Strictly-correlated Electron Functional and Multimarginal Optimal Transport

Lexing Ying
Stanford University

Joint work with Yuehaw Khoo, Lin Lin, and Michael Lindsey
April 2021, IPAM, UCLA
Outline

- Multimarginal optimal transport
- Strictly-correlated Electrons
- Convex relaxation approach
Optimal transport

- Given probability distributions ρ_1, ρ_2 on X
- Cost function $c(x, y)$
- Optimal transport problem

$$\inf_{\mu \in \Pi(\rho_1, \rho_2)} \int_X \int_X c(x, y) d\mu(x, y)$$

where $\Pi(\rho_1, \rho_2)$ is the set of joint distributions on $X \times X$ with marginals ρ_1, ρ_2.

- Applications
 - Operational research, ...
 - Generative adversarial network (GAN), ...
Multi-marginal optimal transport

Given probability distributions \(\rho_1, \ldots, \rho_N \) on \(X \)

Cost function \(C(x_1, \ldots, x_N) \)

Multimarginal OT problem

\[
\inf_{\mu \in \Pi(\rho_1, \ldots, \rho_N)} \int_{X \times \cdots \times X} C(x_1, \ldots, x_N) \, d\mu(x_1, \ldots, x_N)
\]

with \(\Pi(\rho_1, \ldots, \rho_N) \) the set of distributions on \(X \times \cdots \times X \) with marginals \(\rho_1, \ldots, \rho_N \)

We are concerned with an example from many-body Schrödinger equation
Outline

- Multimarginal optimal transport
- Strictly-correlated Electrons
- Convex relaxation approach
Schrödinger equation

- Many-body Schrödinger equation

\[H\Psi \equiv \left(\sum_{i=1}^{N} -\Delta x_i + \sum_{i<j} \frac{1}{|x_i - x_j|} + \sum_i v_{\text{ext}}(x_i) \right) \Psi \equiv (K+C+V_{\text{ext}})\Psi \]

with \(\Psi = \Psi(x_1, \ldots, x_N) \) antisymmetric and \(\|\Psi\|_{L^2} = 1 \).

- Ground state energy

\[\inf_{\Psi} \langle \Psi | H | \Psi \rangle = \inf_{\Psi} \langle \Psi | K + C + V_{\text{ext}} | \Psi \rangle \]

- High dimensional problem for \(N \) large, hard to solve.
Density functional theory (DFT)

- Define density (1-marginal)

\[\rho(x) \equiv \int |\Psi(x, x_2, \ldots, x_N)|^2 dx_2, \ldots dx_N \]

- DFT uses nested optimization using \(\rho \)

\[\inf_{\rho} \inf_{\Psi \to \rho} \langle \Psi | (K + C) + V_{\text{ext}} | \Psi \rangle \equiv \inf_{\rho} F[\rho] + V_{\text{ext}}[\rho] \]

\[V_{\text{ext}}[\rho] \equiv \inf_{\Psi \to \rho} \langle \Psi | V_{\text{ext}} | \Psi \rangle = \inf_{\Psi \to \rho} \langle \Psi | \sum_i v_{\text{ext}}(x_i) | \Psi \rangle = N \int v_{\text{ext}}(x) \rho(x) dx \]

\[F[\rho] \equiv \inf_{\Psi \to \rho} \langle \Psi | K + C | \Psi \rangle \]

(unknown universal functional, Hohenberg-Kohn 64).
Approximating $F[\rho]$

- When K dominant, approximate $F[\rho]$ with Kohn-Sham functional
- When C dominant, ignore K and approximate $F[\rho]$ with strictly-correlated electron (SCE) functional (Seidl 99)

\[
F[\rho] \approx V^{SCE}_{ee}[\rho] = \inf_{\Psi \to \rho} \int \sum_{i<j} \frac{1}{|x_i - x_j|} |\Psi(x_1, \ldots, x_N)|^2 dx_1 \ldots dx_N
\]

\[
= \inf_{\mu \in \Pi(\rho, \ldots, \rho)} \int \sum_{i<j} \frac{1}{|x_i - x_j|} \mu(x_1, \ldots, x_N) dx_1 \ldots dx_N
\]

μ symmetric, $\int d\mu = 1$, $\mu \geq 0$, $\mu(\ldots, x_i, \ldots, x_j, \ldots) = 0$ if $x_i = x_j$.

- This is a special multimarginal OT problem
 - Same 1-marginal ρ for each dimension
 - Cost
 \[
 C(x_1, \ldots, x_N) = \sum_{i<j} \frac{1}{|x_i - x_j|}
 \]
 - But the support of μ is singular
Breaking the complexity barrier

- Numerics-related previous work
 - (Mendl-Lin 12): Solve the dual problem of $V_{ee}^{\text{SCE}}[\rho]$ (exponential number of constraints)
 - (Benamou-Carlier-Nenna 16): Sinkhorn scaling (exponential number of variables)
 - (Friesecke-Vogler 18): Existence of sparse solution for multimarginal OT

- Q: Can we solve this multimarginal OT with polynomial complexity?

- Approach: use convex relaxation techniques to obtain useful lower and upper bounds for the SCE optimization problem
Outline

- Multimarginal optimal transport
- Strictly-correlated Electrons
- Convex relaxation approach
Discretization

- In SCE $C(x_1, \ldots, x_N) = \sum_{i<j} \frac{1}{|x_i - x_j|}$, multimarginal OT with pairwise cost

$$\inf_{\mu \in \Pi(\rho, \ldots, \rho)} \int X \times \ldots \times X \sum_{k<l} \frac{1}{|x_k - x_l|} d\mu(x_1, \ldots, x_N)$$

- Discretize X with a grid \mathcal{L} of L pts and introduce $c(x, y) \equiv \frac{1}{|x-y|}$.

- From now on, focus on the discrete problem

$$\min_{\mu \in \Pi(\rho, \ldots, \rho)} \sum_{x_1, \ldots, x_N \in \mathcal{L}} \left(\sum_{k<l} c(x_k, x_l) \right) \mu(x_1, \ldots, x_N)$$
Reducing dimensionality

\[
\min_{\mu \in \Pi(\rho, \ldots, \rho)} \sum_{x_1, \ldots, x_N \in L} \left(\sum_{k < l} c(x_k, x_l) \right) \mu(x_1, \ldots, x_N)
\]

- Rewrite the problem in terms of 2-marginals

\(\Pi: 3\text{-dimensional probability polytope}\)
In terms of 2-marginals

- Write μ as convex combination of extreme points:

$$\mu = \sum_{x_1, \ldots, x_N} \mu_{x_1, \ldots, x_N} e_{x_1} \otimes \cdots \otimes e_{x_N}$$

- Let $\{e_x : x \in \mathcal{L}\}$ be the set of L canonical basis vectors.
- $\sum x_1, \ldots, x_N \mu_{x_1, \ldots, x_N} = 1$ and $\mu_{x_1, \ldots, x_N} \geq 0$.
- The generalized 2-marginal of the (k, l) slice

$$G^{kl} = \sum_{x_1, \ldots, x_N} \mu_{x_1, \ldots, x_N} e_{x_k} e_{x_l}^T \in \mathbb{R}^{L \times L}$$

- Due to symmetries (identical electrons), all G^{kl} for $k \neq l$ are the same and all G^{kk} are the same. Thus define

$$\gamma \equiv G^{kl}, \quad \epsilon \equiv G^{kk}$$
Equivalent multimarginal OT form

\[\min_{\mu \in \Pi(\rho, \ldots, \rho)} \sum_{x_1, \ldots, x_N \in \mathcal{L}} \left(\sum_{k<l} c(x_k, x_l) \right) \mu(x_1, \ldots, x_N) \]

\[\sum_{k<l} \sum_{x_k, x_l} c(x_k, x_l) \sum_{\text{rest } x_i} \mu(x_1, \ldots, x_N) \equiv \sum_{k<l} \sum_{x_k, x_l} c(x_k, x_l) G_{kl}^{kl}(x_k, x_l) \]

- Introduce \(G, C \in \mathbb{R}^{N \times NL \times NL} \):

\[
G := \begin{bmatrix}
 G_1^{11} & \cdots & G_1^{1N} \\
 \vdots & \ddots & \vdots \\
 G_N^{N1} & \cdots & G_N^{NN}
\end{bmatrix} = \begin{bmatrix}
 \epsilon & \cdots & \gamma \\
 \vdots & \ddots & \vdots \\
 \gamma & \cdots & \epsilon
\end{bmatrix}, \quad
C := \begin{bmatrix}
 0 & \cdots & c \\
 \vdots & \ddots & \vdots \\
 c & \cdots & 0
\end{bmatrix}
\]

- We can the optimization problem in terms of 2-marginals:

\[
\min_{G \sim \Pi(\rho, \ldots, \rho)} \text{Tr}(CG')
\]

- But non-trivial constraints on \(G \)
Convex relaxation

\[\min_{G \sim \Pi(\rho, \ldots, \rho)} \text{Tr}(C G) \quad \text{with} \quad G = \begin{bmatrix} G^{11} & \cdots & G^{1N} \\ \vdots & \ddots & \vdots \\ G^{N1} & \cdots & G^{NN} \end{bmatrix} \]

What are some necessary conditions on \(G \)?

- \(G^{ij} \mathbf{1} \equiv \gamma \mathbf{1} = \rho \)
- \(G^{ii} \equiv \epsilon = \text{diag}(\rho) \)
- \(G \succeq 0, \ G \preceq 0 \)

Relax: drop all other constraints and obtain the convex problem

\[\min_{G=[G^{ij}]} \text{Tr}(C G) \]

s.t. \(G^{ij} \mathbf{1} \equiv \gamma \mathbf{1} = \rho, \ G^{ii} \equiv \epsilon = \text{diag}(\rho), \ G \succeq 0, \ G \preceq 0. \)

Polytope w. exp. num. of constraints. \(\Rightarrow \) Polytope w. poly. num. of constraints.
Final SDP form

- Rewrite the cost $\operatorname{Tr}(CG) = \frac{N(N-1)}{2} \operatorname{Tr}(c\gamma)$
- Introduce $\delta \in \mathbb{R}^{L \times L}$

$$\delta = \frac{1}{N^2} [I \cdots I] G \begin{bmatrix} I \\ \\ I \\ I \end{bmatrix} = \frac{1}{N^2} [I \cdots I] \begin{bmatrix} \epsilon & \cdots & \gamma \\ \\ \gamma & \cdots & \epsilon \\ \\ \epsilon & \cdots & \gamma \end{bmatrix} [I]$$

- Then

$$\delta = \frac{1}{N} \epsilon + \frac{N-1}{N} \gamma, \quad \delta 1 = \rho, \quad \gamma = \frac{N\delta - \operatorname{diag}(\delta 1)}{N-1}$$

- A convex-relaxed SDP lower bound for $V_{ee}^{\text{SCE}}[\rho]$:

$$\min_{\delta \in \mathbb{R}^{L \times L}} \frac{N(N-1)}{2} \operatorname{Tr} \left(c \left(\frac{N}{N-1} \delta - \frac{1}{N-1} \operatorname{diag}(\rho) \right) \right)$$

s.t. $\delta 1 = \rho, \delta \succeq 0, \delta \geq 0, \operatorname{diag}(\delta) = \frac{\rho}{N}$.
Why this relaxation is reasonable?

- Theorem (Friesecke-Vogler 18): The set of extreme points of N-representable symmetric 2-marginals (with Coulombic cost) is

$$\Gamma = \left\{ \frac{N}{N-1} \lambda \lambda^T - \frac{1}{N-1} \text{diag}(\lambda) \left| \lambda \in \left\{ 0, \frac{1}{N} \right\}^L, \lambda^T 1 = 1 \right. \right\}$$

- Theorem (Khoo-Y. 19): Γ is a subset of the extreme points of

$$D \equiv \left\{ \frac{N}{N-1} \delta - \frac{1}{N-1} \text{diag}(\delta 1) \left| \delta \succeq 0, \delta \geq 0, \text{diag}(\delta) = \frac{\delta 1}{N} \right. \right\}$$

(Note that D is the set of feasible 2-marginals γ for the SDP).
Extensions

- An upper bound to $V_{ee}^{\text{SCE}}[\rho]$ using three marginals

- The second quantization case
Numerical examples

▶ 1D electron: \(N = 8, \ L = 1600 \)

\[
\rho \propto \exp\left(-\frac{x^2}{\sqrt{\pi}}\right)
\]

▶ \(10^{25}\) entries if LP was used.
Numerical examples

- 1D electrons, \(N = 8 \)

\[
\rho(x) \propto \sin(4x) + 1.5
\]

- Left: 2-marginal \(\delta^* \rightarrow \gamma \). Relative gap = 4.2e-02
- Right: 3-marginal \(\theta^* \rightarrow \gamma \). Relative gap = 3.9e-02
Numerical examples

- 1D electrons, $N = 8$
 \[\rho(x) \propto 1 \]

- Left: 2-marginal $\delta^* \rightarrow \gamma$. Relative gap = 4.9×10^{-4}
- Right: 3-marginal $\theta^* \rightarrow \gamma$. Relative gap = 1.0×10^{-6}
Numerical examples

- 2D electrons, $N = 5$

$$\rho(x, y) \propto 1$$

- Plots are slice of 2-marginal with one component fixed.
- 2-marginal $\delta^* \rightarrow \gamma$. Relative gap = 3.8e-02
- 3-marginal $\theta^* \rightarrow \gamma$. Relative gap = 3.5e-02
Thank you

- Email: lexing@stanford.edu
- URL: http://web.stanford.edu/~lexing