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Overview

Tensor networks are a natural way to parameterize 
interesting and powerful machine learning models
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Today:

Perspective on this area from physics point of view



Tensors in Machine Learning

Where can tensors appear in 
machine learning applications?
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Figure 4: (Left) Eight ILSVRC-2010 test images and the five labels considered most probable by our model.
The correct label is written under each image, and the probability assigned to the correct label is also shown
with a red bar (if it happens to be in the top 5). (Right) Five ILSVRC-2010 test images in the first column. The
remaining columns show the six training images that produce feature vectors in the last hidden layer with the
smallest Euclidean distance from the feature vector for the test image.

In the left panel of Figure 4 we qualitatively assess what the network has learned by computing its
top-5 predictions on eight test images. Notice that even off-center objects, such as the mite in the
top-left, can be recognized by the net. Most of the top-5 labels appear reasonable. For example,
only other types of cat are considered plausible labels for the leopard. In some cases (grille, cherry)
there is genuine ambiguity about the intended focus of the photograph.

Another way to probe the network’s visual knowledge is to consider the feature activations induced
by an image at the last, 4096-dimensional hidden layer. If two images produce feature activation
vectors with a small Euclidean separation, we can say that the higher levels of the neural network
consider them to be similar. Figure 4 shows five images from the test set and the six images from
the training set that are most similar to each of them according to this measure. Notice that at the
pixel level, the retrieved training images are generally not close in L2 to the query images in the first
column. For example, the retrieved dogs and elephants appear in a variety of poses. We present the
results for many more test images in the supplementary material.

Computing similarity by using Euclidean distance between two 4096-dimensional, real-valued vec-
tors is inefficient, but it could be made efficient by training an auto-encoder to compress these vectors
to short binary codes. This should produce a much better image retrieval method than applying auto-
encoders to the raw pixels [14], which does not make use of image labels and hence has a tendency
to retrieve images with similar patterns of edges, whether or not they are semantically similar.

7 Discussion

Our results show that a large, deep convolutional neural network is capable of achieving record-
breaking results on a highly challenging dataset using purely supervised learning. It is notable
that our network’s performance degrades if a single convolutional layer is removed. For example,
removing any of the middle layers results in a loss of about 2% for the top-1 performance of the
network. So the depth really is important for achieving our results.

To simplify our experiments, we did not use any unsupervised pre-training even though we expect
that it will help, especially if we obtain enough computational power to significantly increase the
size of the network without obtaining a corresponding increase in the amount of labeled data. Thus
far, our results have improved as we have made our network larger and trained it longer but we still
have many orders of magnitude to go in order to match the infero-temporal pathway of the human
visual system. Ultimately we would like to use very large and deep convolutional nets on video
sequences where the temporal structure provides very helpful information that is missing or far less
obvious in static images.

8

Figure 4: (Left) Eight ILSVRC-2010 test images and the five labels considered most probable by our model.
The correct label is written under each image, and the probability assigned to the correct label is also shown
with a red bar (if it happens to be in the top 5). (Right) Five ILSVRC-2010 test images in the first column. The
remaining columns show the six training images that produce feature vectors in the last hidden layer with the
smallest Euclidean distance from the feature vector for the test image.

In the left panel of Figure 4 we qualitatively assess what the network has learned by computing its
top-5 predictions on eight test images. Notice that even off-center objects, such as the mite in the
top-left, can be recognized by the net. Most of the top-5 labels appear reasonable. For example,
only other types of cat are considered plausible labels for the leopard. In some cases (grille, cherry)
there is genuine ambiguity about the intended focus of the photograph.

Another way to probe the network’s visual knowledge is to consider the feature activations induced
by an image at the last, 4096-dimensional hidden layer. If two images produce feature activation
vectors with a small Euclidean separation, we can say that the higher levels of the neural network
consider them to be similar. Figure 4 shows five images from the test set and the six images from
the training set that are most similar to each of them according to this measure. Notice that at the
pixel level, the retrieved training images are generally not close in L2 to the query images in the first
column. For example, the retrieved dogs and elephants appear in a variety of poses. We present the
results for many more test images in the supplementary material.

Computing similarity by using Euclidean distance between two 4096-dimensional, real-valued vec-
tors is inefficient, but it could be made efficient by training an auto-encoder to compress these vectors
to short binary codes. This should produce a much better image retrieval method than applying auto-
encoders to the raw pixels [14], which does not make use of image labels and hence has a tendency
to retrieve images with similar patterns of edges, whether or not they are semantically similar.

7 Discussion

Our results show that a large, deep convolutional neural network is capable of achieving record-
breaking results on a highly challenging dataset using purely supervised learning. It is notable
that our network’s performance degrades if a single convolutional layer is removed. For example,
removing any of the middle layers results in a loss of about 2% for the top-1 performance of the
network. So the depth really is important for achieving our results.

To simplify our experiments, we did not use any unsupervised pre-training even though we expect
that it will help, especially if we obtain enough computational power to significantly increase the
size of the network without obtaining a corresponding increase in the amount of labeled data. Thus
far, our results have improved as we have made our network larger and trained it longer but we still
have many orders of magnitude to go in order to match the infero-temporal pathway of the human
visual system. Ultimately we would like to use very large and deep convolutional nets on video
sequences where the temporal structure provides very helpful information that is missing or far less
obvious in static images.

8

Figure 4: (Left) Eight ILSVRC-2010 test images and the five labels considered most probable by our model.
The correct label is written under each image, and the probability assigned to the correct label is also shown
with a red bar (if it happens to be in the top 5). (Right) Five ILSVRC-2010 test images in the first column. The
remaining columns show the six training images that produce feature vectors in the last hidden layer with the
smallest Euclidean distance from the feature vector for the test image.

In the left panel of Figure 4 we qualitatively assess what the network has learned by computing its
top-5 predictions on eight test images. Notice that even off-center objects, such as the mite in the
top-left, can be recognized by the net. Most of the top-5 labels appear reasonable. For example,
only other types of cat are considered plausible labels for the leopard. In some cases (grille, cherry)
there is genuine ambiguity about the intended focus of the photograph.

Another way to probe the network’s visual knowledge is to consider the feature activations induced
by an image at the last, 4096-dimensional hidden layer. If two images produce feature activation
vectors with a small Euclidean separation, we can say that the higher levels of the neural network
consider them to be similar. Figure 4 shows five images from the test set and the six images from
the training set that are most similar to each of them according to this measure. Notice that at the
pixel level, the retrieved training images are generally not close in L2 to the query images in the first
column. For example, the retrieved dogs and elephants appear in a variety of poses. We present the
results for many more test images in the supplementary material.

Computing similarity by using Euclidean distance between two 4096-dimensional, real-valued vec-
tors is inefficient, but it could be made efficient by training an auto-encoder to compress these vectors
to short binary codes. This should produce a much better image retrieval method than applying auto-
encoders to the raw pixels [14], which does not make use of image labels and hence has a tendency
to retrieve images with similar patterns of edges, whether or not they are semantically similar.

7 Discussion

Our results show that a large, deep convolutional neural network is capable of achieving record-
breaking results on a highly challenging dataset using purely supervised learning. It is notable
that our network’s performance degrades if a single convolutional layer is removed. For example,
removing any of the middle layers results in a loss of about 2% for the top-1 performance of the
network. So the depth really is important for achieving our results.

To simplify our experiments, we did not use any unsupervised pre-training even though we expect
that it will help, especially if we obtain enough computational power to significantly increase the
size of the network without obtaining a corresponding increase in the amount of labeled data. Thus
far, our results have improved as we have made our network larger and trained it longer but we still
have many orders of magnitude to go in order to match the infero-temporal pathway of the human
visual system. Ultimately we would like to use very large and deep convolutional nets on video
sequences where the temporal structure provides very helpful information that is missing or far less
obvious in static images.

8

Image Data

Medical Data

height weight symptomage



Neural Network Weight Layers

} ≈

Possible to interpret as a very high-order tensor 
(not just a matrix)



Linear Weights of High-Dimensional Models

For certain cases of kernel learning and Gaussian processes, 
weights are naturally a high-order tensor

�
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Why Tensor Networks?



Tensor network = factorization of huge tensor into 
contracted product of smaller tensors

=



Tensor network = factorization of huge tensor into 
contracted product of smaller tensors

=

Benefits: 
• exponential reduction in memory needed 
• exponential speedup of computations (addition, product) 
• theoretical insight and interpretation 
• estimation of missing or corrupted entries 
• many optimization algorithms & strategies



N-index tensor = shape with N lines

Notation – Tensor Diagrams

s1 s2 s3 s4 sN

T s1s2s3···sN =
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Best understood tensor network is the 
matrix product state (MPS)1,2 or tensor train 3

[1] Östlund, Rommer, PRL 75, 3537 (1995)

[2] Vidal, PRL 91, 147902 (2003)

[3] Oseledets, SIAM J. Sci. Comp. 33, 2295 (2011)



=

Adjustable parameter of matrix product state (MPS) is 
bond dimension 

If modest        yields good approximation, 
obtain massive compression:
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Can efficiently sum MPS in compressed form:

multiply by other networks:
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In quantum physics, have rich theory of 
which tensor networks are suited for particular "data"

(Here "data" = samples/measurements of a quantum 
wavefunction)

1D system 1D critical system 2D system



Tensor networks a general tool for linear algebra in 
exponentially high-dimensional spaces

For example, entanglement entropy really just a measure 
of multilinear tensor rank



Architectures & Applications

Tensor networks 
beyond finite MPS



1. map data to tensor 
product features 

2. evaluate MPS model 

3. optimize MPS tensors for 
machine learning objective 
(supervised, unsupervised) 

Most straightforward application of tensor networks to 
machine learning is using MPS

Novikov, Trofimov, Oseledets, arxiv:1605.03795 
Stoudenmire, Schwab, Advances in NIPS 29 (2016) 
Han et al., PRX 8, 031012 (2018)
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Since 2016, tensor network machine learning now 
successfully "ported" to other tensor net architectures
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Figure 1. Supervised learning model of PEPS structure. The input
image x would be mapped to a high-dimensional vector�(x) consist-
ing of local feature maps �si

(xi). The label vetor f
`(x) come from

the contraction of �(x) and a PEPS strucure tensor network W.

networks. When compared with the standard classifier, the
Multilayer Perceptron (MLP), we find that they perform sim-
ilarly when the same input features are used, but our PEPS
based method requires much fewer parameters and is more
stable.

The rest of this paper is organized as follows: In Sec. II we
give a detailed description of the PEPS model and the corre-
sponding training algorithm. In Sec. III we evaluate our model
on the MNIST25 and the Fashion-MNIST26 datasets and com-
pared the results with other tensor network models as well as
classic machine learning models. We conclude in Sec. IV and
discuss possible future developments along the direction of
applying tensor networks to machine learning.

II. IMAGE CLASSIFICATION WITH PEPS

A. Feature map of input data

The goal of supervised learning is to learn a complex func-
tion f (x) which maps an input training (grayscale) image
x 2 RL0⇥L0 with pixels defined on a L0 ⇥ L0 grid, to a given
label y 2 {1, 2, ...,T }, where T denotes the number of pos-
sible labels. Usually, such mapping is highly nonlinear in the
original space of input data x, because nonlinearity e↵ectively
increases the dimension of the input space where features of
data are easier to capture. In this work, we consider the clas-
sifier with tensor networks, which is a linear model usually
acting at a space with a very large dimension. The motiva-
tion of working with a very large dimension is that there is not
necessary to consider nonlinearity because all features would
become linear separable as stated in the representer theorem27.
So first one needs to transform the input data x to a feature ten-

sor �(x) in a space of large dimension using a feature map.

We consider two distinct kinds of feature maps in this work.

1. Product state feature map

A simple way to increase the dimension of input space is
creating an Hilbert space for pixels. This is to levarage the
black pixel with xi = 0 and white pixel with xi = 1 as a

black state |0i =
 
1
0

!
and a white state |1i =

 
0
1

!
respectively,

then convert each gray scale pixel xi in the image x as a super
position of |0i and |1i

�(xi) = a

 
1
0

!
+ b

 
0
1

!
, (1)

where a and b are functions of xi, which for example can be
chosen as

a = cos(⇡xi/2), b = sin(⇡xi/2). (2)

For image with N = L0 ⇥ L0 pixels, the feature tensor �(x) is
then defined by the tensor product of �(xi)

�(x) = �(x1) ⌦ �(x2) ⌦ · · · ⌦ �(xN) (3)

This is probably the most straightforward feature map that
transforms every pixel in the original space RN to a product
state in the Hilbert space of dimension 2L0⇥L0 , and has been
widely used in the literatures12. We term it as the product

state feature map.

2. Convolution feature map

The simple product state feature maps introduced in the pre-
vious section are pre-determined before the classifier is ap-
plied, thus is apparently not optimal. Another option is using
an adaptive feature map with parameters learned together with
the classifier. The most famous adaptive feature map is the
convolution layers, which perform non-linear transformations
to transform input images to a feature tensor with multiple
channels 28 using two-dimensional convolutions.

The input of the convolution layer is a raw image x 2
RL0⇥L0 . After the transformation, the convolution layer out-
puts a three-order feature tensor with dimension L ⇥ L ⇥ d,
where the L⇥L refers to the output size of features with L  L0
depending on size kernels and paddings, and d denotes the
number of channels. This is to say that the output of the CNN
feature map is also a product state with components located at
a grid of size L ⇥ L, and each component is of local physical
dimension d. Thus the total space size of the feature tensor is
d

L⇥L.
In the standard convolution neural networks (CNN), the

function of convolution layers (plus pooling layers) is extract-
ing relevant features from input data. Following the con-
volution layers, a classifier, usually a multi-layer perceptron

Infinite MPS

Locally purified states

PEPS

MERA

4

isometries parameterized as:

U =

0

B@

1 0 0 0
0 cos ✓U sin ✓U 0
0 � sin ✓U cos ✓U 0
0 0 0 1

1

CA

V =

✓
1 0 0 0
0 sin ✓V cos ✓V 0

◆

which will be sufficient to parameterize MERA layers which
approximately compute wavelet coarse graining transforma-
tions of input data. We discuss how to choose the angles ✓U
and ✓V to approximate Haar and Daubechies wavelets in the
next section. The existence of a correspondence between the
MERA tensor network and discrete wavelet transformations
was first described in Refs. 33 and 34.

III. MODEL AND TRAINING ALGORITHM

The model function we will now discuss for regression and
supervised learning first coarse grains input data through some
number of discrete wavelet transformations, implemented as
MERA tensor network layers. Then an MPS tensor network
is used to represent the top layer of trainable weights.

After discussing how to train a model of this type, we high-
light one of its key advantages: the amount of coarse grain-
ing can be adjusted during training to adaptively discover the
number of coarse graining steps needed to obtain satisfactory
results.
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FIG. 3. Decomposition of each transformation element D1�4 into
the unitaries and isometries of the wavelet MERA. The complete
Daub4 wavelet transformation over data elements x1�4 is given by
the contraction over connected indices. Each transformation is pa-
rameterized by ✓U and ✓V .

A. Coarse Graining

To reduce the parameter space necessary for training the
weights our classifier, we coarse grain the input data through

|�(x)i
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FIG. 4. The tensor diagram for the model we use for classification
and regression, showing the case of three MERA layers. Each input
data x is first mapped into a (rank-1) MPS |�(x)i, then acted on by
MERA layers approximating Daub4 wavelet transformations. At the
top layer, the trainable parameters of the model W are decomposed
as an MPS. Because all tensor indices are contracted, the output of
the model is a scalar.

a series of wavelet transformations, effectively reducing the
size of the data by a factor of two after each transformation.
This is done by first mapping each input data element xi to the
vector |�(xi)i = |0i+xi |1i, where in this section we use the
physics notation that |vi is a vector labeled v. We have also
defined

|0i = (1 0)T (9)

|1i = (0 1)T (10)

The feature map applied to each data sample is taken to be the
tensor product

|�(x)i = |�(x1)i ⌦ |�(x2)i ⌦ ... ⌦ |�(xN )i . (11)

where the ⌦ symbol is often omitted in practice when using
ket | i notation. This input tensor can be thought of as an MPS
of bond dimension 1. As shown in Fig. 3, this MPS becomes
the bottom layer of a network with wavelet MERA represent-
ing the upper layers. Each subsequent layer in the MERA is
constructed by encoding wavelet transformations into the dis-
entangler and isometry tensors U and V .

To accomplish such an encoding, we first decompose each
of the wavelet coefficients in the set {Di} given in Eq. 7 into
two sequentially applied transformations. If we consider the
term xi |1i in each local feature vector |�(xi)i of Eq. 11 as
a “particle” whose state has a coefficient given by the input
component xi, we can trace the path of this particle through
the MERA as shown in Fig. 3, assigning appropriate transfor-
mations to xi as it propagates through the tensors. Following
this construction, one can work out the result of applying the
MERA layer to a patch of four adjacent input tensors, whose
dependence on input components (x1, x2, x3, x4) is to leading
order:

|�(x1)i |�(x2)i |�(x3)i |�(x4)i =

= (|0i + x1 |1i) (|0i + x2 |1i) · · ·
= |0i |0i |0i |0i

+ x1 |1i |0i |0i |0i
+ x2 |0i |1i |0i |0i



Infinite MPS

• used to generate model languages with various grammars 

• very few parameters and parallel optimization 

• superior results to LSTM in many cases, equal in most others 

• can generalize from training on shorter sequences to correct 
results on longer sequences (so really learning the grammar)

boundary tensors

Miller, Rabusseau, Terilla, arxiv:2003.01039

Miller, Rabusseau, Terilla, "Tensor Networks for Probabilistic Sequence Modeling", arxiv:2003.01039



Locally purified states
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stable.
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label y 2 {1, 2, ...,T }, where T denotes the number of pos-
sible labels. Usually, such mapping is highly nonlinear in the
original space of input data x, because nonlinearity e↵ectively
increases the dimension of the input space where features of
data are easier to capture. In this work, we consider the clas-
sifier with tensor networks, which is a linear model usually
acting at a space with a very large dimension. The motiva-
tion of working with a very large dimension is that there is not
necessary to consider nonlinearity because all features would
become linear separable as stated in the representer theorem27.
So first one needs to transform the input data x to a feature ten-

sor �(x) in a space of large dimension using a feature map.

We consider two distinct kinds of feature maps in this work.

1. Product state feature map

A simple way to increase the dimension of input space is
creating an Hilbert space for pixels. This is to levarage the
black pixel with xi = 0 and white pixel with xi = 1 as a

black state |0i =
 
1
0

!
and a white state |1i =

 
0
1

!
respectively,

then convert each gray scale pixel xi in the image x as a super
position of |0i and |1i

�(xi) = a

 
1
0

!
+ b

 
0
1

!
, (1)

where a and b are functions of xi, which for example can be
chosen as

a = cos(⇡xi/2), b = sin(⇡xi/2). (2)

For image with N = L0 ⇥ L0 pixels, the feature tensor �(x) is
then defined by the tensor product of �(xi)

�(x) = �(x1) ⌦ �(x2) ⌦ · · · ⌦ �(xN) (3)

This is probably the most straightforward feature map that
transforms every pixel in the original space RN to a product
state in the Hilbert space of dimension 2L0⇥L0 , and has been
widely used in the literatures12. We term it as the product

state feature map.

2. Convolution feature map

The simple product state feature maps introduced in the pre-
vious section are pre-determined before the classifier is ap-
plied, thus is apparently not optimal. Another option is using
an adaptive feature map with parameters learned together with
the classifier. The most famous adaptive feature map is the
convolution layers, which perform non-linear transformations
to transform input images to a feature tensor with multiple
channels 28 using two-dimensional convolutions.

The input of the convolution layer is a raw image x 2
RL0⇥L0 . After the transformation, the convolution layer out-
puts a three-order feature tensor with dimension L ⇥ L ⇥ d,
where the L⇥L refers to the output size of features with L  L0
depending on size kernels and paddings, and d denotes the
number of channels. This is to say that the output of the CNN
feature map is also a product state with components located at
a grid of size L ⇥ L, and each component is of local physical
dimension d. Thus the total space size of the feature tensor is
d

L⇥L.
In the standard convolution neural networks (CNN), the

function of convolution layers (plus pooling layers) is extract-
ing relevant features from input data. Following the con-
volution layers, a classifier, usually a multi-layer perceptron
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• comparable results to NN with fewer parameters 
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FashionMNIST using CNN+PEPS!) 
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in Eq. 3 is used and further transferred to PEPS tensors with
2⇥ 2 blocking. This means that for 28⇥ 28 images, the PEPS
would be 14⇥14 with the dimension of physical indices equal
to 16. Each tensor handles the information of pixels within
a 2 ⇥ 2 square. In practice, we found that constrain the pa-
rameters ✓ of PEPS models to be positive would significantly
improve the stability of optimization. The CNN-PEPS shared
the 2 ⇥ 2 blocking technique and used one layer of CNN as
the feature mapping. The CNN layer has 10 convolution fil-
ters with size 5 ⇥ 5, stride 1, ReLU activation, and 2 ⇥ 2 max
pooling. Under this feature map, the positive constraint of the
parameter has no significant e↵ect on the optimization result.
In both models we set bound dimension of PEPS classifier
� = 10.

To compare with the traditional learning model, we also ex-
perimented with fully connected multilayer perceptrons with
784 input neurons, nh hidden neurons and 10 output neurons.
The activation function is softmax and the cost function is
cross entropy, the same to the PEPS model. The CNN-MLP
has the similar MLP with the same CNN layer of CNN-PEPS
used for feature extractions. In our experiments, the best test
accuracy is achieved with nh = 1000 for both MLPs. For
fair comparisons, the same hyperparameters are shared by the
four models: the learning rate ↵ = 10�4, the batch size is 100,
regularization is set to 0, weight decay is 0, and we train 100
epochs in total. To compare with the one-dimensional ten-
sor networks learning model, we also experimented with the
MPS model, with parameters set to be exactly the same as in
Ref.12. The code of the MPS model is based on the open-
source project36.

A. MNIST dataset

We first test our models using the MNIST dataset25, a sim-
ple and standard dataset widely used by many supervised
learning models. The MNIST dataset consists of 55, 000 train-
ing images, 5, 000 validation images and 10, 000 test images,
each image contains 28 ⇥ 28 pixels, the content of these im-
ages are divided into 10 classes, corresponding to di↵erent
handwritten digits from 0 to 9.

As shown in Fig. 4, under the condition of the same bond
dimension D, the best test accuracy of the PEPS model is sig-
nificantly better than that of MPS, which reflects the superi-
ority of PEPS tensor networks in modeling images over one-
dimensional tensor networks. At the point of D = 5, the PEPS
model achieves its best test set accuracy 97.02%. Specifically,
one obvious that the PEPS model already performs well when
D is small. At the point of D = 2, the training accuracy of
PEPS is already very close to 100% (99.68%). With D = 3,
the training accuracy grows to 99.99%, meaning that only 4
out of 55000 labels are miss predicted. We also note that with
D = 3, PEPS and CNN-PEPS give almost the same best test
accuracy as MLP and CNN-MLP, while the number of pa-
rameters of the PEPS structure is 27.60% and 6.96% of the
corresponding MLP structure, respectively. These facts imply
the potential application of tensor networks in model com-
pression. We also found that the best test accuracy of PEPS
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Figure 4. Best test set accuracy of di↵erent models for MNIST
dataset. The dash lines refer to the best results of multilayer percep-
trons with 784� 1000� 10 neurons. The "CNN" indicates the model
applying the convolution feature map in Sec. II A 2. Due to the struc-
tural prior to images, PEPS models perform significantly better than
the one-dimensional MPS model with the same bond dimension. The
CNN-PEPS archives the state-of-the-art performance of tensor net-
works models. Meanwhile, The performance is comparable to the
MLP but has fewer parameters.

structure is stable in a wide range of learning rate(10�5 to 0.2)
and maximum value of input data(10�2 to 103), while the best
results of MLP easily deteriorated under a smaller perturba-
tions. Moreover, with the bond dimension D = 5, the CNN-
PEPS archives 99.31% test set accuracy of the MNIST dataset,
which is the state-of-the-art performance of tensor networks
models. Compared with MPS, which archive best test accu-
racy 99.03% at D = 120, the good performance at lower D

also verifies the inherent low entanglement locality of the nat-
ural image dataset itself. This inherent nature of images may
be the physical reasons for the success of machine learning
models like CNN. Moreover, the PEPS with a small D is bene-
ficial to the hardware implementation of the quantum machine
learning model.

B. Fashion-MNIST dataset

Another dataset we evaluate is the Fashion MNIST dataset,
which includes grayscale photographs of 10 classes of cloth-
ing, and is considered as a more challenging dataset than the
MNIST dataset. The test accuracy results of di↵erent models
are detailed in Table. I. We can see that with the bond dimen-
sion D = 5, the best test accuracy of PEPS-CNN could reach
91.2%, which is the current state-of-the-art result of the ten-
sor network machine learning model on the Fashion-MNIST
dataset. It’s also competitive with the AlexNet and XGBoost
models, but there is still a clear gap with the most recent ad-
vanced convolutional neural network, such as the GoogleNet
which employs many convolution layers.
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which will be sufficient to parameterize MERA layers which
approximately compute wavelet coarse graining transforma-
tions of input data. We discuss how to choose the angles ✓U
and ✓V to approximate Haar and Daubechies wavelets in the
next section. The existence of a correspondence between the
MERA tensor network and discrete wavelet transformations
was first described in Refs. 33 and 34.

III. MODEL AND TRAINING ALGORITHM

The model function we will now discuss for regression and
supervised learning first coarse grains input data through some
number of discrete wavelet transformations, implemented as
MERA tensor network layers. Then an MPS tensor network
is used to represent the top layer of trainable weights.

After discussing how to train a model of this type, we high-
light one of its key advantages: the amount of coarse grain-
ing can be adjusted during training to adaptively discover the
number of coarse graining steps needed to obtain satisfactory
results.
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FIG. 3. Decomposition of each transformation element D1�4 into
the unitaries and isometries of the wavelet MERA. The complete
Daub4 wavelet transformation over data elements x1�4 is given by
the contraction over connected indices. Each transformation is pa-
rameterized by ✓U and ✓V .

A. Coarse Graining

To reduce the parameter space necessary for training the
weights our classifier, we coarse grain the input data through

|�(x)i
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FIG. 4. The tensor diagram for the model we use for classification
and regression, showing the case of three MERA layers. Each input
data x is first mapped into a (rank-1) MPS |�(x)i, then acted on by
MERA layers approximating Daub4 wavelet transformations. At the
top layer, the trainable parameters of the model W are decomposed
as an MPS. Because all tensor indices are contracted, the output of
the model is a scalar.

a series of wavelet transformations, effectively reducing the
size of the data by a factor of two after each transformation.
This is done by first mapping each input data element xi to the
vector |�(xi)i = |0i+xi |1i, where in this section we use the
physics notation that |vi is a vector labeled v. We have also
defined

|0i = (1 0)T (9)

|1i = (0 1)T (10)

The feature map applied to each data sample is taken to be the
tensor product

|�(x)i = |�(x1)i ⌦ |�(x2)i ⌦ ... ⌦ |�(xN )i . (11)

where the ⌦ symbol is often omitted in practice when using
ket | i notation. This input tensor can be thought of as an MPS
of bond dimension 1. As shown in Fig. 3, this MPS becomes
the bottom layer of a network with wavelet MERA represent-
ing the upper layers. Each subsequent layer in the MERA is
constructed by encoding wavelet transformations into the dis-
entangler and isometry tensors U and V .

To accomplish such an encoding, we first decompose each
of the wavelet coefficients in the set {Di} given in Eq. 7 into
two sequentially applied transformations. If we consider the
term xi |1i in each local feature vector |�(xi)i of Eq. 11 as
a “particle” whose state has a coefficient given by the input
component xi, we can trace the path of this particle through
the MERA as shown in Fig. 3, assigning appropriate transfor-
mations to xi as it propagates through the tensors. Following
this construction, one can work out the result of applying the
MERA layer to a patch of four adjacent input tensors, whose
dependence on input components (x1, x2, x3, x4) is to leading
order:

|�(x1)i |�(x2)i |�(x3)i |�(x4)i =

= (|0i + x1 |1i) (|0i + x2 |1i) · · ·
= |0i |0i |0i |0i

+ x1 |1i |0i |0i |0i
+ x2 |0i |1i |0i |0i

}
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which will be sufficient to parameterize MERA layers which
approximately compute wavelet coarse graining transforma-
tions of input data. We discuss how to choose the angles ✓U
and ✓V to approximate Haar and Daubechies wavelets in the
next section. The existence of a correspondence between the
MERA tensor network and discrete wavelet transformations
was first described in Refs. 33 and 34.

III. MODEL AND TRAINING ALGORITHM

The model function we will now discuss for regression and
supervised learning first coarse grains input data through some
number of discrete wavelet transformations, implemented as
MERA tensor network layers. Then an MPS tensor network
is used to represent the top layer of trainable weights.

After discussing how to train a model of this type, we high-
light one of its key advantages: the amount of coarse grain-
ing can be adjusted during training to adaptively discover the
number of coarse graining steps needed to obtain satisfactory
results.
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Daub4 wavelet transformation over data elements x1�4 is given by
the contraction over connected indices. Each transformation is pa-
rameterized by ✓U and ✓V .

A. Coarse Graining

To reduce the parameter space necessary for training the
weights our classifier, we coarse grain the input data through
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FIG. 4. The tensor diagram for the model we use for classification
and regression, showing the case of three MERA layers. Each input
data x is first mapped into a (rank-1) MPS |�(x)i, then acted on by
MERA layers approximating Daub4 wavelet transformations. At the
top layer, the trainable parameters of the model W are decomposed
as an MPS. Because all tensor indices are contracted, the output of
the model is a scalar.

a series of wavelet transformations, effectively reducing the
size of the data by a factor of two after each transformation.
This is done by first mapping each input data element xi to the
vector |�(xi)i = |0i+xi |1i, where in this section we use the
physics notation that |vi is a vector labeled v. We have also
defined

|0i = (1 0)T (9)

|1i = (0 1)T (10)

The feature map applied to each data sample is taken to be the
tensor product

|�(x)i = |�(x1)i ⌦ |�(x2)i ⌦ ... ⌦ |�(xN )i . (11)

where the ⌦ symbol is often omitted in practice when using
ket | i notation. This input tensor can be thought of as an MPS
of bond dimension 1. As shown in Fig. 3, this MPS becomes
the bottom layer of a network with wavelet MERA represent-
ing the upper layers. Each subsequent layer in the MERA is
constructed by encoding wavelet transformations into the dis-
entangler and isometry tensors U and V .

To accomplish such an encoding, we first decompose each
of the wavelet coefficients in the set {Di} given in Eq. 7 into
two sequentially applied transformations. If we consider the
term xi |1i in each local feature vector |�(xi)i of Eq. 11 as
a “particle” whose state has a coefficient given by the input
component xi, we can trace the path of this particle through
the MERA as shown in Fig. 3, assigning appropriate transfor-
mations to xi as it propagates through the tensors. Following
this construction, one can work out the result of applying the
MERA layer to a patch of four adjacent input tensors, whose
dependence on input components (x1, x2, x3, x4) is to leading
order:

|�(x1)i |�(x2)i |�(x3)i |�(x4)i =

= (|0i + x1 |1i) (|0i + x2 |1i) · · ·
= |0i |0i |0i |0i

+ x1 |1i |0i |0i |0i
+ x2 |0i |1i |0i |0i
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which will be sufficient to parameterize MERA layers which
approximately compute wavelet coarse graining transforma-
tions of input data. We discuss how to choose the angles ✓U
and ✓V to approximate Haar and Daubechies wavelets in the
next section. The existence of a correspondence between the
MERA tensor network and discrete wavelet transformations
was first described in Refs. 33 and 34.

III. MODEL AND TRAINING ALGORITHM

The model function we will now discuss for regression and
supervised learning first coarse grains input data through some
number of discrete wavelet transformations, implemented as
MERA tensor network layers. Then an MPS tensor network
is used to represent the top layer of trainable weights.

After discussing how to train a model of this type, we high-
light one of its key advantages: the amount of coarse grain-
ing can be adjusted during training to adaptively discover the
number of coarse graining steps needed to obtain satisfactory
results.
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rameterized by ✓U and ✓V .

A. Coarse Graining

To reduce the parameter space necessary for training the
weights our classifier, we coarse grain the input data through
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FIG. 4. The tensor diagram for the model we use for classification
and regression, showing the case of three MERA layers. Each input
data x is first mapped into a (rank-1) MPS |�(x)i, then acted on by
MERA layers approximating Daub4 wavelet transformations. At the
top layer, the trainable parameters of the model W are decomposed
as an MPS. Because all tensor indices are contracted, the output of
the model is a scalar.

a series of wavelet transformations, effectively reducing the
size of the data by a factor of two after each transformation.
This is done by first mapping each input data element xi to the
vector |�(xi)i = |0i+xi |1i, where in this section we use the
physics notation that |vi is a vector labeled v. We have also
defined

|0i = (1 0)T (9)

|1i = (0 1)T (10)

The feature map applied to each data sample is taken to be the
tensor product

|�(x)i = |�(x1)i ⌦ |�(x2)i ⌦ ... ⌦ |�(xN )i . (11)

where the ⌦ symbol is often omitted in practice when using
ket | i notation. This input tensor can be thought of as an MPS
of bond dimension 1. As shown in Fig. 3, this MPS becomes
the bottom layer of a network with wavelet MERA represent-
ing the upper layers. Each subsequent layer in the MERA is
constructed by encoding wavelet transformations into the dis-
entangler and isometry tensors U and V .

To accomplish such an encoding, we first decompose each
of the wavelet coefficients in the set {Di} given in Eq. 7 into
two sequentially applied transformations. If we consider the
term xi |1i in each local feature vector |�(xi)i of Eq. 11 as
a “particle” whose state has a coefficient given by the input
component xi, we can trace the path of this particle through
the MERA as shown in Fig. 3, assigning appropriate transfor-
mations to xi as it propagates through the tensors. Following
this construction, one can work out the result of applying the
MERA layer to a patch of four adjacent input tensors, whose
dependence on input components (x1, x2, x3, x4) is to leading
order:

|�(x1)i |�(x2)i |�(x3)i |�(x4)i =

= (|0i + x1 |1i) (|0i + x2 |1i) · · ·
= |0i |0i |0i |0i

+ x1 |1i |0i |0i |0i
+ x2 |0i |1i |0i |0i
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Why can tensor networks succeed?

Are image datasets comparable to low-
entanglement wavefunctions in physics?

Tentative answer: no!
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be used as a measure of the correlation between two parts of the pictures by left-right bipartition
or up-down bipartition, depending on the lay out of the MPS on the 2D image. The value of Reńyi
entropy in the MNIST dataset has reached the one of the 2D quantum spin system computed using
DMRG [78], which shows a similar level of complexity. Interestingly, not only its value, but also the
distribution of the Reńyi entropy exhibit similar behavior as the mutual information, which confirms
the connection between Equations (5) and (6).
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Figure 4. (a) Classical mutual information (Equation (3)) of 10,000 MNIST dataset for various
bipartitions of images; and (b) Rényi entropy (Equation (4)) of 10,000 MNIST dataset by
well-trained MPS.

Both the maximum value of the mutual information in RBM and the maximum value of the Reńyi
entropy in MPS are much smaller than their theoretical maxima. They both suggest that MI are highly
redundancy. The traditional fully-connected models of equal weights have great redundancy and are
very inefficient under the condition of same number of parameters. This can be easily checked by
numerical experiment. For example, we can compare the performance of a fully connected model with
a sparsely connected model under same number of parameters.

For sparsely connected model, the relatively higher values of the checkboard bipartition than the
up-down/left-right bipartition suggests the local connections are more important for capturing the
dataset probability distribution. If this is correct, we could expect a sparsely connected model with
only sparse local connection can perform relatively well than the sparse random connected model.
This assumption also can be easily checked by numerical experiments.

We confirm these two assumptions by training RBMs with the same number of parameters but
with different connection architectures and different number of hidden neurons. Dense connection
means that the visible and hidden units of the RBM are fully connected and hidden units will be
less than visible units. For 1D, 2D and Random RBM, they have the same number of hidden and
visible neurons. Random means that we randomly connect the visible and hidden neurons. While 1D
connection means that each hidden neurons of the RBM is connected only to a 2l1 + 1 fragment of the

Cheng, Chen, Wang, Entropy 20, 583 (2018)
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FIG. 4. Average entanglement entropy S(A) vs. perimeter
4L for regions A consisting of L ⇥ L squares in a 10 ⇥ 10
central window, for the state |⌃̂3i constructed from encoded
MNIST images of the digit ‘3’.

FIG. 5. Schmidt spectrum {�↵} for di↵erent values of N⌃,
when region A is a 3 ⇥ 3 square in the central window of
|⌃̂3i, constructed from encoded MNIST images of the digit
‘3’. (Notice that we plot (�↵)

2 instead of �↵.)

spectrum in the case where part A is a square block of
3⇥ 3 qubits, again as a function of N⌃. Notice that the
vector space of 3⇥ 3 = 9 qubits has dimension 29 = 512,
which provides an upper bound for the Schmidt rank of
|⌃̂3i with respect to this partition. When N⌃ = 10, we
observe a rather flat Schmidt spectrum, indicating that
the N⌃ images are embedded in fairly orthogonal states
both in A and its complement B. However, as the num-
ber N⌃ of images grows, the corresponding states in re-
gion A start to overlap non-trivially, and this results in
a sharply decaying spectrum of Schmidt values, whose
magnitude is seen to range e.g. from 10�1 to 10�9. This

indicates that one could in principle truncate away the
terms in the Schmidt decomposition corresponding to the
smallest Schmidt values while retaining an accurate ap-
proximation to |⌃̂3i. However, the number of Schmidt
values one needs to keep is seen to grow sharply with
L, as indicated by the entanglement entropy in Figure
4. This implies that a tensor network such as MPS or
tree tensor network would require a very large bond di-
mension to represent |⌃̂3i, making such representation
ine�cient.

IV. EXPRESSIVE POWER OF BLOCK
PRODUCT STATES

In the previous section we have seen that the state
|⌃`i in Eq. (10), built by simply superposing the en-
coded images of class ` in the training set, was very ro-
bustly entangled, so much so that it precluded an e�cient
representation in terms of the MPS used in Ref. [4] to
successfully classify this data set. We concluded that a
tensor network such as an MPS does not need to be able
to represent the state |⌃`i in order to be a successful
model for image classification.
With this insight, we next explore the use of other

simple tensor network models for the same task. Specif-
ically, we will consider tensor networks that represent
states with entanglement restricted within small blocks
of qubits. We will learn that these simple tensor networks
are already very expressive. However, we will also see
that, at least with our current optimization algorithm,
these models su↵er from over-fitting and therefore gen-
eralize poorly from the training data set to the test data
set. We will then investigate ways to alleviate this prob-
lem, with partial success, and will conclude that further
research is still needed to prevent over-fitting in these
otherwise quite promising, surprisingly simple tensor net-
work models.

A. Block Product States

We first define the general structure of the states used
in the following models. Given the square lattice of
28 ⇥ 28 qubits in which the MNIST images have been
encoded, we consider subdivisions into square blocks of
n⇥ n adjacent qubits for n = 1, 2, 3, 4, see Fig. 6 for an
illustration with n = 3. For n = 1, 2, 3 and 4, we respec-
tively obtain 282, 142, 92 and 72 such blocks; for n = 3,
we ignored the last row and column of pixels (nearly all
of which are black anyway) so that the images were en-
coded in a square lattice made of 27⇥27 qubits. We then
take the tensor network state |T`i to be a “block product
state” | BPS

` i, namely a state that can be written as the
tensor product of states

�� b
`

↵
for each square block b of

n⇥ n qubits, that is

| BPS
` i ⌘

O

b2Bn

| b
`i, (14)
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Why can tensor networks succeed?

Two recent papers give different perspective: 
• mutual information (MI) may be best quantity to consider 
• strategies to estimate MI

Figure 5: MI estimates for the MNIST and Tiny Images datasets using logistic regression, plotted
relative to the side length L of the inner partition. The solid lines are averages from twenty separate
trials, while the shaded regions show one standard deviation. The MNIST curve most closely
resembles the strongly-correlated uniform GMRF from Sec. 5.4, and exhibits minimal variance.
The Tiny Images curve is most similar to the nearest-neighbor, boundary-law GMRF from Sec. 5.3
(Figure 2, right panel), but the shape is harder to pin down due to its high variance.

Looking first at the Tiny Images curve, we can see a moderately linear segment from 1 pixel
length to roughly 18 pixels length, which then flattens out and begins to decrease at the 26 ◊ 26
patch. Of the three scaling curves tested in Sec. 5, this overall shape is most consistent with the
boundary-law scaling pattern of Sec. 5.3 (Figure 2, right panel). Unfortunately the variance of the
algorithm increased significantly at larger MI values, making it more di�cult to assess the pattern.
For MNIST, the MI curve most closely resembles that of strongly-correlated uniform GMRF (Figure
3), rising at a decreasing rate until it crests and gradually declines. However, this shape is not as
distinct as that of a linear or quadratic curve, so it is di�cult to use as evidence for a volume law.

Interestingly, the MNIST curve shows far less variance than the Tiny Images curve, despite the
fact that it contains only a tenth of the images. For the GRMF tests done in Sec. 5, there was a
clear reduction in the variance of each curve as the sample size increased, but this not observed in
Figure 5. Indeed, the MNIST curve has a smaller variance at each patch size than the Tiny Images
curve has at almost any patch size, even when the MI of the MNIST curve is larger. This suggests
that there is some data-specific e�ect causing the discrepancy, perhaps attributable to the relative
simplicity of the MNIST images relative to the more realistic Tiny Images.

Unlike in our GMRF tests, we do not have access to the underlying probability distributions that
MNIST and the Tiny Images datasets were sampled from, so it is much more di�cult to assess the
accuracy of the curves in Figure 5. One approximate way of evaluating the estimates is to fit a GMRF
to the empirical covariance matrix of the data, and then calculate the Gaussian MI analytically in the
same manner as in Sec. 5. This new distribution is constrained to model only pairwise interactions
between the variables, and all marginal and conditional distributions among the variables are forced
to be Gaussian, so it is not representative of the true distribution. Nevertheless, due to its high
entropy and simple correlation structure, a fitted GMRF is likely (but not guaranteed [53]) to provide
a lower bound on the MI of the true distribution.

19

Convy, Huggins, et al. arxiv:2103.00105

• study synthetic Gaussian data 
• realistic images have MI like 

that of near-neighbor 
correlated Gaussian
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FIG. 4. Estimated mutual information scaling in image data
sets. Left to Right: I(T : B), I(C : S). Top to Bottom:
MNIST, FashionMNIST, CIFAR. For the simplest data set
MNIST, we find evidence of the area law, as the I(T : B)
saturated in the middle and I(C : S) grows linearly. For more
complicated data sets (FashionMNIST and CIFAR), I(C : S)
still grows linearly but I(T : B) does not reach a plateau,
suggesting that there could be a faster than area law scaling
taking place. The e↵ect of the overall scaling factor of kNN
was removed by re-scaling the results (see Appendix A).

A. Estimation from trained autoregressive

networks

In generative modeling, we are given a data set D of
n-dimensional data points x. These data points are as-
sumed to be sampled i.i.d from the underlying distribu-
tion pdata. Generative modeling aims to approximate this
data distribution given access to the data set D. Di↵er-
ent types of generative models are best suited for dif-
ferent tasks. For the convenience of estimating entropic
quantities, here we consider explicit density models that
provide an explicit parametric specification of the distri-
bution of an observed random variable x, specified by the
log-likelihood function log p✓(x). Learning a generative
model involves optimizing the closeness between the data
and model distributions. Here, this can be done via the
maximum likelihood estimation (MLE), which maximize
the log-likelihood of training data to recover the optimal
model parameters: arg max✓2M

1
|D|

P
x2D log p✓(x).

In this section, we focus on utilizing autoregres-

sive neural networks, another tractable explicit density
model, in order to estimate the entropy and MI. In gen-
eral, an autoregressive model [5, 88–90] is an explicit den-
sity model that uses the chain rule to break the full prob-
ability function into products of condition probabilities:
p(x) =

Q
i p(xi|x<i), where x<i = [x1, x2, . . . , xi�1] de-

notes the vector of random variables with index less than
i. The conditionals are specified as parametrized func-
tions with a fixed number of parameters. That is, we
assume the conditional distributions p(xi|x<i) to corre-
spond to Bernoulli random variables and specified by a
function (which needs to be learned) that maps x<i to
be mean of the Bernoulli distribution. Di↵erent architec-
tures (parametrizations) have been designed for autore-
gressive models, including WaveNet [7], PixelRNN [5],
PixelCNN [89], and PixelCNN++ [90]. These models
have achieved state-of-the-art performance in many ma-
chine learning tasks.

We briefly describe how to train an autoregressive neu-
ral network. Substituting the factorized joint distribution
of an autoregressive model in the maximal likelihood es-
timation objectives, we train the network by optimiz-
ing arg max✓2M

1
|D|

P
x2D

Pn
i=1 log p✓i(xi|x<i) in terms

of the model parameters ✓ = {✓1, ✓2, . . .}. After the train-
ing process, we fix the parameters of the neural networks
and compute the entropy from them. Since all the con-
ditional probabilities are normalized, calculation of the
entropies of subregions that respects the sequential or-
dering can be done via Monte Carlo sampling. However,
the mutual information is still hard to evaluate, since the
sequential structure inherited in the autoregressive mod-
els forbids us from obtaining arbitrary marginal density
functions. With a trained autoregressive network, we can
estimate log pAN1(x) and log pAN1(x, y). Then we train
another autoregressive network, with reversed ordering of
data points, to gain access to the estimates log pAN2(y)
and ln pAN2(y, x) for points x and y in A and B, respec-
tively, as illustrated in Fig. 3 (c). We thus estimate the
mutual information as I(A : B) = SAN1(A)+SAN2(B)��
SAN1(A, B) + SAN2(A, B)

�
/2. This is the most delicate

point of this method and one needs to make sure that the
distributions obtained from two di↵erent trained models
are close. As shown in Fig. 3 (a), the di↵erence between
the entropies estimated from the two models at L = Lmax

is negligible, indicating that two distributions are close.

Our model relies on the popular PixelCNN [89, 97] and
PixelCNN++ [90] implementation [104] of density esti-
mation to generate the conditionals p✓i(xi|x<i). These
estimation works for top : bottom partitions, where the
model can go through the image line-by-line. In the case
of the center : surroundings partition, the pixels would
have to be processed following a spiral path, which would
be incompatible with PixelCNN or PixelCNN++ feature
maps. Since the PixelCNN model assumes discrete data
distribution, the pixel values were discretized dividing
the color channels into 256 bins, which have been pro-
cessed using the logistic mixture likelihood model intro-
duced in the open source implementation of Ref. 104.

Lu, Kanasz-Nagy, et al. arxiv:2103.06872

• MI of text is beyond area law 
scaling 

• some images are area law, but 
others may be beyond area law



Why do tensor networks succeed at all?

If images high entanglement, 
how do tensor networks succeed?
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FIG. 4. Average entanglement entropy S(A) vs. perimeter
4L for regions A consisting of L ⇥ L squares in a 10 ⇥ 10
central window, for the state |⌃̂3i constructed from encoded
MNIST images of the digit ‘3’.

FIG. 5. Schmidt spectrum {�↵} for di↵erent values of N⌃,
when region A is a 3 ⇥ 3 square in the central window of
|⌃̂3i, constructed from encoded MNIST images of the digit
‘3’. (Notice that we plot (�↵)

2 instead of �↵.)

spectrum in the case where part A is a square block of
3⇥ 3 qubits, again as a function of N⌃. Notice that the
vector space of 3⇥ 3 = 9 qubits has dimension 29 = 512,
which provides an upper bound for the Schmidt rank of
|⌃̂3i with respect to this partition. When N⌃ = 10, we
observe a rather flat Schmidt spectrum, indicating that
the N⌃ images are embedded in fairly orthogonal states
both in A and its complement B. However, as the num-
ber N⌃ of images grows, the corresponding states in re-
gion A start to overlap non-trivially, and this results in
a sharply decaying spectrum of Schmidt values, whose
magnitude is seen to range e.g. from 10�1 to 10�9. This

indicates that one could in principle truncate away the
terms in the Schmidt decomposition corresponding to the
smallest Schmidt values while retaining an accurate ap-
proximation to |⌃̂3i. However, the number of Schmidt
values one needs to keep is seen to grow sharply with
L, as indicated by the entanglement entropy in Figure
4. This implies that a tensor network such as MPS or
tree tensor network would require a very large bond di-
mension to represent |⌃̂3i, making such representation
ine�cient.

IV. EXPRESSIVE POWER OF BLOCK
PRODUCT STATES

In the previous section we have seen that the state
|⌃`i in Eq. (10), built by simply superposing the en-
coded images of class ` in the training set, was very ro-
bustly entangled, so much so that it precluded an e�cient
representation in terms of the MPS used in Ref. [4] to
successfully classify this data set. We concluded that a
tensor network such as an MPS does not need to be able
to represent the state |⌃`i in order to be a successful
model for image classification.
With this insight, we next explore the use of other

simple tensor network models for the same task. Specif-
ically, we will consider tensor networks that represent
states with entanglement restricted within small blocks
of qubits. We will learn that these simple tensor networks
are already very expressive. However, we will also see
that, at least with our current optimization algorithm,
these models su↵er from over-fitting and therefore gen-
eralize poorly from the training data set to the test data
set. We will then investigate ways to alleviate this prob-
lem, with partial success, and will conclude that further
research is still needed to prevent over-fitting in these
otherwise quite promising, surprisingly simple tensor net-
work models.

A. Block Product States

We first define the general structure of the states used
in the following models. Given the square lattice of
28 ⇥ 28 qubits in which the MNIST images have been
encoded, we consider subdivisions into square blocks of
n⇥ n adjacent qubits for n = 1, 2, 3, 4, see Fig. 6 for an
illustration with n = 3. For n = 1, 2, 3 and 4, we respec-
tively obtain 282, 142, 92 and 72 such blocks; for n = 3,
we ignored the last row and column of pixels (nearly all
of which are black anyway) so that the images were en-
coded in a square lattice made of 27⇥27 qubits. We then
take the tensor network state |T`i to be a “block product
state” | BPS

` i, namely a state that can be written as the
tensor product of states

�� b
`

↵
for each square block b of

n⇥ n qubits, that is

| BPS
` i ⌘

O

b2Bn

| b
`i, (14)

Martyn, Vidal, et al. arxiv:2007.06082

Rapidly increasing entanglement 
as more images summed

Possible answers: 

• Convy et al says: quantity studied by Martyn et al. may be 
overly sensitive to choice of feature map 

• entropy might decrease as more images summed 

• supervised learning may require much less resources

Important that we can even pose and answer these questions!



Progress in Training Algorithms

Algorithms could be what sets tensor network 
models apart

Available algorithms (partial list): 
• ALS + gradient descent 
• ALS + optimal local update (Stokes, Terilla) 
• modified ALS (= 2 site DMRG) 
• Riemannian optimization 
• TT-cross algorithm 
• density matrix algorithm (polynomial-scaling TT-SVD) 
• ....
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Progress in Training Algorithms

An interesting story of two algorithms for a 
challenging dataset

The dataset: even-parity bit strings
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Progress in Training Algorithms

An interesting story of two algorithms for a 
challenging dataset

Algorithm #1: optimal local update  (generative modeling)

<latexit sha1_base64="cn5nSvv8vL19oembzJnZdSQ48FY="></latexit>X

j

<latexit sha1_base64="CApURgTG5I9K9jFKYd7zFEaG4y0="></latexit>

�j

<latexit sha1_base64="9QQ6L6CR1j+cOZrteBXrNIRoRHs=">AAACwnicdVHLbtswEKSVPlL3kaQ99kJUKNCTIRkt0mOA9NBjAtRJAFMIVtTaZk1SKrlKYcj6jV6b38rfhFZ8SGJnAQKD2RnOkptXWnlKkptetPPs+YuXu6/6r9+8fbe3f/D+zJe1kziSpS7dRQ4etbI4IkUaLyqHYHKN5/n8eNU/v0LnVWl/0aLCzMDUqomSQIESgpQusBHVTLWX+3EySLrimyBdg5it6+TyoHctilLWBi1JDd6P06SirAFHSmps+6L2WIGcwxTHAVow6LOmG7rlnwNT8EnpwrHEO/a+owHj/cLkQWmAZv5xb0Vu641rmnzPGmWrmtDKu6BJrTmVfPUDvFAOJelFACCdCrNyOQMHksI/9YXFv7I0BmzRiDlSO06zRqD1tcNVVrOMU+HATsMD24fq3MGGWuhOGqfLLeru+uFWAw+OeMifSIKr6VNJwXjPFXaaPt7gJjgbDtJvg+T0a3x0vN7uLvvIPrEvLGWH7Ij9ZCdsxCSr2D/2n11HP6Lf0Z/I30mj3trzgT2oaHkL+X3g4A==</latexit>

�̃

<latexit sha1_base64="s3p5kYfm4zAVbhcIjRbr6nqidnY="></latexit>

�

Stokes, Terilla, Entropy 21, 1236 (2019)

locally improved MPS



Progress in Training Algorithms

Algorithm #1: optimal local update  (generative modeling)

Stokes, Terilla, Entropy 21, 1236 (2019)

• can use geometric reasoning to develop 

• excellent results up to length N=20 bitstrings 

• linear scaling in data length and training set size 

• can fail for poor choice of initial state

Entropy 2019, 21, 1236 8 of 13

the training set, it will assign to it a negative-log-likelihood (NLL) of N � 1 + log2(0.02) corresponding
to the entropy of the uniform distribution on the training data. A NLL of N corresponds to the entropy
of the uniform distribution on all bitstrings of length N. The measure of generalization performance is
the gap e between the NLL of the training and testing data. We performed exact single-site DMRG
over the real number field using the P20 dataset for different choices of bond dimension, which refers
to the dimensionality of the bond space W in the effective Hilbert space Heff = W ⌦ V ⌦ W. Training
was terminated according to an early stopping criterion as determined by distance between the MPS
state and the state of the cross-validation sample. Since the bond dimension controls the complexity of
the model class, and since matrix product states are universal approximators of functions on {0, 1}N ,
we expect overfitting to occur for sufficiently large bond dimension. Indeed, the NLL as a function of
bond dimension reported in Figure 2 displays the expected bias-variance tradeoff, with optimal model
complexity occurring at bond dimension 3 with corresponding generalization gap e = 0.0237.

The second problem we consider is unsupervised learning of the divisible-by-7 language which
consists of the binary representation of integers which are divisible by 7. The dataset was constructed
using first 149797 such integers which lie in the range [1, 220]. We trained a length-20 MPS to learn
the uniform distribution on the divisible-by-7 language as we did for P20, except utilizing subsets of
size 10% for training, testing and cross-validation. Figure 3 illustrates that the model trained on exact
single site DMRG with a bond dimension of 8 learns the DIV7 dataset with nearly perfect accuracy,
producing a model with a generalization gap of e = 0.032.

Figure 2. A representative bias-variance tradeoff curve showing negative log-likelihood (base 2) as
a function of bond dimension for exact single-site DMRG on the P20 dataset. For bond dimension 3,
the generalization gap is approximately e = 0.0237. For reference, the uniform distribution on bitstrings
has NLL of 20. Memorizing the training data would yield a NLL of approximately 13.356.
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Progress in Training Algorithms

Algorithm #2: direct compression / density matrix algorithm
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 = 1. define "target tensor"

2. trace double sum  
to obtain reduced 
"density matrix"

<latexit sha1_base64="CApURgTG5I9K9jFKYd7zFEaG4y0="></latexit>

�j
<latexit sha1_base64="fs0tUlvaUJMF9Y3WGJFOQblOyww=">AAACwHicdVFNTxsxEHUWCjQtNMCxF4tVJQ4o2o2o4IjKpUeQGkDNrqJZZ5KY+GOxvVTpsv+CK1X/Fv8GZ8kBSBjJ0tOb9/zGniwX3LooemwEK6sf1tY3PjY/fd7c+tLa3rmwujAMu0wLba4ysCi4wq7jTuBVbhBkJvAym5zO+pe3aCzX6peb5phKGCk+5Aycp34ntpD9kh9cV/1WGLWjuugiiOcgJPM66283/icDzQqJyjEB1v biKHdpCcZxJrBqJoXFHNgERtjzUIFEm5b1yBX95pkBHWrjj3K0Zl86SpDWTmXmlRLc2L7tzchlvV7hhsdpyVVeOFTsOWhYCOo0nb2fDrhB5sTUA2CG+1kpG4MB5vwvNROFf5iWEtSgTCboql6clgkqWxicZZV3YZwYUCP/wOq1OjOwoE5ELQ3juyXq+vrOUgP1jrBD30mC29F7Sd74wuV3Gr/d4CK46LTj7+3o/DA8OZ1vd4N8JXtkn8TkiJyQn+SMdAkjityTB/Iv+BGMAx3cPEuDxtyzS15V8PcJW3Hf0A==</latexit>X

i,j

<latexit sha1_base64="1L/K//7c9xCEv93Sj65pezK52Ok="></latexit>

�i

<latexit sha1_base64="EHu0OidYEJoNtf5C3AOUU0xpMCg="></latexit>=

3. diagonalize density 
matrices to obtain MPS 
tensors one at a time

Bradley, Stoudenmire, Terilla, MLST 1, 035008 (2020)



• cannot get stuck & gives deterministic results 

• scales quadratically in training set size 

• can develop a theory of generalization:

Progress in Training Algorithms

Algorithm #2: direct compression / density matrix algorithm

Distance to true 
distribution

Training set size 
(fraction)

numerical experiment avg.

theory prediction

Bradley, Stoudenmire, Terilla, MLST 1, 035008 (2020)



Outlook & Future Directions



Many opportunities to fix downsides of tensor network 
optimization algorithms

Main downsides:  
- cost to train (memory + time) can be high 
- best architecture choices still being explored

Opportunities to improve:  

+ use sparse (e.g. block-sparse) tensors within models 

+ use infinite tensor networks more 

+ use symmetries more (evidence conv. layers help, infinite 
TNs for translation symmetry, ...) 

+ devise more data-efficient approaches (theory can help)



Push interpretability / understanding / theory frontier

Opportunities here:  

+ can characterize which data is learnable by a given type and 
size of tensor network 

+ theory of generalization (Bradley et al.) could be improved:  
‣ tighter bounds,  
‣ apply to other data sets 
‣ estimate using summary statistics of real data 

+ progress in theory will feed back into better training 
algorithms



One final thought:

Tensor networks likely just the "right" way to do linear algebra 
in very high-dimensional spaces (versus being quantum 
mechanics oriented)

We haven't even figured out the biggest pieces of tensor 
networks yet, such as analog of QR or SVD factorizations for 
matrix-like tensor networks

Some major progress only happened recently, such as 
canonical forms of PEPS (arxiv:1902.05100) or progress 
in randomized algorithms (arxiv:2003.05101)


