

News on tensor network simulations for quantum matter and beyond

Román Orús

Donostia International Physics Center (DIPC) Multiverse Computing

April 23rd 2021

Tensor Networks

e.g. RO, Annals of Physics 349 (2014) 117–158

Efficient O(poly(N)), satisfy area-law, low-energy eigenstates of local Hamiltonians

Tensor Network Big Bang

Entanglement and Tensor Networks

0	utline		
		1) Some basics	
		2) Breathing Kagome AF	
		3) 3d thermal bosons and Kitaev models	
		4) 2d iPEPS with SU(2)	
		5) Optimizing investment portfolios	

Breathing Kagome Heisenberg Antiferromagnet

$$H = J_{\triangle} \sum_{\langle ij \rangle \in \triangle} \mathbf{S}_i \cdot \mathbf{S}_j + J_{\bigtriangledown} \sum_{\langle ij \rangle \in \bigtriangledown} \mathbf{S}_i \cdot \mathbf{S}_j$$

spin-1/2

- Kagome compounds tend to be anisotropic in nature
- Candidate Material: Vanadium Oxyfluoride compound [NH₄]₂[C7H₁₄N][V₇O₆F₁₈]

Clark et al, PRL, (2013) Aidoudi et al, Nat. Chem. (2011) Orian et al, PRL, (2017)

- Can Heisenberg antiferromagnets with Breathing anisotropy host QSL?
- Experimental Signatures of a QSL at $J_{\nabla}/J_{\Delta} \approx 0.55$ Orian et al, PRL, (2017)

Phase transition?

iPEPS, small breathing limit

$J_{\nabla}/J_{\Delta}=1$

S. S. Jahrmi, RO, D. Poilblanc, F. Mila, SciPst Phys. 9 092 (2020)

iPEPS, large breathing limit

 J_{∇}/J_{Δ} =0.01

S. S. Jahrmi, RO, D. Poilblanc, F. Mila, SciPst Phys. 9 092 (2020)

 $J_{\nabla}/J_{\Delta} \ll 1$

Lattice Nematic state: Preserves Translational Symmetry Breaks Rotational Symmetry

VBC (VMC+PEPS) Y. Iqbal et al, PRB (2018)

Gapped Z₂ QSL (PEPS)

M. Iqbal et al, arXiv:1912.08284 (2019)

Nematic (DMRG)

Repellin et al, PRB (2017)

 $J_{\nabla}/J_{\wedge}=1$

iPEPS, transition and criticality

S. S. Jahrmi, RO, D. Poilblanc, F. Mila, SciPst Phys. 9 092 (2020)

0	utline		
		1) Some basics	
		2) Breathing Kagome AF	
		3) 3d thermal bosons and Kitaev models	
		4) 2d iPEPS with SU(2)	
		5) Optimizing investment portfolios	

Out	tline	
	1) Some basics	
	2) Breathing Kagome AF	
	3) 3d thermal bosons and Kitaev models	
	4) 2d iPEPS with SU(2)	
	5) Optimizing investment portfolios	

3d Thermal iPEPS

S. S. Jahrmi, RO, SciRep 20 29052 (2020)

3d Thermal Bosons

Hard- and soft-core

S. S. Jahrmi, RO, SciRep 20 29052 (2020)

3d Thermal Bosons

Hard- and soft-core

S. S. Jahrmi, RO, SciRep 20 29052 (2020)

Hard-core, pyrchlore lattice

3d Thermal Kitaev

S. S. Jahrmi, H. Yarloo, RO, arXiv:2011.11577

Hyperhoneycomb lattice

K, 1.0

T=0

A

A

A

 β -Li₂IrO₃ gs vortex-free

K. O'Brien, M. Hermanns, S. Trebst, PRL 93 085101 (2016) T. Takayama et al, PRL 114 077202 (2015)

Specific heat C_v exhibits a double-peak behavior

(a)

- High-T crossover: ordering of spins (Majoranas) at T '~K
- Low-T transition: ordering of gauge fields at Tc \sim K/100

3d Thermal Kitaev

S. S. Jahrmi, H. Yarloo, RO, arXiv:2011.11577

$\mathcal{H}_{\text{Kitaev}} = \sum_{\langle i,j\rangle,\gamma} K_{\gamma} S_{i}^{\gamma} S_{j}^{\gamma}$ $\gamma = x, y, z \quad \langle i,j\rangle,\gamma$

 β -Li₂IrO₃ gs vortex-free

K. O'Brien, M. Hermanns, S. Trebst, PRL 93 085101 (2016) T. Takayama et al, PRL 114 077202 (2015)

Entanglement scaling of high-T thermal crossover and low-T thermal phase transition

> (also studied Kitaev-Heisenberg on hyperoctagon lattice)

Hyperhoneycomb lattice

Out	tline	
	1) Some basics	
	2) Breathing Kagome AF	
	3) 3d thermal bosons and Kitaev models	
	4) 2d iPEPS with SU(2)	
	5) Optimizing investment portfolios	

Outline	
	1) Some basics
	2) Breathing Kagome AF
	3) 3d thermal bosons and Kitaev models
	4) 2d iPEPS with SU(2)
	5) Optimizing investment portfolios

Symmetric tensors and Schur's lemma

e.g., S. Singh, R. N. C. Pfeifer, G. Vidal, PRA 82, 050301 (2010)

Structural part depends only on the group properties (intertwiners)

SU(2) iPEPS and iPESS

P. Schmoll, RO, PRB 102 241101 (2020)

Benchmarking SU(2) iPEPS and iPESS

P. Schmoll, RO, PRB 102 241101 (2020)

$$H = \sum_{\langle i,j \rangle} \left(\cos(\theta) \, \left(\boldsymbol{S}_i \cdot \boldsymbol{S}_j \right) + \sin(\theta) \, \left(\boldsymbol{S}_i \cdot \boldsymbol{S}_j \right)^2 \right) \qquad \begin{array}{l} \text{Spin-1 BLBQ} \\ \text{square lattice} \end{array}$$

I. Niesen, P. Corboz, SciPost 3 030 (2017)

Benchmarking SU(2) iPEPS and iPESS

P. Schmoll, RO, PRB 102 241101 (2020)

Spin-1/2 KHAF

FIG. 7: (Color online) Spin-spin correlation $\langle S_i S_j \rangle$ on each link of the unit cell for the non-symmetric 3-PESS, the non-symmetric 6-PESS and the SU(2)-invariant 6-PESS (from left to right).

Clean extrapolation

Benchmarking SU(2) iPEPS and iPESS

P. Schmoll, RO, PRB 102 241101 (2020)

SU(2) lowest-energy summary

Model	No symmetry	SU(2)
s = 1 BLBQ	(7, 0.3188)	(6, 19.5, 0.3108)
s = 1/2 KHAF	(10, -0.4348)	(7, 17.75, -0.4349)
s = 2 KHAF	(10, -4.7975)	(5, 19, -4.8227)

SU(2) improves energies, but sometimes may be too restrictive

Outline	
	1) Some basics
	2) Breathing Kagome AF
	3) 3d thermal bosons and Kitaev models
	4) 2d iPEPS with SU(2)
	5) Optimizing investment portfolios

Outline	
	1) Some basics
	2) Breathing Kagome AF
	3) 3d thermal bosons and Kitaev models
	4) 2d iPEPS with SU(2)
	5) Optimizing investment portfolios

Dynamic Portfolio Optimization

G. Rosenberg et al, IEEE Journal of Selected Topics in Signal Processing 10, 1053 (2016) See also P. Rebentrost, S. Lloyd, arXiv:1811.03975

Hamiltonian Cost Function

NP-Hard Optimization Problem

BBVA

Dynamic Portfolio Optimization with Real Datasets Using Quantum Processors and Quantum-Inspired Tensor Networks

Samuel Mugel,¹ Carlos Kuchkovsky,² Escolástico Sánchez,² Samuel Fernández-Lorenzo,² Jorge Luis-Hita,² Enrique Lizaso,³ and Román Orús^{3, 4, 5}

 ¹Multiverse Computing, Banting Institute, 100 College Street, ONRamp Suite 150, Toronto, ON M5G 1L5 Canada
²BBVA Research & Patents, Calle Sauceda 28, 28050 Madrid, Spain
³Multiverse Computing, Paseo de Miramón 170, E-20014 San Sebastián, Spain
⁴Donostia International Physics Center, Paseo Manuel de Lardizabal 4, E-20018 San Sebastián, Spain
⁵Ikerbasque Foundation for Science, Maria Diaz de Haro 3, E-48013 Bilbao, Spain

In this paper we tackle the problem of dynamic portfolio optimization, i.e., determining the optimal trading trajectory for an investment portfolio of assets over a period of time, taking into account transaction costs and other possible constraints. This problem, well-known to be NP-Hard, is central to quantitative finance. After a detailed introduction to the problem, we implement a number of quantum and quantum-inspired algorithms on different hardware platforms to solve its discrete formulation using real data from daily prices over 8 years of 52 assets, and do a detailed comparison of the obtained Sharpe ratios, profits and computing times. In particular, we implement classical solvers (Gekko, exhaustive), D-Wave Hybrid quantum annealing, two different approaches based on Variational Quantum Eigensolvers on IBM-Q (one of them brand-new and tailored to the problem), and for the first time in this context also a quantum-inspired optimizer based on Tensor Networks. In order to fit the data into each specific hardware platform, we also consider doing a preprocessing based on clustering of assets. From our comparison, we conclude that D-Wave Hybrid and Tensor Networks are able to handle the largest systems, where we do calculations up to 1272 fully-connected qubits for demonstrative purposes. Finally, we also discuss how to mathematically implement other possible real-life constraints, as well as several ideas to further improve the performance of the studied methods.

arXiv:2007.00017, first implementation with real data up to 52 assets and 8 years on D-Wave, VQE, and Tensor Networks (quantum-inspired)

Sharpe ratios

Method	XS	S	Μ	L	XL	XXL
VQE	3.59	-	-	-	-	.
Exhaustive	6.31	8.90	-	-	-	÷
VQE Constrained	6.31	6.04	4.81	-	-	1 275
Gekko	5.98	8.90	8.39	15.83	20.76	
D-Wave Hybrid	5.98	8.90	8.39	7.47	9.70	12.16
Tensor Networks	5.98	8.90	9.54	16.36	15.77	15.83

Profits

Method	XS	S	М	L	XL	XXL
VQE	2.4%	-	-	-	°-	-
Exhaustive	5.1%	13.9%	-	-	-	-
VQE Constrained	5.1%	9.1%	7.1%	-		- ::
Gekko	5.8%	13.9%	13.6%	54.1%	71.6%	-
D-Wave Hybrid	5.8%	13.9%	13.6%	18.9%	29.3%	67.6%
Tensor Networks	5.8%	13.9%	15.4%	38.2%	39.6%	39.7%

Run times (in sec.)

Method	XS	S	Μ	L	XL	XXL
VQE	278	-	-	-	-	-
Exhaustive	0.005	34	-	- 1	-	-
VQE Constrained	123	412	490	-	-	-
Gekko	24	27	21	221	261	-
D-Wave Hybrid	8	39	19	52	74	171
Tensor Networks	0.838	51	120	26649	82698	116833

- Not all figures of merit are equivalent
- D-Wave Hybrid and TNs: best
- D-Wave Hybrid extremely fast
- TNs highly improbable (GPUs, etc)
- VQE (in NISQ) highly limited

Largest portfolio optimization so far with quantum and TN methods and with real data

Improvable, promising

Conclusions

- Breathing Kagome compatible with gapless nematic phase and transition at J_{∇} /J_{\Delta} \thickapprox 0.05
- 3d thermal iPEPS allows accurate simulation of the thermodynamics of complex bosonic systems and Kitaev materials
- SU(2) symmetry improves energies, but may sometimes be too stringent for 2d simulations
- Spin-2 KHAF compatible with a QSL
- Quantum and Tensor Network optimization works for portolio optimization with real data

Thanks!