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Rough setting + overview:

Some fundamental questions we can ask of tensor networks
/decompositions:

e can a tensor network represent X?

« can we find that representation? %\

* given a tensor network that exactly describes /7 sz o il

an unknown tensor, can we compute it? WA o S e ]

1. Frame task as nested hypergraph partitioning 3”-"02"@3?:.,;}:\ S

2. Use this to motivate ‘simplification’ rules AN e
3. Extend to approximate contraction? SR ;,.fgi"::;;;g;;_’{‘;‘T;,E;WEO:°



Tensor networks - general defn

Topa = Zc XabeYed

a

Contraction of
tensor network:

Sum over all, exponentially many index strings.

9 2ed
ooooooooooooo

Quantum computation
T, ~ gates, states

Many-body quantum
* T, ~ virtual Hilbert spaces

SAT / Counting
« T, are clauses, constraints

Classical Stat Mech
* T, describe local energies

Inference
* T, are conditional prob dists



Exact tensor network contraction

Can describe huge tensors very efficiently... but actually contracting them generally hard
(#P-Complete). Nonetheless can exponentially improve on naive sum:

Z TO(ZUabc)Tl (Qfadef)TQ(xbfg)TB(-chdh)Tél(xegh)
x=abcde fgh

By making use of associativity to ‘bubble’ tensors:

ZTO(xa,bc) ZTl(ajadef) (Z TQ(xbfg) (Z TS(mcdh)T4(33egh)))
g h

abc def

... COSt is e)(traordinarily Know optimal scaling is generically still exponential,
sensitive to choice of order in treewidth of linegraph: Markov & Shi [2005]



Contraction trees

vertex congestions
give contraction flops
- each associated with
bipartition of graph G

edge congestions
give intermediate
tensor sizes - each
associated with
subgraph of GG

Computational time

and space given by {a, c} {a e } { g} {c } {eg }

contraction tree:

(Z To(%abe) (Z T1(%adef) (Z Ta(xpsg) (Z T3(wean) Ty ('Tegh)> ) ) ) O’Gorman - Parameterization of
g h

abe def tensor network contraction - 2019



Hypergraph Tensor Networks

Both sum-of-products defn and contraction tree permit
indices appearing 3+ times, hyper-edges, AKA:

Implicit COPY-tensor

7-spider Vijkt = D AinBinCrnDin
linegraph of hyper graph still regular graph :
CANDECOMP/PARAFAC (CP) decomposition...

Contraction costs are now associated with
hypergraph partitions, and pairwise contractions
are performed like ~ batched-matrix-multiply




What’s the benefit of hypergraphs?

Can resolve hyper-indices network built up of order-3 COPY-tensors...

But lose r)atural (a) (b) | (©)
permutational \é 3 5/

symmetry of the v
problem - bestwayto ~ \/ T Ao

create decomposition >0 N N

now depends on ?\‘\,.

contraction tree:



Hypergraphs - an extreme all-to-all example

Take Ising model on graph with all-to-all interactions. Partition function given
by contraction of tensor network where on each edge of graph place:
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Take VT & absorb into vertices: 4 6 s 10 12 Simply leave as hypergraph:



Constructing the tree

arXiv:2002.01935 - use mix of: 4 Even for regular
_ sps : . | lattice, tree quite
1. Hyperg.raph partltlomng / inpredictable
2. Dynamic-programming o ; \
3. Bayesian optimization \
e
ds BN
To ‘learn’ how to construct and sample ever better o L
trees for a particular geometry A \

In all cases find better - often by orders of
magnitude - performance than previous
approaches... + seemingly close to optimal



Can we aid contraction by simplifying first?

Motivated by exact contraction, try and locally transform TN to:

1. Reduce number of tensors
2. Happily introduce hyperedges
3. Reduce weight of hypergraph cuts

Only expect gains for relatively structured TNs, but find in
certain cases surprisingly powerful on their own...



Notable ‘fully simplifiable’ tensor networks

Matchgate Tensors:

» 3-planar-NOT-ALL-EQUAL (SAT or ‘ice’) and various problems [Valiant - Holographic Algorithms -
2004]

» Extended to non-planar [ Brayvi - Contraction of matchgate tensor networks on non-planar graphs -
2008]

ZX-calculus:

 Clifford (stabilizer) qu. Circuits [van de Wetering - ZX-calculus for the working quantum computer
scientist - 2020]

« XORSAT [Beaudrap, Kissinger, Meichanetzidis - Tensor Network Rewriting Strategies for Satisfiability
and Counting - 2020]



Local TN simplifications



Rank (#dim) Simplification

Perform any pairwise contraction that doesn’t increase the rank of any tensor:

Rank Simplity

—

E.g. Qu. circuit
simulation - can
absorb any number

‘“Topology preserving’ - all loops are retained. of single qubit gates
into neighbors

Don’t need to know anything about insides of tensors.



Column Reduction

If any tensor has zero entries in all but one column - can remove that index
from all tensors.

Column Reduce

—

Mostly useful in conjunction with other simplification schemes.



Split Simplification

Search tensors for any low-rank (in terms of SVD)

oo . - . Examples
decompositions between all bipartitions of indices: Any controlled gate, like CNOT:

Oq Op Oq Op
j H

Split Simplify ‘ ‘ . ,

1q 1p (7 1y

=
iISWAP

Oq Op
Creates more tensors... but usually lower weight cuts. fza‘ ‘ ! !



Diagonal Reduction

Search tensors for any pairs of diagonal axes (i.e. zero whenever two indices

are difterenty:  pr ipyiy] = Ty iy)0i, i,

‘ ‘ E.g. control qubit of
Diagonal Reduction gate after spatial
i decomposition

Can then take diagonal and replace index i, with i, everywhere...
introduction of hyper-index




Permutation Flipping

Can think about using gauge freedom of TNs to introduce any transformation along a
bond that enables another simplification.

Anti-diagonal Gauge

The simplest case is any index permutation that produces a diagonal pair of axes.
(In d = 2 only such non-trivial gate is X). Enables further diagonal reduction



Combining simplifications

» Perform sequence of simplifications in loop until |V|, |E| converges.
* Process is pretty stable - but order of simplifications matters somewhat / ><;>§ )i?«

* Need some numerical tolerance for most methods ‘ ;&«%}gk

* Generally use something very small (not trying to approximate anythmg) /

ﬁﬂ\ﬁi7 ,,,,,,,,,,,,,,,

Whilst aim is to prepare TN for exact contraction, find huge reductions
from the combination of these simple methods... sometimes!



Various results / applications



Fully simplifiable: norm of unitary IN

Lightcone structure of unitary
tensor networks is automatically
discovered + cancelled.

... hot super useful as we know answer by
construction - but illustrates how local
simplification rules combine:

Rank Simplify Split Simplify Rank Simplify

T

Deep, random, all-to-all
circuit on ~100 qubits



Random circuit amplitudes:
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State-of-the-art performance that simulations of Google's Sycamore chips

Rectangular 7x7 quantum chip, CZ gates
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arXiv:2005.06787, arXiv:2103.03074
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Almost fully simplifiable: Quantum Fourier Transform

Take random product state (i.e. support on all input
bitstrings) as input to QFT with 100 qubits

B 5 5 P

But once you construct

marginals (required for . o S
unbiased sampling), get Ay v :

¢, ) VAR -@
:g;fglilnca?:g}neogaé | ° ANNNY4 Some results about efficient TN QFT representations:

B D ® (]
o
qubits very simple TNs: . ' Scale invariance and efficient classical
o e simulation of the quantum Fourier transform

Kieran J. Woolfe, Charles D. Hill, Lloyd C. L. Hollenberg



Non-quantum: (Weighted) Model Counting

7 vars #Fclauses Very naturally described by hyper tensor network:
T = Z H Wy H C@i * Single variable is hyperindex
(v} v p * OR-clause tensors e.g. can be CP decomposed

Of 100 instances from the 2020 ..,..*"'“'a""'-."“ ‘*‘»*‘.

Model Counting Competition can # SR

solve 99 (compared to 69 for next .{'g‘; };m g

best exact weighted model i Tl "

counter, ADDMC). R \

‘ﬁ:,,. P 5;'
Essentially all simplify to either a trivial - 3 " L "3-'3
: g . .'.’.'f"i . ,3.:.,

or small core hyper tensor network
which can be easily contracted:




Approximate contraction?

« Know many TNs can be approximately contracted (although don’t expect all)

* Infact, for many-body TN usages, nearly always approximately contract



Approximate contraction?

Approx. simplifications:

E.g. loop simplification and other more non-
local decompositions

Approx. contractions: 3
X

Augment contraction tree with

compressions, need to consider:

» Gauging

» Estimating error

Loop Simplify

=

* ... many more subtleties ) )
y Contract according to series =l SR LS SRR SRR

of merges (the tree) bonds grow beyond y



Interesting questions for approx. contraction:

Contract useful things where Investigate the line between
geometry is ‘Jjust another input’ approx. hard and easy:

Frustrated pyrochlore lattice
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Concluding thoughts

Still finding places where extended exact contraction capabilities might be useful

What problems can we extend approximate contraction to?

How can we mix contraction + simplification + approximation simultaneously?

Implementations available: github.com/jcmgray/quimb + github.com/jcmgray/cotengra %\%
AMN

Thanks!



