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Fundamental excitations of a many body ground state


Behave like particles: single quasiparticle is long-lived

Quasiparticles
What is quasiparticle?
- Terminology is not unique.

- Mattuck (A Guide to Feynman Diagrams in the Many-Body Problem)
distinguishes quasiparticles from collective excitations.

quasiparticle = original individual particle
+ cloud of disturbed neighbors

- Collective excitation (e.g. phonon) is not centered
around individual particle
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Magnetic systems

Ferromagnet Antiferromagnet

Electrons are immobile, pinned to the lattice System of localized spins⇒

Iron Iron oxide

(i.e. electronic insulators)



Quasiparticles in magnetic systems

Spin waves (magnons) - bosonic quasiparticles 
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Beyond magnons - fractionalized quasiparticles
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e/3e.g. fractional charge in FQHE

Carry fractional quantum numbers

fractionalized

fractionalized
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S =
1
2

excitation S =
1
2

excitation

e.g. antiferromagnetic Ising chain

upon spin-flip domain walls are formed in pairs

(spinon)

Beyond magnons - fractionalized quasiparticles



Quasiparticles
• Spin wave: bosonic quasiparticle in a magnet
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Inelastic neutron scattering: 
dynamical susceptibility

Dynamical susceptibility
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Measured in inelastic 
neutron scattering

Magnons - leave sharp peak Spinons - show up as 2-particle continuum

spinon  S=1/2

spinon  S=1/2

α − NaMnO2

Mourigal et al., Nature Physics 2013



The ground state 
can be obtained 
using DMRG 
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Probing dynamical susceptibility numerically

Time evolution of a 
quenched state
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• Antiferromagnetic spin-1/2 chain in magnetic field


• At low magnetization:

Interactions between spinons induce

a gap in the dynamical correlations


• At high magnetization:

Magnons (anti)-bound states
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• (Anti)-bound states of 
magnons at higher dimensions 



H = ∑
i

J1
⃗S i ⋅ ⃗S i+1 + J2

⃗S i ⋅ ⃗S i+2

Spin-1/2 antiferromagnetic chain

Exactly solvable by 
Bethe ansatz

0.241 J2/J10

gapless dimerized

Majumdar-Gosh

0.5

J1

J2



Half-filled band of spinons

H = ∫ dx (ψ†
R(−ivF∂x)ψR + ψ†

L(ivF∂x)ψL)

⃗J R/L =
1
2

ψ†
R/L ⃗σ ψR/L, ψR/L = (ψR/L,↑

ψR/L,↓)

Low energy description of the gapless phase

⃗S i ∼ ⃗J R(xi) + ⃗J L(xi) + (−1)i ⃗N (xi)

Effective Hamiltonian

H0

g

V

−g∫ dx ⃗J R ⋅ ⃗J L

kF =
π
2

ψL ψR

↑↓

density-density interactions 
between left and right 
moving spinons

free left/right 
moving spinons



gapped

H = H0 − g∫ dx ⃗J R ⋅ ⃗J L

⃗J R/L =
1
2

ψ†
R/L ⃗σ ψR/L

Spin-1/2 antiferromagnetic chain

backscattering interaction 
is marginally irrelevant! 

gapless
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B

Non-interacting limit - small Zeeman field splits the up/down bands

k

ω

Dynamical susceptibility of spin-1/2 AFM chain 

                                                             in magnetic field
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Electron spin resonance in SÄ 1
2 antiferromagnetic chains
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A systematic field-theory approach to electron spin resonance !ESR" in the S!1/2 quantum antiferromag-
netic chain at low temperature T !compared to the exchange coupling J" is developed. In particular, effects of
a transverse staggered field h and an exchange anisotropy !including a dipolar interaction" # on the ESR line
shape are discussed. In the lowest order perturbation theory, the linewidth is given as $Jh2/T2 and $(#/J)2T ,
respectively. In the case of a transverse staggered field, the perturbative expansion diverges at lower tempera-
ture; nonperturbative effects at very low temperature are discussed using exact results on the sine-Gordon field
theory. We also compare our field-theory results with the predictions of Kubo-Tomita theory for the high-
temperature regime, and discuss the crossover between the two regimes. It is argued that a naive application of
the standard Kubo-Tomita theory to the Dzyaloshinskii-Moriya interaction gives an incorrect result. A rigorous
and exact identity on the polarization dependence is derived for certain class of anisotropy, and compared with
the field-theory results.
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I. INTRODUCTION

Quantum spin chains have been studied extensively for
both their experimental and theoretical interests. Among
many experimental methods of investigation, electron spin
resonance !ESR" is unique for its high sensitivity to anisot-
ropy. While the theory of ESR has been studied1–4 for a long
time, there remain important open problems, especially for
strongly interacting systems. One of the problems is that,
generally one has to make a crucial assumption about the
line shape at some point during the calculation. As we will
demonstrate, such an assumption could be incorrect in some
cases although it might have been taken for granted in the
literature. In addition, in an actual calculation one has to
calculate various correlation functions. Traditionally, crude
approximations such as the high-temperature approximation,
the classical spin approximation and the decoupling of the
correlation functions are used. However, these approxima-
tions break down when the many-body correlation effects are
strong. As a consequence, rather little has been understood
about ESR when many-body correlations become important.
Even in the cases which were believed to be understood with
the existing theories, there appear to be subtle problems.
In this paper, we study ESR in S!1/2 quantum spin

chains in the ‘‘one-dimensional critical region’’ where the
temperature T is sufficiently small compared to the charac-
teristic energy of the exchange interaction J !but T is still
large compared to three-dimensional ordering temperature or
spin-Peierls transition temperature." We stress that ESR in
such a region is essentially a many-body problem. Here,
many of the traditional theoretical techniques lose their va-
lidity. Instead, !1#1"-dimensional field theory should de-
scribe the universal, low-energy/large-distance behavior. Our
main purpose in the present paper is to develop an approach
to ESR based on field theory !bosonization" methods. At
least for several simple cases !which are of experimental
interest" we are able to formulate the problem in terms of the
systematic Feynman-Dyson perturbation theory, avoiding
previously made ad hoc assumptions. When the effect of the

anisotropy is small, the ESR line shape is shown to be
Lorentzian up to a possible small smooth background; the
width and the shift of the Lorentzian peak are given pertur-
batively. In one dimension, it was argued that the diffusive
spin dynamics leads to a non-Lorentzian line shape, which is
indeed observed in the S! 1

2 antiferromagnetic chain
TMMC.4 However, our results imply that the argument does
not apply to the present case of the S! 1

2 chain at low tem-
perature. We will study several consequences of our theory
for two types of perturbations of the one-dimensional S
!1/2 Heisenberg antiferromagnet: a staggered field and an
exchange anisotropy !or dipolar interaction".
In a compound with a low crystal symmetry permitting a

staggered component of the gyromagnetic tensor or a
Dzyaloshinskii-Moriya !DM" interaction, an effective stag-
gered field is also produced by the applied uniform field. The
staggered field corresponds to a relevant operator in the
renormalization group sense, and is related to the field-
induced gap phenomenon recently found in several quasi-
one-dimensional S!1/2 antiferromagnets.5–9 Since it is a
relevant operator, one may expect that its effect is enhanced
at lower temperatures. Indeed, we find that the staggered
field contributes to the linewidth proportionally to h2/T2
where h is the magnitude of the staggered field. We propose
this as an explanation of the peculiar low-temperature
behavior10 found in ESR on Cu Benzoate nearly 30 years
ago. Moreover, we propose that the sharp resonance found at
very low temperature,11 which was understood as a signature
of a three-dimensional Néel ordering, may well be under-
stood in a purely one-dimensional framework based on sine-
Gordon field theory.
On the other hand, dipolar interactions or exchange

anisotropies are present in virtually any real material. We
find that their contribution to the linewidth is proportional to
T, which appears to be consistent with existing experimental
data on several quasi one dimensional S!1/2 antiferromag-
net such as CuGeO3 , KCuF3 and NaV2O5.
Basic ideas and some of the results in the present paper

were presented briefly in Ref. 12. This paper is organized as
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Dynamically Dominant Excitations of String Solutions in the Spin-1=2 Antiferromagnetic
Heisenberg Chain in a Magnetic Field
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Using Bethe-ansatz solutions, this Letter uncovers a well-defined continuum in dynamical structure

factor Sþ"ðk; !Þ of the spin-1=2 antiferromagnetic Heisenberg chain in magnetic fields. It comes from

string solutions that continuously connect the mode of the lowest-energy excitations in the zero-field limit

and that of bound states of overturned spins from the ferromagnetic state near the saturation field. The

relevance to real materials is confirmed through comparisons with experimental results.
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The spin-1=2 antiferromagnetic Heisenberg chain ex-
hibits intriguing quantum many-body effects, associated
with modern concepts in condensed-matter physics, such
as spin liquids, quantum criticality, and fractionalization.
Also, this system is an excellent platform to make precise
comparisons between experiments and theories: Various
intriguing features predicted by exact solutions [1] can
be confirmed by accurate experiments on quasi-one-
dimensional materials. Actually, it is established that dy-
namical properties in the absence of a magnetic field are
characterized by quasiparticles called spinons [2,3]
through precise comparisons between theoretical predic-
tions and experimental results [4– 6].

In magnetic fields, dynamical properties are more com-
plicated. Some basic features of dominant excitation spec-
tra can be understood by modifying the 2-spinon con-
tinuum in zero field according to the strength of magnetic
fields in the k-! plane [7– 9]. The distributions of spectral
weights in S"þðk;!Þ and Szzðk;!Þ are effectively ex-
pressed by low-order particle-hole excitations in Bethe-
ansatz solutions [9– 11]: The dominant excitations in
S"þðk; !Þ and Szzðk;!Þ are known as 2-psinon (2c ) ex-
citations and psinon-antipsinon (c c %) excitations, respec-
tively [10,11]. Their properties have been investigated in
detail by using Bethe-ansatz solutions [10– 19].

As for Sþ"ðk;!Þ, the situation is much more compli-
cated. Except for the low-energy modes near momentum
k ¼ 0 [9,10,18– 20] and k ¼ ! [9,10,19,20], behaviors of
Sþ"ðk; !Þ have not been clarified: In Ref. [9], the contin-
uum of c c % excitations was predicted to persist in the
thermodynamic limit based on the classification by the
Bethe formalism. However, numerical results indicated
that the spectral weight in the c c % continuum is rather
small except near the edges, and there exists a large frac-
tion of spectral weights above the continuum [9,20].

This Letter, mainly focusing attention on behaviors of
Sþ"ðk; !Þ in magnetic fields, identifies excitations having
large spectral weights to clarify overall dynamical features
of the Heisenberg chain in magnetic fields.

This Letter considers the spin-1=2 antiferromagnetic
Heisenberg chain with L sites, M down spins (M ' L=2),

and periodic boundary conditions. The Hamiltonian is
defined as

H ¼ J
XL

x¼1

Sx ( Sxþ1 "HSz; (1)

where Sx is the spin-1=2 operator at site x, and J > 0.
Magnetic field H at Sz=L ¼ 1=2"M=L in the thermody-
namic limit is obtained in Ref. [21]. In the Bethe-ansatz
[1], the wave function, energy, and momentum of an
eigenstate are expressed by a set of rapidities f!jg which
is obtained from the Bethe equation: L arctanð!jÞ ¼
!Ij þ

PM
l¼1 arctan½ð!j "!lÞ=2*, once a set of fIjg is

given. Here, Ij (j ¼ 1 + M) are called Bethe quantum
numbers, which are integers (half-odd integers) within
jIjj ' ðL"M" 1Þ=2 for odd (even) L"M as in
Figs. 1(a)– 1(e) for solutions of real f!jg. Distributions of
fIjg are somewhat analogous to momentum distributions of
spinless fermions. As in Fig. 1(b), a hole (particle) created
inside (outside) the fIjg of the ground state is called psinon
(antipsinon) and denoted by c (c %) [10,11].
It is also known that there are solutions with complex

rapidities [1]. Later, this Letter will consider solutions with
an n string (n , 2), i.e., a set of n rapidities expressed as
!j ¼ "!þ {ðnþ 1" 2jÞ þ {"j for j ¼ 1 + n, where "! is
real, and "j ¼ O ðe"cLÞ with c > 0 [1,16,22,23]. The
Letter takes real !j for j , nþ 1, and denotes the
n-string solutions by Sn. These solutions are specified by
two sets of fIjg [22]: One is for the real rapidities, and the
other is for the n string, which this Letter denotes by fIrjg
and fIijg, respectively. For Sn (n , 2), fIijg ¼ Ii1, jIi1j '
L=2"M as in Fig. 1(f-2). This Letter denotes c and c %

of fIrjg by c s and c %
s , respectively, and regards fIrjgwithout

c s or c
%
s also as a part of those with c sc

%
s .

This Letter investigates behaviors of dynamical struc-
ture factors defined as S "##ðk;!Þ ¼ P

iM
"##ðk; $ikÞ%ð!"

$ikÞ for # ¼ ",þ, and z. Here,M "##ðk; $ikÞ is the transition
rate between the ground state jG:S:i in a magnetic field and
an excited state jk; $iki with excitation energy $ik and mo-
mentum k, defined as M "##ðk; $ikÞ ¼ jhk; $ikjS#k jG:S:ij2. I
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Spin-1/2 antiferromagnetic chain in magnetic field

Can we understand the effect of  systematically 
(and away from the integrable limit with )?

g
J2 = 0
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Numerical results
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Increasing the magnetic field
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Large magnetization limit

H = ∑
i

2J (S+
i S−

i+1 + S−
i S+

i+1) + JzSz
i Sz

i+1 − BSz
i

Interaction 
strength

H = ∑
i

J
2 (c†

i ci+1 + h . c . ) + Jznini+1 + (B − Jz)ni

Mapping to spinless fermions

S−
i ∼ c†

i

Sz
i =

1
2

− ni

ω(k) = J cos k + B − Jz

Single magnon dispersion
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2-magnon (anti-)bound states

2⟩ = ∑
n,m

Ψn,mS−
n S−

m 0⟩

fully polarized state

Ψn,m = eiK(n+m)/2f( |n − m | )

center of mass momentum 

Solving an effective Schrodinger equation for 2-magnon states

bound state above the 
2-magnon continuum! 

* works also for J2 ≠ 00 ⇡ 2⇡
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2-magnon spectrum:



Dynamical susceptibility at large magnetization
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Higher-dimensional antiferromagnets
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High field regime

H = ∑
<i, j>

J ⃗S i ⋅ ⃗S j − B∑
i

Sz
i

- solving 2-magnon Schrodinger equation 
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Square lattice antiferromagnet
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High field regime

Below saturation  magnons condense (long range order)B < Bsat

sin θ = B/Bsat

2D square lattice ⃗Q = (π, π)

Field-induced decay dynamics in square-lattice antiferromagnets
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Dynamical properties of the square-lattice Heisenberg antiferromagnet in applied magnetic field are studied
for arbitrary value S of the spin. Above the threshold field for two-particle decays, the standard spin-wave
theory yields singular corrections to the excitation spectrum with logarithmic divergences for certain momenta.
We develop a self-consistent approximation applicable for S!1, which avoids such singularities and provides
regularized magnon decay rates. Results for the dynamical structure factor obtained in this approach are
presented for S=1 and S=5 /2.
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I. INTRODUCTION

The square-lattice Heisenberg antiferromagnet is an im-
portant model system in quantum magnetism.1 Theoretical
studies of this model have provided deep insights into the
role of low dimensionality in the static and dynamical prop-
erties of the many-body spin systems. Recently, there has
been a growing interest in the effect of magnetic field in the
dynamics of quantum antiferromagnets. The strong-field re-
gime is now reachable for a number of layered square-lattice
materials with moderate strength of exchange coupling be-
tween spins.2–5 In addition, new field-induced dynamical ef-
fects can be present in the antiferromagnets with other lattice
geometries6,7 as well as in the gapped quantum spin systems
near the condensation field for triplet excitations.8–14

The ground-state properties of the square-lattice antiferro-
magnet !SAFM" in a finite field conform with the semiclas-
sical picture of spins gradually tilted toward the field
direction,15 see Fig. 1. On the other hand, excitation spec-
trum and dynamical properties are expected to undergo
rather dramatic transformation.16–18 Following the prediction
of the field-induced spontaneous magnon decays in Ref. 16,
there is an ongoing search for suitable spin-1/2 square-lattice
materials2–5 to investigate such an effect. The existence of
substantial damping in the magnon spectrum of the square-
lattice Heisenberg model in a field has been recently verified
by the quantum Monte Carlo17 !QMC" and the exact
diagonalization18 numerical study. Other theoretical aspects
of the behavior of the quantum SAFM in applied field have
also been addressed.19–21

In this paper, we extend previous work of two of us16 and
provide a comprehensive theoretical investigation of the dy-
namics of the nearest-neighbor Heisenberg SAFM including
detailed calculation of the 1 /S correction to the energy spec-
trum in external field, kinematic analysis of the field-induced
two-magnon decays, and self-consistent treatment of magnon
decay rates for systems with S!1.

The model spin Hamiltonian is

Ĥ = J#
$ij%

Si · S j − H#
i

Si
z, !1"

where J stands for the nearest-neighbor exchange coupling
constant and H is the external magnetic field in units of g"B.

The standard spin-wave theory works quite well for the
SAFM in zero field.1,22–25 Surprisingly enough, in high mag-
netic fields one encounters strong singularities in the spin-
wave corrections to the dynamical properties of the SAFM,
which arise due to spontaneous magnon decays above the
threshold field H!&0.75Hs.16 Singular behavior of the spec-
trum signifies a breakdown of the perturbative 1 /S expansion
and requires a regularization. The aim of this work is to
develop a self-consistent approximation which yields the
spectrum that is free from the essential singularities.

Within the conventional spin-wave approach, the gapless
Goldstone branch is preserved only if all quantum correc-
tions to the spectrum of the same order in 1 /S are taken into
account. This represents an obvious difficulty for any self-
consistent calculation, which typically involves summation
of a certain infinite subset of perturbation series. The basic
idea of the present work is to neglect the real part of the
spectrum corrections completely and to perform the self-
consistent calculation only in the imaginary part of the mag-
non self-energy. Such an approach is justified if the real part
of corrections is small, which is the case for S!1 for the
model of Eq. !1". Utilizing this self-consistent scheme we
obtain explicit results for the magnon decay rates and the
dynamical structure factor of SAFMs with S=1 and S=5 /2.

The paper is organized as follows. Technical details of the
spin-wave theory in magnetic field are provided in Sec. II

FIG. 1. !Color online" Canted spin structure of the square-lattice
Heisenberg antiferromagnet in external magnetic field.
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Magnons dispersion within linear spin wave theory 
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Beyond linear spin wave theory
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* possible decay channels of the 2-
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Projecting interactions onto the 2-magnon subspace



Probing the appearance of bound-states numerically
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*using MPO representation of 
the time-evolution operator
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Dynamical susceptibility of square lattice AFM

B = 0.9Bsat, W = 6
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Summary

• 1D 

• We have identified clear signatures of quasiparticle interactions in the 

transverse dynamical susceptibility
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• Interactions between magnons give rise to bound 
states in higher-dimensional AFMs in high fields
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• Scaling of intensity with system size

• Evolution of the bound state with magnetization

• Other lattices


