti-commutation relations:

¢ = ) Uijdj, p denotes the number of different fermion species

=
e Under this change of basis a state vector [p(U)) = G(U)|4(1))
Apy — A —Ap — - — A
| | | |
9(U)
| | | |
e Denoting the Hamiltonian written in terms of the transformed modes
by H(U) = G(U)'HG(U), we are interested in the solutions of

( opts |1/)opt>) — argmln UeU(Np), <¢|H(U)|1/)>
|¢>€Mumax

e The global basis change is composed of local unitaries solutions of

U = argmin ey £ (|¢(1; © U @ 1y_j_2))),

cost function 15.(1)(|1/)>) = H>:J¢,|\1 where Z{p denotes the Schmidt
spectrum of |¢)) for a bipartiting cut between sites j and j + 1.



Local mode transformation: black-box tool to improve basis
Krumnow, Veis, 0. L., Eisert, 2014-2016

- A(JJ*U |
& opt
\\ebb\) | | m Update the operators with Ugjopal := 1 @& U @ 1
? e.g. the Hamiltonian
Agpjt+1) o §_ H— H:= G(Uglobal) H GT(Uglobal)
— AU - § g exploiting their second quantized representation
G(U) I E H(T, V) = H=H(T., V)
optimize U = T T = UgIObaITU lobal
/and truncate Vie V= (Uglobal ® Uglobal) V(Uglabal ® Uglobal)
D) D'l)
— AU —AU+ 1 — AL —AU+1—

» Cost function: S%(p) = log Trp® /(1 — ), predefined accuracy upper
bounded by Rényi entropies a < 1, using a = 1/2 and finding U2
by Nelder-Mead method

» We perform mode transformation iteration with finite number of
sweeps with fixed bond dimension

» We peform a global reordering in order to avoide being trapped in
local minima (Fiedler vector, genetic algorithm)

» Extension to more than two sites is also possible



Large-scale DMRG results (Ex.:

bond dimension D
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calculations with Dy, = 256.

Ey was obtained from a calculation with Dy, = 2048 in the localized

basis.
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2d spinless fermions with PBCs krumnow, Veis, Eisert, 6.L (2019)

H= Z C’TCJ+ Z Vn,-nj,
(i) (i)

2
T~
2nR

——————

Volume =2n? Rr? system block environment block

........
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0 000
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» Optimization on the mps manifold and on the Grassman manifold
» Hamiltionian becomes long ranged

n n
H=3 tydg+ D vijwid daa,
=1 i kl=1



2d spinless fermions on a torus Krumnow, Veis, Eisert, 6.L (2019)
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> Ceaw = (1/N*) 322, jmiy(ni = 1/2)(nj — 1/2)
» One- and two-particle reduced density matrices. pgi.),ky, = (c,-TcJTckc/>
» Torus geometry: faster finize size scaling



Residual entropy?
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» Maximum of block entropy is reduced by a factor 10 (entropy is a
logarithmic function)

Highly simmetric and smooth entropy profiles is obtained

V. — 0 with increasing N

Scaling of residual entropy, quasi-particle picture etc

MPO bond dimension increases (use massive parallelization)



Saturation of half-chain block entropy with 1/D

0.4

» Saturation of block entropy with 1/D
» Scaling of block entropy with system needs more work
» Higher dimensional networks and mode transformation

» Further applications already to quantum impurity models, 2d
Hubbard like models, graphene nanoribbons, Wigner crystals
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Example on graphene nanoribbons I. Hagymasi, 6.L (2016)

2gaps

e Flat bands disappear
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Mate, Vizkeleti, Szalay, Hagymasi, O.L.
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Topologically protected, correlated end spin formation in

carbon nanotubes Moca, Izumida, Déra, O.L., Zarand (2019)

# _ S7 = Negge — 1

St = ]Ved_qe,

non-interacting many-body
spectrum spectrum

> S =5y = Mo

» Topological nanotubes spontaneously form double dot devices,
which may provide a platform for quantum computation.

» Sign of the interaction can be changed by changing the dielectric
constant of the environment.

» Coupling between ferromagnetic edge states is length and chirality
dependent



New basis representation — quantum chemistry framework

Ho = — Z t(x — x')cl (x)cs(x') with r=r(x) = r(v,1,7),
x,X’,s
e Construct and diagonalize the non-interacting part of the Hamiltonian
and obtain the corresponding eigenfunctions ¢, (r) = ¢ (v, ¢, 7),
oExpress the Coulomb interaction in this basis.
eFor effective Coulomb interaction we use the so-called Ohno potential,
2
e 1
V(I’]_ - r2) - 5
€ /(r1 —r)?+a?




Effective exchange interaction J.; between localized end spins
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e J.g between localized end spins as function of its length.

® When Negge=1, Jeir is always positive indicating an antiferromagnetic
exchange

® For Negge > 2 an antiferromagnetic to ferromagnetic transition occurs.
e For appropriate nanotube length, the sign of the interaction can be
changed by changing the dielectric constant of the environment.



Long time evolution krumnow, Eisert, &.L. (2019)

> At time t = 0 we perturb the system.
» After the quench the quasiparticles collide with each other.
» There are different time-evolution methods for MPS which are

currently in use to solve the time-dependent Schrodinger equation
(TDSE).

> application of U(8;) = e~ ie. | [i(t)) — |[o(t + ;)

> time-evolving block decimation (TEBD), MPOW!!, Krylov,
time-dependent variational principle (TDVP)

» each has advatages and disadvateges.

» TDVP — general non-local Hamiltonians (quantum chemsitry)



Long time evolution krumnow, Eisert, &.L. (2019)

» correlations in the system spread and bond dimension increases
unboundedly in time

» Combination of time evolution and adaptive mode transformation:

» optimization of modes after a full dmrg sweep, i.e. dt time step, or
after several dt time steps

» Ex: evolution of the imbalance AN(t) = (Neven(t) — Noaa(t))/N.
in 1D spinless Hubbard model, |¢(0)) = |101010...)
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Coupled cluster method with single and double excitations
tailored by matrix product state wave functions
Kinoshita, Hino, Bartlett, JCP (2005), Veis, Antalik, Neese, O.L., Pittner (2016)

» Formally single reference theory, Fermi vacuum is a single
determinant

» Split-amplitude ansatz

ext | -CAS
‘WTCC> = eT |\Uref> = eT T ‘\Uref>

» TCAS p et
> amplitudes extracted from > determined through the usual
DMRG (CASCI) calculation CcC

» frozen during CC calculation » account for dynamic

» account for static correlation correlation

|“UTCCSD> = e(ﬂCXt+7ECXE)e(7ECAS+7;CAS> |wref>

~ e(TlEXtH?Xt) |Wcascr)

» Requires only small modifications of the CC code



Chromium dimer — correlation energies

» Single-point calculation at 1.5 A

» One-particle basis: RHF with Ahlrichs’ SV basis set — (48e,420)
» DMRG space selected based on S™) profile

» DMRG performed with DBSS (e, &~ 1077)

» Extrapolated DMRG by Olivares-Amaya et al. JCP 142, 034102,

2015 serves as a FCl benchmark

100
cc

= DMRG with TCCSD

99.1%

98.3%
98

97.4%

96

941

921

90

Correlation energy retrieved [%]

88.5%

88

CCsD CCsD(T) ccsDTQ (12,12) (12,19) (12,21)
e DMRG-TCC has a quadratic error bound, Faulstich, Laestadius, O.L.,
Schneider, Kvaal(2019) but optimal CAS-EXT split only numerically
e Extensions: similarity transformed TCCSD, LPNO-TCCSD,
4c-DMRG-TCCSD. excited states.



Ab initio theory of negatively charged boron vacancy qubit in
hBNvady, Barcza, Thiering,Li, Hamdi, Chou, O.L., Gali (2019)
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FIG. 1. a Single particle electronic structure and b spin density of VB in ZBN. Wavelength (nm)

e Novel combiation of DFT and DMRG for extended systems to treat
excited states

e DMRG on top of plane-wave Kohn-Sham orbitals

e ab initio results explain magneto-optical properties of VB in hBN.

Highly tunable magneto-optical response from MgV color centers in
diamond Pershin, Barcza, O.L., Gali (2021)

e Potential of magnesium-vacancy (MgV) in diamond to operate as a
qubit by computing the key electronic and spin properties with robust
theoretical methods: Unprecedented control over the magneto-optical
response from a qubit by modulating the operational conditions.



MPS and TNS on kilo-processor architectures:
Nemes, Barcza, Nagy, (").L., Szolgay, 2014

» The most time-dominant step of the diagonalization can be
expressed as a list of dense matrix operations

» A smart hybrid CPU-GPU implementation, which exploits the power
of both CPU and GPU and tolerates problems exceeding the GPU
memory size.

» A new CUDA kernel has been designed for asymmetric matrix-vector
multiplication to accelerate the diagonalization

» Example: Hubbard model on Intel Xeon E5-2640 2.5GH CPU +
NVidia K20 GPU:

1200

[ e
F 1o
1000 - & i 5
Y g %% 5 mmcpu
E 800 = 80% ; Workload
o ! il 709 & —W—K20+Xeon
600 & 70% P
1071 GFlops and 8 ko 2 Ea
. S 400 3 = GPU
% 3.5 speedup is reached. £ : Fso% o Contribution
(Theoretical maximum is 3 M8 ifa% 2 ——cru
L L 3 i E B i Contribution
FESUEBREREN ., :
117 TFlOpS) 4096 4096 4096 4096 4096 E

1024 4096 4096 4096 4096

Number of retained block states



Massive Parallelization
J Brabec, J. Brandejs, K. Kowalski, S. Xanntheas, O.L., L. Veis (2020)

8192 512
4096
256
£ £
= =
128
1024
512 64
o w6 sz o ow o e s o mw
CPU cores CPU cores
(a) Davidson procedure (b) Renormalization

Figure 6: Timings of the Davidson procedure and the renormalization of the QC-DMRG iteration
corresponding to the middle of the sweep performed on the Fe(IT)-porphyrin model [CAS(32,34)]
with bond dimension M = 8192.
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Conclusion

» Tensor topologies together with proper basis representations are
important for efficient data sparse representaion of the wavefunction

» Local mode transformation: MPS/TNS based black-box tool to
improve basis

» Long time evolution with adaptive mode transformation is a
promising direction

» Combination of TNS with other (conventional) methods can exploit
benefits of the individual methods

» Massive Parallelization

» — Simulation of realistic material properties
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