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Overview

Tensor networks are a natural way to parameterize
interesting and powerful machine learning models

Perspective on this area from physics point of view

Today:
e Overview

» Tensor Networks Architectures & Applications

» Algorithms & Future Directions
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Tensors in Machine Learning

Where can tensors appear in
machine learning applications?



Multi-Dimensional Data

Image Data

r,g,b value

X coord

y coord

Medical Data

age height weight  symptom




Neural Network Weight Layers

Possible to interpret as a very high-order tensor

(not just a matrix)



Linear Weights of High-Dimensional Models

For certain cases of kernel learning and Gaussian processes,
weights are naturally a high-order tensor



Why Tensor Networks?



Tensor network = factorization of huge tensor into
contracted product of smaller tensors

e - tethedds



Tensor network = factorization of huge tensor into
contracted product of smaller tensors

e - tethedds

Benetits:
* exponential reduction in memory needed
» exponential speedup of computations (addition, product)
* theoretical insight and interpretation
 estimation of missing or corrupted entries

* many optimization algorithms & strategies



Notation — Tensor Diagrams

N-index tensor = shape with N lines
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Best understood tensor network is the
matrix product state (MPS)!.2 or tensor train 3
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[1] Ostlund, Rommer, PRL 75, 3537 (1995)
[2] Vidal, PRL 91, 147902 (2003)
[3] Oseledets, SIAM J. Sci. Comp. 33, 2295 (2011)



Adjustable parameter of matrix product state (MPS) is
bond dimension X
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If modest X yields good approximation,
obtain massive compression:
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Can efficiently sum MPS in compressed form:
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multiply by other networks:
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and perfectly sample:




In quantum physics, have rich theory of
which tensor networks are suited for particular "data”
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1D system 1D critical system 2D system

(Here "data" = samples/measurements of a quantum
wavefunction)



Tensor networks a general tool for linear algebra in
exponentially high-dimensional spaces

For example, entanglement entropy really just a measure
of multilinear tensor rank



Architectures & Applications

Tensor networks
beyond finite MPS



Most straightforward application of tensor networks to

machine learning is using MPS

1. map data to tensor
product features

2. evaluate MPS model

3. optimize MPS tensors for
machine learning objective
(supervised, unsupervised)

Novikov, Trofimov, Oseledets, arxiv:1605.03795
Stoudenmire, Schwab, Advances in NIPS 29 (2016)
Han et al., PRX 8, 031012 (2018)

x> 000000



Since 2016, tensor network machine learning now
successfully "ported” to other tensor net architectures
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Infinite MPS

Miller, Rabusseau, Terilla, "Tensor Networks for Probabilistic Sequence Modeling"”, arxiv:2003.01039

A0 A0 Gaird

boundary tensors

e used to generate model languages with various grammars
* very few parameters and parallel optimization
* superior results to LSTM in many cases, equal in most others

® can generalize from training on shorter sequences to correct
results on longer sequences (so really learning the grammar)

Miller, Rabusseau, Terilla, arxiv:2003.01039



Locally purified states

Anomaly
Detection with
Tensor Networks

arxiv:2006.02516
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Table 3: Mean AUROC scores (in %) and standard errors on ODDS datasets.

Dataset OC-SVM IF GOAD DAGMM TNAD

Wine 60.0 46.0+£ 84 48.2+24.7 51.7+19.3 97.3+4.5
Glass 62.0 57.2+16 53.5+13.6 525+129 81.8+7.3
Thyroid 98.8 99.0+0.1 95.8+13 888+6.8 99.0+0.1
Satellite 79.9 772+09 606+53 721+47 81.3+0.5
Forest 97.7 71.7+26 646+47 609+89 98.8+0.6

Novel anomaly detection
framework

Results better than neural
networks for tabular data

Quantum process
tomography with ...
tensor networks

arxiv:2006.02424
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Scalable learning of noisy
quantum "“channels" or
processes from experiments



PEPS (Projected Entangled Pair States)

Cheng, Wang, Zhang, "Supervised Learning with PEPS" arxiv:2009.09932

PEPS = 2D analogue of MPS

Framework for learning

MNIST dataset

e comparable results to NN with fewer parameters R e

e starting to see overfitting at larger D? >

e convolutional layers help (91% test correct on ol
FashionMNIST using CNN+PEPS!)

- [~MPS
- |- -MLP
- |~ -CNN-MLP

® cost to train is high 4t < peps

- |-©-CNN-PEPS
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Bond dimension



MERA for Audio Classification

Reyes, Stoudenmire, "A Multi-Scale Tensor Network Architecture for Classification and Regression” x ‘
arxiv:2001.08286 Justin Reyes
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Key capability is fine-graining
weights through layers:
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Algorithms & Theory

including expressivity, data efficiency,
model adaptation, ...



Why can tensor networks succeed?

Are image datasets comparable to low-
entanglement wavefunctions in physics?

Tentative answer: nol
Entropy of MNIST (10k, x ~ 100)
®
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Entanglement Entropy vs. Perimeter
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Cheng, Chen, Wang, Entropy 20, 583 (2018)
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Martyn, Vidal, et al. arxiv:2007.06082



Why can tensor networks succeed?

Two recent papers give different perspective:
e mutual information (MI) may be best quantity to consider

e strategies to estimate M|

Lu, Kanasz-Nagy, et al. arxiv:2103.06872

Convy, Huggins, et al. arxiv:2103.00105 Top : Bottom (a2) Center : Surroundings
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e study synthetic Gaussian data e Ml of text is beyond area law

e realistic images have Ml like scaling

that of near-neighbor ® some images are area law, but
correlated Gaussian others may be beyond area law



Why do tensor networks succeed at all?

Entanglement Entropy vs. Perimeter

If images high entanglement, = 3
how do tensor networks succeed? + ﬁ o |
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Martyn, Vidal, et al. arxiv:2007.06082

Possible answers:

e Convy et al says: quantity studied by Martyn et al. may be
overly sensitive to choice of feature map

* entropy might decrease as more images summed

* supervised learning may require much less resources

Important that we can even pose and answer these questions!



Progress in Training Algorithms

Algorithms could be what sets tensor network
models apart

Available algorithms (partial list):
* ALS + gradient descent
e ALS + optimal local update (Stokes, Terilla)
e modified ALS (= 2 site DMRG)
* Riemannian optimization
e TT-cross algorithm

 density matrix algorithm (polynomial-scaling TT-SVD)



Progress in Training Algorithms

An interesting story of two algorithms for a
challenging dataset

The dataset: even-parity bit strings

00000000
00000011
00000110

10100110 even # of 1's
10100101

11111111

Feature map: 0— 6 = [;] 1 — 6 = [(1)]



Progress in Training Algorithms

An interesting story of two algorithms for a
challenging dataset

Algorithm #1: optimal local update (generative modeling)

> 3368880 ¢

¢

CP—(P—?—(P—CP—CP locally improved MPS

Stokes, Terilla, Entropy 21, 1236 (2019)



Progress in Training Algorithms

Algorithm #1: optimal local update (generative modeling)

® can use geometric reasoning to develop
* excellent results up to length N=20 bitstrings
* linear scaling in data length and training set size

e can fail for poor choice of initial state ..

Stokes, Terilla, Entropy 21, 1236 (2019)



Progress in Training Algorithms

Algorithm #2: direct compression / density matrix algorithm

Y = Z d) d) d) d) d) d) ®,; 1. define "target tensor”
J

d) d) . 2. trace double sum
Z EI}?] — H to obtain reduced
" ’ ’ Z "density matrix"

3. diagonalize density
matrices to obtain MPS
tensors one at a time

Bradley, Stoudenmire, Terilla, MLST 1, 035008 (2020)



Progress in Training Algorithms

Algorithm #2: direct compression / density matrix algorithm

e cannot get stuck & gives deterministic results
* scales quadratically in training set size

* can develop a theory of generalization:

i numerical experiment ava.
Distance to true ;. P 9

distribution ——— theory prediction
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(fraction) Bradley, Stoudenmire, Terilla, MLST 1, 035008 (2020)



Outlook & Future Directions



Many opportunities to fix downsides of tensor network
optimization algorithms

Main downsides:

- cost to train (memory + time) can be high

- best architecture choices still being explored
Opportunities to improve:

+ use sparse (e.g. block-sparse) tensors within models

+ use infinite tensor networks more

+ use symmetries more (evidence conv. layers help, infinite
TNs for translation symmetry, ...)

+ devise more data-efficient approaches (theory can help)



Push interpretability / understanding / theory frontier

Opportunities here:

+ can characterize which data is learnable by a given type and
size of tensor network

+theory of generalization (Bradley et al.) could be improved:

» tighter bounds,
» apply to other data sets

» estimate using summary statistics of real data

+ progress in theory will feed back into better training
algorithms




One final thought:

Tensor networks likely just the "right" way to do linear algebra
in very high-dimensional spaces (versus being quantum
mechanics oriented)

We haven't even figured out the biggest pieces of tensor
networks yet, such as analog of QR or SVD factorizations for
matrix-like tensor networks

Some major progress only happened recently, such as
canonical forms of PEPS (arxiv:1902.05100) or progress
in randomized algorithms (arxiv:2003.05101)



