Chiral spin liquid phases in SU(N) quantum magnets

Sylvain Capponi **Toulouse Univ.**

IPAM, 4/23/2021

Topological phases of matter

Robustness of topological states

How to engineer topological phases?

How to detect them: ground-state degeneracy excitations entanglement properties

Topological quantum computation (no error correction needed !)

Use topology !

Topological phases of matter

Robustness of topological states

- Quasiparticles are anyons (fractional statistics) i.e. not necessarily bosons or fermions (spin statistics theorem breaks down in 2+1D)
- Excitations can be abelian or not

topological quantum field theory (e.g. Chern-Simons), braid group, fusion rules...

Topological quantum computation (no error correction needed !)

Chiral topological spin liquids

Chiral topological phase is found in the fractional quantum Hall (FQH) effect

topological phases, exotic excitations (abelian or not)

unconventional superconductor when doped

See e.g. talk by Cécile Repellin

Mimic an effective magnetic field, flat bands etc. **Fractional Chern insulators**

Is it possible to reach the same physics without Landau levels, on a lattice?

Introduction: chiral spin liquids in a nutshell

Combined numerical methods of a family of SU(N) models

Conclusions and outlook

Collaborators/Refs:

- Ji-Yao Chen, L. Vanderstraeten, S. Capponi, D. Poilblanc, Phys. Rev. B 98, 184409 (2018)
- (2020)
- Hao Tu, Andreas Weichselbaum, Jan von Delft, Didier Poilblanc, in preparation

OUTLINE

• Ji-Yao Chen, S. Capponi, A. Wietek, M. Mambrini, N. Schuch, D. Poilblanc, Phys. Rev. Lett. 125, 017201

·Ji-Yao Chen, Jheng-Wei Li, Pierre Nataf, Sylvain Capponi, Matthieu Mambrini, Keisuke Totsuka, Hong-

incompressible (gapped) in the bulk Published by AAAS

charged e/2 fractional excitation

robust gapless chiral edge states $SU(2)_1 CFT$

Chiral spin liquids (CSL) = lattice analogue of FQH states

Low-energy physics described by 2+1 Chern-Simons theory

lattice spin S=1/2 model

same

neutral s=1/2 fractional excitation

same

triangular lattice:

Kalmeyer-Laughlin, 1987

These states break time-reversal symmetry (T) and parity (P)

Dubail-Read 2015 No-go theorem for a gaussian PEPS to have a bulk gap

chiral spin liquids = lattice analogs of FQH states Protected edge modes described by $SU(2)_1$ CFT "Long range entanglement"

Xiao-Gang Wen

Tensor networks formalism well suited

Abelian CSL in spin-1/2 SU(2) models on frustrated lattices

S=1/2 on triangular lattice

PHYSICAL REVIEW B 96, 075116 (2017)

Global phase diagram and quantum spin liquids in a spin- $\frac{1}{2}$ triangular antiferromagnet

Shou-Shu Gong,¹ W. Zhu,² J.-X. Zhu,^{2,3} D. N. Sheng,⁴ and Kun Yang⁵

S=1/2 on kagome lattice

Chiral spin liquid and emergent anyons in a Kagome lattice Mott insulator

B. Bauer¹, L. Cincio², B.P. Keller³, M. Dolfi⁴, G. Vidal², S. Trebst⁵ & A.W.W. Ludwig³

on the triangular lattice

Alexander Wietek^{*} and Andreas M. Läuchli

S=1/2 on frustrated square lattice

PHYSICAL REVIEW B 96, 121118(R) (2017)

Investigation of the chiral antiferromagnetic Heisenberg model using projected entangled pair states

Didier Poilblanc

Abelian CSL in SU(N) models

Enlarging SU(2) to SU(N) is known to destabilize magnetic order

Several irreps (corresponding to Young's tableaux)

But SU(N) symmetry is also:

- approximately realized on condensed matter: SU(4) spin-orbital, SU(4) in graphene/TBG/moiré ma
- exactly realized for alkaline-earth ultracold atoms sin is decoupled from electronic state: 173Yb SU(6), 87Sr¹Sott

N "colors"

G **Degenerate Fermi Gas of 87Sr**

B. J. DeSalvo, M. Yan, P. G. Mickelson, Y. N. Martinez de Escobar, and T. C. Killian

PRL 105, 190401 (2010)

Selected for a Viewpoint in *Physics* PHYSICAL REVIEW LETTERS

Realization of a SU(2) \times **SU(6) System of Fermions in a Cold Atomic Gas**

Shintaro Taie,^{1,*} Yosuke Takasu,¹ Seiji Sugawa,¹ Rekishu Yamazaki,^{1,2} Takuya Tsujimoto,¹ Ryo Murakami,¹ and Yoshiro Takahashi^{1,2}

LETTERS PUBLISHED ONLINE: 2 FEBRUARY 2014 | DOI: 10.1038/NPHYS2878

A one-dimensional liquid of fermions with tunable spin

Guido Pagano^{1,2}, Marco Mancini^{1,3}, Giacomo Cappellini¹, Pietro Lombardi^{1,3}, Florian Schäfer¹, Hui Hu⁴, Xia-Ji Liu⁴, Jacopo Catani^{1,5}, Carlo Sias^{1,5}, Massimo Inguscio^{1,3,5} and Leonardo Fallani^{1,3,5}*

PHYSICAL REVIEW LETTERS

week ending 16 JULY 2010

week ending 5 NOVEMBER 2010

S

Models and definitions

Model defined in terms of permutation (SU(N) symmetry)

$$H = J_1 \sum_{\langle i,j \rangle} P_{ij} + J_2 \sum_{\langle \langle k,l \rangle \rangle} P_{kl}$$

+ $J_R \sum_{\Delta ijk} (P_{ijk} + P_{ijk}^{-1}) + i J_I \sum_{\Delta ijk} (P_{ijk} - P_{ijk}^{-1})$

Square lattice, C4 symmetry

$$J_{1} = 2J_{2} = \frac{4}{3}\cos\theta\sin\phi,$$

$$J_{R} = \cos\theta\cos\phi,$$

$$J_{I} = \sin\theta.$$

PRL 117, 167202 (2016)

PHYSICAL REVIEW LETTERS

 J_2

 J_R

week ending 14 OCTOBER 2016

Chiral Spin Liquids in Triangular-Lattice SU(N) Fermionic Mott Insulators with Artificial Gauge Fields

Pierre Nataf,¹ Miklós Lajkó,² Alexander Wietek,³ Karlo Penc,^{4,5} Frédéric Mila,¹ and Andreas M. Läuchli³

Numerical methods for SU(N) ... an introduction

Analytics: large-N, mean-field, parton wavefunctions

Exact diagonalization (U(1)+lattice symmetries or SU(N) symmetry)

using standard Young tableaux

d)	1	2	3	
	4	5		<
	6	7		

1	2	4
3	5	
6	7	

(e)	Α	Α	Α	
	В	В	_	Φ ^α
	С	С		x]

					2011
SU(N)	n	$f^{[k,,k]}$	$\frac{(n-1)!}{k!^N}$	\mathcal{E}_{GS}	
SU(5)	25 (tilted)	701149020	$2.5 imes 10^{13}$	-1.154324	
SU(5)	$25 (5 \times 5)$	701149020	2.5×10^{13}	-1.164712	
SU(5)	20	1662804	1.5×10^{10}	-1.215377	
SU(8)	16	1430	$5.1 imes 10^9$	-1.572223	
SU(10)	20	16796	1.2×10^{14}	-1.589218	
using SU(N) U(1) (N-1 Cartan)					

PRL 113, 127204 (2014)

PHYSICAL REVIEW LETTERS

Exact Diagonalization of Heisenberg SU(N) Models

Pierre Nataf and Frédéric Mila

Numerical methods for SU(N) ... an introduction

Analytics: large-N, mean-field, parton wavefunctions

- Exact diagonalization (U(1)+lattice symmetries or SU(N) symmetry)
- **DMRG** (U(1) or SU(N) symmetry) + parton wavefunction

Projected Fermi sea has a tensor network representation MPO: D=2

using MPO-MPS compression -> MPS

PHYSICAL REVIEW LETTERS 124, 246401 (2020)

Tensor Network Representations of Parton Wave Functions

Ying-Hai Wu^D,¹ Lei Wang,^{2,3} and Hong-Hao Tu^{4,*}

Numerical methods for SU(N) ... an introduction

Analytics: large-N, mean-field, parton wavefunctions

- Exact diagonalization (U(1)+lattice symmetries or SU(N) symmetry)
- DMRG (U(1) or SU(N) symmetry) + parton wavefunction
- PEPS using SU(N) symmetric tensors SciPost e point-group symmetry

Both DMRG and PEPS can use SU(N) symmetry, e.g. QSpace library

Andreas Weichselbaum

Chiral spin liquid with PEPS

Using a classification of SU(2)-invariant PEPS

Chiral PEPS ansatz: A = $A_R = \sum_{\alpha} \lambda_{\alpha} A_{\alpha}^{(A_1)} \quad A_I = \sum_{\beta} \gamma_{\beta} A_{\alpha}^{(A_1)} \quad A_I$ **Different irreps** !

PHYSICAL REVIEW B 94, 205124 (2016)

Systematic construction of spin liquids on the square lattice from tensor networks with SU(2) symmetry

Matthieu Mambrini,¹ Román Orús,² and Didier Poilblanc¹

* virtual space : $V = S_1 \oplus S_2 \oplus \cdots \otimes S_p$ * Irreps of point group (C4v for square lattice)

$$A_R + iA_I$$

PHYSICAL REVIEW B 96, 121118(R) (2017)

Investigation of the chiral antiferromagnetic Heisenberg model using projected entangled pair states

Didier Poilblanc

Can be generalized to SU(N)

Exact Diagonalization on torus **Predictions:** If Ns=k*N: singlet ground-state degeneracy on a torus = N

In 2d: generalization of Hastings-Oshikawa-Lieb-Mattis theorem forbids a non-degenerate gapped state gapless or discrete symmetry breaking or topological

Exact Diagonalization on torus **Predictions:** If $Ns = k^*N$: singlet ground-state degeneracy on a torus = N

• Lattice momenta can be obtained from a generalized Pauli principle Haldane, Bernevig, Regnault,....

Exact Diagonalization on torus **Predictions:** If $Ns = k^*N$: singlet ground-state degeneracy on a torus = N

- Lattice momenta can be obtained from a generalized Pauli principle Haldane, Bernevig, Regnault,.... • Quasi-hole counting: deg=Ns, 1 per momentum sector

Exact Diagonalization on open cluster

SU(N)₁ chiral CFT counting depending on the number of sites Ns vs N

 $\begin{vmatrix} 3 \\ q^{18/5} \end{vmatrix} = \begin{bmatrix} \mathbf{10} \\ \mathbf{5} \\ \mathbf{0} \\$

perfect agreement!

					_
336			8	840)
	\oplus	1			

Parton construction is useful to boost DMRG convergence

Probe entanglement spectrum as fingerprint of topological order

DNR(;

Wu, Wang, Tu, PRL 124, 246401 (2020)

Spectrum on cylinder vs ky Exact zero-mode edge states

Construct N different minimally entangled states to target different excitations

DMRG SU(N) subtleties Hong-Hao Tu et al.

Semion sector SU(2) case

Entanglement spectrum= two copies of "semion" conformal towers

 $|\psi_s\rangle = P_G \gamma_{L\uparrow}^{\dagger} \gamma_{R\downarrow}^{\dagger} |FS\rangle$ not a singlet

 $P_{\rm G}(\gamma_{L\uparrow}^{\dagger}\gamma_{R\downarrow}^{\dagger} - \gamma_{L\downarrow}^{\dagger}\gamma_{R\uparrow}^{\dagger})|{\rm FS}\rangle$ singlet

 $\mathcal{A}: (\mathcal{V}_N)^{\otimes z} \to \mathcal{F}$ $\mathcal{B} \cdot (\mathcal{V}_N)^{\otimes 2} \to ullet$

CSL breaks P and T but not PT

Tensor is a linear combination of point-group SU(N) symmetric ones

Optimization is performed using CTMRG

$\mathcal{A} = \mathcal{A}_R + i\mathcal{A}_I = \sum_{a=1}^{N_R} \lambda_a^R \mathcal{A}_R^a + i\sum_{b=1}^{N_I} \lambda_b^I \mathcal{A}_I^b$

PEPS: entanglement spectrum

- reduced density matrix Li & Haldane
- Entanglement spectrum is identical to a CFT boundary spectrum
 - Basic formula: $\rho_A = U \sigma_b^2 U^{\dagger}$
 - isometry: maps 2D onto ID

PHYSICAL REVIEW B 83, 245134 (2011)

Entanglement spectrum and boundary theories with projected entangled-pair states

J. Ignacio Cirac,¹ Didier Poilblanc,² Norbert Schuch,³ and Frank Verstraete⁴

PEPS: entanglement spectrum SU(4), Nv=4, full SU(N) symmetry

infinite PEPS cylinder

duplication of chiral branches in some sectors

D=15 $\chi = 1350$

Correlations in the bulk Correlation length directly from transfer matrix

No saturation so presumably gapless state...

No-go theorem for a free-fermion PEPS to have a bulk gap Is it also true in the interacting case?

Dubail-Read 2015

Abelian CSL: spontaneous T-breaking

Topological CSL can also be found in the **absence** of explicit T-breaking

PRL 112, 137202 (2014)

PHYSICAL REVIEW LETTERS

Chiral Spin Liquid in a Frustrated Anisotropic Kagome Heisenberg Model

Yin-Chen He,¹ D. N. Sheng,² and Yan Chen^{1,3}

Quantum Spin Liquid with Emergent Chiral Order in the Triangular-lattice Hubbard Model

Bin-Bin Chen,^{1,2} Ziyu Chen,¹ Shou-Shu Gong,^{1,*} D. N. Sheng,³ Wei Li,^{1,4,†} and Andreas Weichselbaum^{5,2,‡}

S

No of Solo

An SU(4) chiral spin liquid and quantized dipole Hall effect in moiré bilayers

Ya-Hui Zhang¹, D. N. Sheng², and Ashvin Vishwanath¹

week ending 4 APRIL 2014

Nature of chiral spin liquids on the kagome lattice

Alexander Wietek,^{*} Antoine Sterdyniak, and Andreas M. Läuchli

PHYSICAL REVIEW X 10, 021042 (2020)

Chiral Spin Liquid Phase of the Triangular Lattice Hubbard Model: A Density Matrix Renormalization Group Study

Aaron Szasz^D,^{1,2,3,*} Johannes Motruk,^{1,2} Michael P. Zaletel,^{1,2,4} and Joel E. Moore^{1,2}

Non-abelian case: SU(2)

non abelian FQHS

Moore-Read Read-Rezayi

incompressible (gapped) in the bulk

non abelian fractional excitation

gapless chiral edge states

 $SU(2)_k$ CFT

This topological phase hosts SU(2)₂ non-abelian Ising anyons

Spin analogue ?

Parent Hamiltonian approach

Coupled wire construction

Moore-Read state corresponds to **spin-1** lattice model

The open access journal at the forefront of physics

IOP Institute of Physics

Published in partnership with: Deutsche Physikalische Gesellschaft and the Institut of Physic:

FAST TRACK COMMUNICATION

Exact parent Hamiltonians of bosonic and fermionic Moore–Read states on lattices and local models

Ivan Glasser¹, J Ignacio Cirac¹, Germán Sierra^{2,3} and Anne E B Nielsen¹

truncated approximate spin-1 model on the square lattice

numerics needed

Proposed parent Hamiltonian is rather complicated, long-range

$$H = J_1 \sum_{\langle i,j \rangle} \mathbf{S}_i \cdot \mathbf{S}_j + J_2 \sum_{\langle \langle k,l \rangle \rangle} \mathbf{S}_k \cdot \mathbf{S}_l$$

+ $K_1 \sum_{\langle i,j \rangle} (\mathbf{S}_i \cdot \mathbf{S}_j)^2 + K_2 \sum_{\langle \langle k,l \rangle \rangle} (\mathbf{S}_k \cdot \mathbf{S}_l)^2$
+ $K_c \sum_{\Box} [\mathbf{S}_i \cdot (\mathbf{S}_j \times \mathbf{S}_k) + \mathbf{S}_j \cdot (\mathbf{S}_k \times \mathbf{S}_m)]$
+ $\mathbf{S}_i \cdot (\mathbf{S}_j \times \mathbf{S}_m) + \mathbf{S}_i \cdot (\mathbf{S}_k \times \mathbf{S}_m)],$

Combined ED/DMRG/PEPS study

PEPS bulk correlation

3 states

PHYSICAL REVIEW B 98, 184409 (2018)

Non-Abelian chiral spin liquid in a quantum antiferromagnet revealed by an iPEPS study

Ji-Yao Chen,¹ Laurens Vanderstraeten,² Sylvain Capponi,¹ and Didier Poilblanc^{1,3}

gossamer critical tail

PEPS edge entanglement

agrees with SU(2)₂ WZW c = 3/2

Conclusion and outlook

- Simple SU(N) spin models hosting topological chiral spin liquids
- Important to combine different numerical techniques to validate all properties
 - Characterization of edge states and entanglement properties
- physics

Collaborators/Refs:

- Ji-Yao Chen, L. Vanderstraeten, S. Capponi, D. Poilblanc, Phys. Rev. B 98, 184409 (2018) • Ji-Yao Chen, S. Capponi, A. Wietek, M. Mambrini, N. Schuch, D. Poilblanc, Phys. Rev. Lett. 125, 017201 (2020) • Ji-Yao Chen, Jheng-Wei Li, Pierre Nataf, Sylvain Capponi, Matthieu Mambrini, Keisuke Totsuka, Hong-Hao Tu, Andreas Weichselbaum, Jan von Delft, Didier Poilblanc, in preparation

