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DMRG provides state-of-the-art results in many fields

H =
∑
ijαβ

Tαβ
ij c†iαcjβ +

1

2

∑
ijklαβγδ

V αβγδ
ijkl c†iαc†jβckγclδ ,

I Tij kinetic and on-site terms, Vijkl two-particle scatterings
I We consider usually lattice models in real space (DMRG)
I In quantum chemistry sites are electron orbitals (QC-DMRG)
I In UHF QC spin-dependent inetractions (UHF-QCDMRG)
I In relativistic quantum chemistry sites are spinors (4c-DMRG)
I In nuclear problems sites are proton/neutron orbitals (JDMRG)
I In k-space representation sites are momentum eigenstates (k-DMRG)
I For particles in confined potential sites → Hermite polynoms
I Major aim: to obtain the desired eigenstates of H.

• Symmetries: Abelian and non-Abelian quantum numbers, double
groups, complex integrals, quaternion sym. etc

• # of block states: 1 000 – 60 000. Size of Hilbert space up to 108.

• In ab inito DMRG the CAS size is: 70 electrons on 70 orbitals.

• 1-BRDM and 2-BRDM can be extracted.



Tensor product approximation

State vector of a quantum system in the discrete tensor product spaces

|Ψγ〉 =

q1∑
α1=1

. . .

qd∑
αd =1

U(α1, . . . , αd , γ) |α1〉 ⊗ · · · ⊗ |αd〉 ∈
d⊗

i=1

Λi :=
d⊗

i=1

Cqi ,

where span{|αi 〉 : αi = 1 , . . . , qi} = Λi = Cqi and γ = 1, . . . ,m.

α1 α2 α3 α4 α5 α6 α7 α8 γ

U

• In a spin-1/2 model αi ∈ {↓, ↑}.

• In a spin-1/2 fermionic model αi ∈ {0, ↓, ↑, ↑↓}.

dimHd = O(qd ) Curse of dimensionality!

• We seek to reduce computational costs by parametrizing the tensors in
some data-sparse representation.



Tensor product representation

• A general tensor network representation of a tensor of order 5.
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• An arbitrary example of a tensor tree (loop free).
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Matrix product state (MPS) representation / DMRG /TT

• A tensor of order 5 in Matrix Product State (MPS) representation.
Also know as Tensor Train (TT).
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• The tensor U is given element-wise as

U(α1, . . . , αd ) =
r1∑

m1=1

. . .

rd−1∑
md−1=1

A1(α1,m1)A2(m1, α2,m2) · · ·Ad (md−1, αd ).

• We get d component tensors of order 2 or 3 which yields a chain of
matrix products:

U(α1, . . . , αd ) = A1(α1)A2(α2) · · ·Ad−1(αd−1)Ad (αd )

with [Ai (αi )]mi−1,mi := Ai (mi−1, αi ,mi ) ∈ Cri−1×ri .

• Ranks (mi ) must be controlled.

Redundancy:
U(α1, . . . , αd ) = A1(α1)GG−1A2(α2) · · ·Ad−1(αd−1)Ad (αd )

Affleck, Kennedy, Lieb, Tasaki (87); Fannes, Nachtergale, Werner (91), White (92),
Römmer, Ostlund (94); Vidal (03); Verstraete (04); Oseledets, Tyrtyshnikov, (09)
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Extension of MPS to higher dimensional cases: PEPS
White, Noack (1996), Verstraete, Cirac, Murg (2004)

I For 2D systems MPS representation is not optimal

I Short range interactions become also long range

I Entanglement in all 4 direction → tensor product states needed!

I Use tensors Ai [α]m1,m2,m3,m4

I Projected Entangled-Pair State (PEPS)



Higher dimensional loop-free networks (Ex.: Tree-TNS)
Corboz, Vidal (2009), Murg, Verstraete, Ö.L, Noack (2010, 2014), Nakatani, Chan (2013)
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Schematic plot of a higher dimensional network, for example, the tree
tensor network state (TTNS). Each node is represented by a tensor Ai of
order zi + 1, with zi is a site dependent coordination number.

• The network supposed to reflect the entanglement structure of the
molecule as much as possible.

• Maximal distance between two sites, 2∆, scales logarithmically with d
for z > 2.
• Expected crossover between MPS and TTNS: one step scales as Dz+1,
while z = 1 for the boundary sites



T3NS a new tensor format Gunst, Verstraete, Wooters, Ö.L., van Neck (2018)
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Resource requirements and complexity

I k : number of orbitals

I D: bond dimension

I The underlined terms correspond with the complexity of the most
intensive part of the algorithm, i.e. the matrix-vector product used
in the iterative solver.



One- (ρi ) and two-orbital (ρi ,j) reduced density matrix

|ψ〉 =
∑

α1,...,αN

Cα1,...,αN
|α1...αN〉 ,

I ρi,j is calculated by taking the trace of |Ψ〉〈Ψ| over all local bases
except for αi and αj , the bases of sites i and j , i.e.,

ρi,j ([αi , αj ], [α
′
i , α
′
j ]) =

∑
α1,...,�αi ,...,

�αj ,...,αN

Cα1,...,αi ,...,αj ,...,αN
C∗α1,...,α′i ,...,α

′
j ,...,,αN

.

I In the MPS representation, calculation of ρij corresponds to the
contraction of the network except at sites i and j .

I This can be decomposed as a sum of projector operators based on
the free variables αi and αj .

I ρi and ρi,j can be constructed from operators describing transitions
between single-site basis states.



Relative entropy and mutual information

COV (A1,A2) = 〈A1 ⊗ A2〉 − 〈A1〉〈A2〉 = Tr(ρ12 − ρ1 ⊗ ρ2)(A1 ⊗ A2)

Uncorr: for all A1,A2 : COV (A1,A2) = 0 iff ρ12 = ρ1 ⊗ ρ2

Spec: ρ12 = |ψ12〉〈ψ12| → |ψ12〉 =
∑

i

√
λi |ψ1,i 〉 ⊗ |ψ2,i 〉

Uncorr: |ψ12〉 = |ψ1,i 〉 ⊗ |ψ2,i 〉

Correlation expressed by the state only

I12(ρ12) = D(ρ12||ρ1 ⊗ ρ2) = S(ρ1) + S(ρ2)− S(ρ12)

where
D(ρ||ρ′) = Trρ(ln ρ− ln ρ′), S(ρ) = −Trρ ln ρ

Spec: ρ12 = |ψ12〉〈ψ12|
I12(ρ12) = S(ρ1) + S(ρ2)− S(ρ12) = 2S(ρ1) = 2S(ρ2)

since
S(ρ12) = 0,S(ρ1) = S(ρ2)

Notion of entanglement, no classical analogue



Tensor topology optimization:
∑

ij Iij × dηij (Ex. LiF 6/25)

Energetical ordering (MPS) dij = |i − j | Entanglement localization (MPS)

I Reordering orbitals by minimizing the entanglement distance:
Îdist =

∑
i,j Ii,j × |i − j |η ,

I Apply spectral graph theory: Fiedler vector x = (x1, . . . xN ) is the
solution that minimizes F (x) = x†Lx =

∑
ij Ii,j (xi − xj )

2, with∑
i xi = 0 and

∑
i x2

i = 1, and the graph Laplacian is
L = D − I with Di,i =

∑
j Ii,j .

The second eigenvector of the Laplacian is the Fiedler vector.

I also see recent work of Dupuy and Friesecke



Change of basis and entanglement (1D Hubbard Model)
Xiang (1996); Nishimoto, Jeckelmann, Gebhard, Noack (2002); Ö.L., Sólyom (2003)

Entropy behavior:
momentum space:
real space:

U = 0
ITot =

∑
p Sp = 0

ITot = N ln 4
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RS
MS

H = −t
∑N

j=1,σ

(
c+

j,σcj+1,σ + c+
j+1,σcj,σ

)
+ U

∑N
j=1 nj,↑nj,↓

ε(k) =
∑

r e−ikr t(r), where ki = (2πn)/N, −N/2 < n ≤ N/2

Tij = −2t cos(ki )δ(i − j) and Vijkl = (U/N)δ(i + j − k − l)

H =
∑

kσ εk c†kσckσ + U
N

∑
pkq c†p−q↑c

†
k+q↓ck↓cp↑,

momentum space exact at U = 0, crossover with U



Momentum space: g-ology and entanglement
Ehler, Sólyom, Ö.L., Noack (2015)

H =
∑
kσ

εk c†kσckσ +
U

N

∑
pkq

c†p−q↑c
†
k+q↓ck↓cp↑,
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Basis states transformation applied to the Hamiltonian
Murg, Verstraete, Ö.L., Noack (2010)

H =
∑

ij

Tij c
†
i cj +

∑
ijkl

Vijkl c
†
i c†j ck cl ,

The function E (U) can be expressed as

E (U) =
∑

ij

T̃ (U)ij〈c†i cj〉+
∑
ijkl

Ṽ (U)ijkl〈c†i c†j ck cl〉 with

T̃ (U) = UTU†

Ṽ (U) = (U ⊗ U)V (U ⊗ U)†.

The correlation functions 〈c†i cj〉 and 〈c†i c†j ck cl〉 are calculated with
respect to the original state and are not dependent on the parameters in
U. With the function E (U) in this form, its gradient can be calculated.

Numerically, this was found not stable.

Similarly basis rotation based on the one-particle reduced density matrix
Rissler, Noack, White (2006)



Redefinition of the fermionic modes by a linear transformation

• Linear transformations of a set of fermionic annihilation operators {ci}
to a new set {di} satisfying the canonical anti-commutation relations:

ci =
Np∑
j=1

Ui,j dj , p denotes the number of different fermion species

• Under this change of basis a state vector |ψ(U)〉 = G (U)|ψ(1)〉
A[1] A[2] A[3] . . . A[n]

g(U) · · ·

· · ·

• Denoting the Hamiltonian written in terms of the transformed modes
by H(U) = G (U)†HG (U), we are interested in the solutions of

(Uopt, |ψopt〉) = argmin U∈U(Np),
|ψ〉∈MDmax

〈ψ|H(U)|ψ〉.

• The global basis change is composed of local unitaries solutions of

U loc
opt = argminU∈V fj

(
|ψ(1j ⊕ U ⊕ 1N−j−2)〉

)
,

cost function f
(1)

j (|ψ〉) = ||Σj
ψ||1 where Σj

ψ denotes the Schmidt
spectrum of |ψ〉 for a bipartiting cut between sites j and j + 1.



Local mode transformation: black-box tool to improve basis
Krumnow, Veis, Ö. L., Eisert, 2014-2016

I Cost function: Sα(ρ) = logTrρα/(1−α), predefined accuracy upper
bounded by Rényi entropies α < 1, using α = 1/2 and finding Uopt

loc

by Nelder-Mead method
I We perform mode transformation iteration with finite number of

sweeps with fixed bond dimension
I We peform a global reordering in order to avoide being trapped in

local minima (Fiedler vector, genetic algorithm)
I Extension to more than two sites is also possible



Large-scale DMRG results (Ex.: Be6 ring)
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Left panel: bond dimension needed for a bounded truncation error
εtrc ≤ 10−6 and Dmin = 64 when starting in the HF basis.
Right panel: the relative error in energy (〈ψ|H|ψ〉 − E0)/E0 obtained by
calculations with Dmax = 256.
E0 was obtained from a calculation with Dmax = 2048 in the localized
basis.



Mode Transformation: Itot =
∑

i S(ρi), Ioverall =
∑

ij Iij |i − j |2
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2d spinless fermions with PBCs Krumnow, Veis, Eisert, Ö.L (2019)

H =
∑
〈i,j〉

c†i cj +
∑
〈i,j〉

Vni nj ,

system block environment block

I Optimization on the mps manifold and on the Grassman manifold

I Hamiltionian becomes long ranged

H =
n∑

i,j=1

ti,j c
†
i cj +

n∑
i,j,k,l=1

vi,j,k,l c
†
i c†j ck cl ,



2d spinless fermions on a torus Krumnow, Veis, Eisert, Ö.L (2019)
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I Ccdw = (1/N4)
∑

i,j ηi,j (ni − 1/2)(nj − 1/2)

I One- and two-particle reduced density matrices. ρ
(2)
i,j,k,l = 〈c†i c†j ck cl〉

I Torus geometry: faster finize size scaling



Residual entropy?
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I Maximum of block entropy is reduced by a factor 10 (entropy is a
logarithmic function)

I Highly simmetric and smooth entropy profiles is obtained
I Vc → 0 with increasing N
I Scaling of residual entropy, quasi-particle picture etc
I MPO bond dimension increases (use massive parallelization)



Saturation of half-chain block entropy with 1/D

Half-filled, 6x6 lattice 8x8 lattice

I Saturation of block entropy with 1/D

I Scaling of block entropy with system needs more work

I Higher dimensional networks and mode transformation

I Further applications already to quantum impurity models, 2d
Hubbard like models, graphene nanoribbons, Wigner crystals



Example on graphene nanoribbons I. Hagymási, Ö.L (2016)

• Flat bands disappear
when interaction is
switched on

• Need TNS due to strong
quantum fluctuations
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• DMRG D = 20000, U = 2

Problem revisited with modetrans-
formation, monitoring emerging
modes for zigzag, armchair, periodic
BC etc.. Fraction of D is needed

Mate, Vizkeleti, Szalay, Hagymasi, Ö.L.

(left) Sz
i for the ground state in the

presence of a pinning magnetic field
at the bottom zigzag



Topologically protected, correlated end spin formation in

carbon nanotubes Moca, Izumida, Dóra, Ö.L., Zaránd (2019)

S S
1

2

(a)

many-body 
spectrum

non-interacting 
spectrum

(b)

I S1 = S2 =
Nedge

2
I Topological nanotubes spontaneously form double dot devices,

which may provide a platform for quantum computation.
I Sign of the interaction can be changed by changing the dielectric

constant of the environment.
I Coupling between ferromagnetic edge states is length and chirality

dependent



New basis representation → quantum chemistry framework

H0 = −
∑
x,x′,s

t(x− x′)c†s (x)cs(x′) with r = r(x) = r(ν, l, τ) ,

• Construct and diagonalize the non-interacting part of the Hamiltonian
and obtain the corresponding eigenfunctions φα(r) ≡ φα(ν, `, τ),
•Express the Coulomb interaction in this basis.
•For effective Coulomb interaction we use the so-called Ohno potential,

V (r1 − r2) =
e2

εr

1√
(r1 − r2)2 + α2

, ,



Effective exchange interaction Jeff between localized end spins
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• Jeff between localized end spins as function of its length.
• When Nedge=1, Jeff is always positive indicating an antiferromagnetic
exchange
• For Nedge ≥ 2 an antiferromagnetic to ferromagnetic transition occurs.
• For appropriate nanotube length, the sign of the interaction can be
changed by changing the dielectric constant of the environment.



Long time evolution Krumnow, Eisert, Ö.L. (2019)

I At time t = 0 we perturb the system.
I After the quench the quasiparticles collide with each other.
I There are different time-evolution methods for MPS which are

currently in use to solve the time-dependent Schrödinger equation
(TDSE).

I application of Û(δt) = e−iδt Ĥ , i.e. , |ψ(t)〉 → |ψ(t + δt)〉
I time-evolving block decimation (TEBD), MPOW I,II, Krylov,

time-dependent variational principle (TDVP)
I each has advatages and disadvateges.
I TDVP → general non-local Hamiltonians (quantum chemsitry)



Long time evolution Krumnow, Eisert, Ö.L. (2019)

I correlations in the system spread and bond dimension increases
unboundedly in time

I Combination of time evolution and adaptive mode transformation:

I optimization of modes after a full dmrg sweep, i.e. dt time step, or
after several dt time steps

I Ex: evolution of the imbalance ∆N(t) = (Neven(t)− Nodd(t))/N.
in 1D spinless Hubbard model, |ψ(0)〉 = |101010 . . .〉



exact

t = 0.1 t = 0.75 t = 1.5 t = 3.0

rotated
orbitals

0.0

0.2

0.4

0.6

0.8

1.0

|ρ
j,
k
|



Coupled cluster method with single and double excitations

tailored by matrix product state wave functions
Kinoshita, Hino, Bartlett, JCP (2005), Veis, Antalik, Neese, Ö.L., Pittner (2016)

I Formally single reference theory, Fermi vacuum is a single
determinant

I Split-amplitude ansatz

|ΨTCC〉 = eT |Ψref〉 = eT
ext+T CAS |Ψref〉

I T CAS

I amplitudes extracted from
DMRG (CASCI) calculation

I frozen during CC calculation

I account for static correlation

I T ext

I determined through the usual
CC

I account for dynamic
correlation

|ΨTCCSD〉 = e

(
T ext

1 +T ext
2

)
e

(
T CAS

1 +T CAS
2

)
|Ψref〉

≈ e

(
T ext

1 +T ext
2

)
|ΨCASCI〉

I Requires only small modifications of the CC code



Chromium dimer – correlation energies

I Single-point calculation at 1.5 Å
I One-particle basis: RHF with Ahlrichs’ SV basis set → (48e,42o)
I DMRG space selected based on S (1) profile
I DMRG performed with DBSS (εtr ≈ 10−7)
I Extrapolated DMRG by Olivares-Amaya et al. JCP 142, 034102,

2015 serves as a FCI benchmark

• DMRG-TCC has a quadratic error bound, Faulstich, Laestadius, Ö.L.,

Schneider, Kvaal(2019) but optimal CAS-EXT split only numerically
• Extensions: similarity transformed TCCSD, LPNO-TCCSD,
4c-DMRG-TCCSD, excited states.



Ab initio theory of negatively charged boron vacancy qubit in

hBNIvády, Barcza, Thiering,Li, Hamdi, Chou, Ö.L., Gali (2019)

• Novel combiation of DFT and DMRG for extended systems to treat
excited states
• DMRG on top of plane-wave Kohn-Sham orbitals
• ab initio results explain magneto-optical properties of VB in hBN.

Highly tunable magneto-optical response from MgV color centers in
diamond Pershin, Barcza, Ö.L., Gali (2021)

• Potential of magnesium-vacancy (MgV) in diamond to operate as a
qubit by computing the key electronic and spin properties with robust
theoretical methods: Unprecedented control over the magneto-optical
response from a qubit by modulating the operational conditions.



MPS and TNS on kilo-processor architectures:
Nemes, Barcza, Nagy, Ö.L., Szolgay, 2014

I The most time-dominant step of the diagonalization can be
expressed as a list of dense matrix operations

I A smart hybrid CPU-GPU implementation, which exploits the power
of both CPU and GPU and tolerates problems exceeding the GPU
memory size.

I A new CUDA kernel has been designed for asymmetric matrix-vector
multiplication to accelerate the diagonalization

I Example: Hubbard model on Intel Xeon E5-2640 2.5GH CPU +
NVidia K20 GPU:

1071 GFlops and
×3.5 speedup is reached.
(Theoretical maximum is
1.17 TFlops)



Massive Parallelization
J Brabec, J. Brandejs, K. Kowalski, S. Xanntheas, Ö.L., L. Veis (2020)



Conclusion

I Tensor topologies together with proper basis representations are
important for efficient data sparse representaion of the wavefunction

I Local mode transformation: MPS/TNS based black-box tool to
improve basis

I Long time evolution with adaptive mode transformation is a
promising direction

I Combination of TNS with other (conventional) methods can exploit
benefits of the individual methods

I Massive Parallelization

I → Simulation of realistic material properties
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