

Decoding Quantum Magnetism Genome with Thermal Tensor Networks

Wei Li, Beihang U. & ITP-CAS

IPAM virtual Workshop II: Tensor Network States and Applications

Decoding Quantum Magnetism Genome with Thermal Tensor Networks

Wei Li, Beihang U. & ITP-CAS

IPAM virtual Workshop II: Tensor Network States and Applications

Find the Spin Model!

Collaborators

Sizhuo Yu 于思拙

S. Yu, Y. Gao, WL, arXiv:2011.12282 (2020) https://github.com/QMagen

Yuan Gao 高源

Bin-Bin Chen 陈斌斌

Quantum Spin Liquid Candidates

Kitaev materials

J. A. Sears **PRB** 2015; A. Banerjee, *et. al.*, **Science** 2017;

There are debates in these quantum materials ...

□ How to decode the "*DNA*" of quantum magnets? > Spin Hamiltonian and interaction parameters

kagome magnets

Fu, *et. al.*, Science 2015 $Cu_3Zn(OH)_6FBr$, **CPL** 2018

triangular-lattice

AReCh₂: A family of frustrated magnets

(A = alkali or monovalent ions, Re = rare earth, Ch = O, S, Se)

Liu, et. al, CPL 2018; Dai, et. al,

U Can we infer the many-body model from experiments?

And then determine the exotic quantum states therein ...

> Dynamical data are *expensive* to measure and *difficult* to compute/analysis via many-body approach

> What about **thermal** data (easier to obtain and analysis)?

□ Solve the Inverse Many-body Problem with Thermal Data

> Many-body Solver: Thermal Tensor Networks

> Optimizer from Machine Learning

□ Linearized Tensor Renormalization Group (LTRG)

Thermal Tensor Networks

Directly in the thermodynamic limit

WL, S.-J. Ran, [...], Gang Su, PRL 2011 Y.-L. Dong, [...], WL, PRB 2017

U Exponential Tensor Renormalization Group (XTRG)

2D Quantum Ising (up to 162-sites)

B.-B. Chen, [...], WL, A. Weichselbaum, PRX 2018

H. Li, [...], WL, PRB 2019

Triangular-lattice Heisenberg

Square-lattice Heisenberg

□ Fitting the thermodynamics: very laborious if hand-tuned ...

Parameter Optimizer

An automatic parameter searching approach

> Automatic and efficient!

Systematic and human bias reduced.

Fermi's elephant

Global optimization

D Automatic Gradient

computational graph $\mathbf{x} \to H \to Z \to O_{\alpha} \to \mathcal{L}$

> Derivative of fitting loss over

H.-J. Liao, et. al., PRX 2019 B.-B. Chen, [...], Wei Li, and Z.Y. Xie, PRB(R) 2020

Bayesian Optimization **Gaussian Process & Acquisition function**

- > Fitting Loss Function *L*: *least square*
- **Gaussian Process:** high-dimensional optimization problem
- > Acquisition function: balance exploitation and exploration

 y_{n+1} to be estimated at \mathbf{x}_{n+1}

 $|y_{n+1} \sim \mathcal{N}(\mu_n, \sigma_n^2)|$

$$\mu_n(\mathbf{x}_{n+1}) = \mathbf{k}(\mathbf{x}_{n+1})^{\mathsf{T}} \mathbf{K}^{-1} \mathbf{y},$$

$$\sigma_n^2(\mathbf{x}_{n+1}) = k(\mathbf{x}_{n+1}, \mathbf{x}_{n+1}) - \mathbf{k}(\mathbf{x}_{n+1})^{\mathsf{T}} \mathbf{K}^{-1} \mathbf{k}(\mathbf{x}_{n+1})^{\mathsf{T}} \mathbf{k}^{-1$$

$$\alpha_{\mathrm{PI}}(\mathbf{x}; \mathcal{D}_n) = \mathbb{P}[\mathcal{L}(\mathbf{x}) \leq \tau] = \Phi\left(-\frac{\mu_n(\mathbf{x}) - \tau}{\sigma_n(\mathbf{x})}\right),$$

$$\alpha_{\mathrm{EI}}(\mathbf{x}; \mathcal{D}_n) = \mathbb{E}[\tau - \mathcal{L}(\mathbf{x})] = (\tau - \mu_n(\mathbf{x}))\Phi\left(\frac{\tau - \mu_n(\mathbf{x})}{\sigma_n(\mathbf{x})}\right) + \sigma_n(\mathbf{x})\phi\left(\frac{\tau - \mu_n(\mathbf{x})}{\sigma_n(\mathbf{x})}\right),$$

$$\alpha_{\mathrm{LCB}}(\mathbf{x}; \mathcal{D}_n) = \mu_n(\mathbf{x}) - \kappa\sigma_n(\mathbf{x}),$$

Gradient-based vs. Bayesian optimization

Gradient-based

(animations)

Bayesian

OArtificial Experimental Data

Gaussian (white) noise introduced.

* Generated by LTRG, XXZ HAFC model with two parameters J_{xy} and J_z

□ High-temperature solver: **10-site ED**

\succ Only $T > T_{cut}$ data are included in the fitting.

U YES! Parameters Retrieved

Random Grid Search

Iteration

auto-gradient

Bayesian

Statistical box plot of 100 experiments

Bayesian optimization has the overall best performance.

High-Temperature Solver: *Varying T*_{cut}

 $J_x^2 + J_y^2 + J_z^2 = J_{\text{eff}}^2$

 $J_{xy} = \pm 1$ exactly the same spectra *J*_{eff} reveal the coupling strength!

Ground truth: $J_{xy} = 1$, $J_z = 1.5$

fitting is robust

□ High-Temperature Solver: including more thermal data

✓ Add more data *transverse susceptibility* can help improve the resolution

Ground truth: $J_{xy} = 1$, $J_z = 1.5$

 $J_{xy} = 1$ found!

Realistic Materials

Q Realistic materials: Spin-chain compound Copper Nitrate

> HAFC with alternating couplings

• 4 parameters $J, \alpha, g_{//}, g_{\perp}$

✓ $J = 5.13, \alpha = 0.27$, Bonner et al. 1983 ✓ $J = 5.14, \alpha = 0.23$, J. Xiang et al. 2017

What about automatic parameter searching?

Spin-chain material Copper Nitrate

- > Finite-size (10-site) solver: *ED*, *already works*
- > Infinite-size solver: *LTRG*, resolution improved

XXZ anisotropy

$$H = J \sum_{n=1}^{L/2} \left[\left(S_{2n-1}^{x} S_{2n}^{x} + S_{2n-1}^{y} S_{2n}^{y} + \Delta S_{2n-1}^{z} S_{2n}^{z} \right) + \alpha \left(S_{2n}^{x} S_{2n+1}^{x} + S_{2n}^{y} S_{2n+1}^{y} + \Delta S_{2n}^{z} S_{2n+1}^{z} \right) \right]$$

$$H = J \sum_{n=1}^{L/2} \left[\left(S_{2n-1}^{x} S_{2n}^{x} + S_{2n-1}^{y} S_{2n}^{y} + \Delta S_{2n-1}^{z} S_{2n}^{z} \right) - g \mu_{B} B \sum_{i=1}^{L} S_{i}^{z} \right]$$

$$10^{-1}$$
 > Machine fitting (with LTRG): $J = 5.16$,
 $\alpha = 0.227, \Delta = 1.01, g = 2.23$ with $\mathcal{L} = 7.4 \times 10^{-4}$.

 10^{-2}
 > Previous hand-tuned fitting: $J = 5.13$,
 $\alpha = 0.23, \Delta = 1, g = 2.31$, with $\mathcal{L} = 8.2 \times 10^{-4}$

Triangular-lattice Magnet TmMgGaO₄

Thermodynamics and XTRG fittings to experimental results.

[31] Cevallos, et al., Mater. Res. Bull. 2018

[32] Shen, et al., Nature Commun. 2019

[33] Li, et al., PRX 2020

U Triangular-lattice quantum Ising model for TMGO

$$H_{\text{TLI}} = J_1 \sum_{\langle i,j \rangle} S_i^z S_j^z + J_2 \sum_{\langle \langle i,j \rangle \rangle} S_i^z S_j^z - \sum_i (\Delta S_i^x + h g_{\parallel} \mu_B S_i^z)$$

 $J_1 = 0.99 \text{ meV}, J_2 = 0.05 J_1, \Delta = 0.54 J_1 \text{ and } g_J = 1.101$

> 2D quantum magnet realizing KT physics!

$$V_1, \Delta = 0.54 J_1 \text{ and } g_J = 1.101$$

S. Isakov and R. Moessner, PRB (2003)

Y.-C. Wang, Y. Qi, S. Chen, and Z. Y. Meng PRB (2017)

DEvidence of the Kosterlitz-Thouless Phase in TMGO

Collaborators:

> NMR shows a quasi-plateau floating KT phase.

□ Triangular-lattice Magnet TmMgGaO₄

$$H = J_1 \sum_{\langle i,j \rangle} S_i^z S_j^z + J_2 \sum_{\langle \langle i,j' \rangle \rangle} S_i^z S_{j'}^z - \Delta \sum_i S_i^x - g_i^z S_i^z + J_2 \sum_{\langle \langle i,j' \rangle \rangle} S_i^z S_{j'}^z - \Delta \sum_i S_i^x - g_i^z S_i^z + J_2 \sum_{\langle \langle i,j' \rangle \rangle} S_i^z S_j^z + J_2 \sum_i S_i^z S_j^z + J_2 \sum_{\langle \langle i,j' \rangle \rangle} S_i^z S_j^z + J_2 \sum_i S_i^z + J_2 \sum_i$$

 $g\mu_B B \sum_i S_i^z$

4 params Δ , J_1 , J_2 , g_{eff}

 $\langle ij \rangle$ NN pair of sites $\langle\langle ij\rangle\rangle$ NNN pair of sites

□ Triangular-lattice Magnet TmMgGaO₄

H. Li, [...], WL, Nature Commun. 2020 Y. Li, et al, PRX 2020; Y. Shen, et al, Nature Commun. 2019

\Box Kitaev material α -RuCl₃ ***** Fitting Landscape ***** Reproduce major exp. features (a) $_{1.5}$ *K*=25 *meV* (a) 2.5 (C) 0.8 Kubota2015 Johnson2015 $\Gamma/|K|=0.3$ Do2017 Kubota2015 Widmann2019 0.6 H∥ab * - MRG $\Gamma/|K|$ XTRG 1.5 0.5

 $\langle i,j \rangle_{\gamma}$

H. Li, [...], WL, in process

 $H = \sum \left[KS_i^{\gamma} S_j^{\gamma} + JS_i \cdot S_j + \Gamma(S_i^{\alpha} S_j^{\beta} + S_i^{\beta} S_j^{\alpha}) + \Gamma'(S_i^{\gamma} S_j^{\alpha} + S_i^{\alpha} S_j^{\gamma} + S_i^{\gamma} S_j^{\beta} + S_i^{\beta} S_j^{\gamma}) \right]$

Outlook: The family of rare-earth triangular magnets

Rare-Earth Chalcogenides

W. Liu, et. al., Chin. Phys. Lett. 2019

AReCh₂

[A=alkali or monovalent metal, RE=rare earth, Ch=O, S, Se, Te]

$$\begin{aligned} \hat{H}_{eff} &= \hat{H}_{CEF} + \hat{H}_{spin-spin} + \hat{H}_{zeeman} \\ &= \sum_{i} \sum_{m,n} B_{m}^{n} \hat{O}_{m}^{n} \\ &+ \sum_{\langle ij \rangle} [J_{zz} S_{i}^{z} S_{j}^{z} + J_{\pm} (S_{i}^{+} S_{j}^{-} + S_{i}^{-} S_{j}^{+}) \\ &+ J_{\pm\pm} (\gamma_{ij} S_{i}^{+} S_{j}^{+} + \gamma_{ij}^{*} S_{i}^{-} S_{j}^{-}) \\ &- \frac{i J_{z\pm}}{2} (\gamma_{ij} S_{i}^{+} S_{j}^{z} - \gamma_{ij}^{*} S_{i}^{-} S_{j}^{z} + \langle i \longleftrightarrow j] \\ &- \mu_{0} \mu_{B} \sum_{i} [g_{ab} (h_{x} S_{i}^{x} + h_{y} S_{i}^{y}) + g_{c} h_{c} S_{i}^{z}] \end{aligned}$$

Z. Zhang arXiv:2011.06274 (2020) NaYbSe₂ analyzed, mean field

Open source package: QMagen

Matlab version: include ED, LTRG, and XTRG solvers

croscopic Spin Hamiltonian from Many-body Analysis a.edu.cn										
ams 凹 Projects 🕸 Settings										
Language - Sort -	Customize pins	Rew								

Python version

PyQMagen A method which combines quantum many-body calculation and unbiased optimizers to automatically learn effective Hamiltonians for quantum magnets							
condensed-matter-p	ohysics qua	ntum-m	nany-bod	y qu	antum-r	nagnets	
Jupyter Notebook	최 GPL-3.0	೪ 0	☆ 18	(!) 0	រ៉ៃ 0	Updated 25 days ago	

S. Yu, Y. Gao, WL, arXiv:2011.12282 (2020)

Summary

> Tensor network solvers + efficient optimizers can be used to solve the inverse many-body problem

search for spin liquids

Thank you for your attention!

OMAGEN: Uniform framework for the many-body analysis of thermal data, and

S. Yu, Y. Gao, WL, arXiv:2011.12282 (2020)

