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Spin glasses

• Finding ground state is NP-hard: Barahona 1982

• Ising formulation for many NP problems: Lucas 1302.5834 

(including Karp’s 21 NP-complete problems)
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Figure 1: An example of the Ising spin glass model (1). Here, Ji j correspond to
weights of the edges of the graph and hi are biases associated with the graph’s
nodes (L = 16). Physically, Ji j describe the interaction between spins si, s j and
hi is the external magnetic field imposed on spin si. The picture also demonstrate
possible spin encoding, with red arrows indicating assignment of si = +1 and
blue ones indicating assignment of si = �1 [or si = 0 if QUBO (2) is used].

much larger systems having a dominant quasi-one-dimensional
nature. At the same time sparse connections at long range do
not necessary exclude applicability of the MPS approach.

Our implementation o↵ers great flexibility and portability
as well as the necessary e�ciency and speed. Our solver can
be executed on either CPU (Central Processing Unit) or GPU
(Graphic Processing Unit) using Nvidia’s CUDA (Compute Uni-
fied Device Architecture). The latter architecture is of particular
importance due to its massive parallel capabilities [27, 28]. We
provide a simple Python wrapper that allows users to access both
architectures e↵ortlessly [29].

2. Spin-glass problems

In this work we mainly focus on the Ising Hamiltonian. How-
ever, our approach can easily be extended to include other classi-

cal spin-glass models [30, 31]. To begin with, consider a simple
undirected graph with L nodes (i.e. vertices) as the one drawn
in Fig. 1. We assign a unique spin variable, si ± 1 (blue and red
arrows), to each node. Adjacent nodes labeled as i, j are coupled
via interaction strength Ji j, which may be viewed as a weight
of the edge connecting those two nodes. Additionally, for every
spin we associate a local magnetic field (bias) hi interacting with
it. Then the energy of such a system of spins is defined as

H(s) = �
X

hi, ji

Ji j si s j �

LX

i=1

hisi, (1)

where s := (s1, . . . , sL). The first sum runs over all adjacent sites,
which we denote here as hi, ji.

In many practical applications, one is typically interested in
finding a particular spin configuration, say s0, for which H(s0)
in Eq. (1) admits its minimum value. Such configuration is
called the ground state. Naturally, states with energies above the
ground state energy are called excited states. Finding the low
energy spectrum (consisting of the ground state energy and a
number N ⌧ 2L of excited states) of the Ising model (1) can
also be formulated as a Quadratic Unconstrained Optimization
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Figure 2: Scheduling of the energy computation on the GPU. A CUDA program
is executed by threads that are organized by blocks. Both the grid and blocks
can form one, two or three dimensional structures. Our implementation uses a
one dimensional grid structure, where the global thread index, Idi, is converted
into a state q with mapping Idi = (q)2, cf. Eq. (4). Next, each thread in each
block computes its own energy, F(q), according to Eq. (3). To fit into, often
limited, GPU memory the computation is executed in carefully tailored chunks.

Problem (QUBO). Namely,

F(q) = �
X

hi, ji

ai jqiq j �

LX

i=1

biqi, (2)

where q = (s + 1)/2 are binary variables whereas

ai j = 4Ji j, bi = 2hi � 2
X

hi, ji

Ji j. (3)

Note, if a given qi vanishes so does any product qiq j. There-
fore, QUBO formulation (2) e↵ectively reduces the number of
multiplications almost by half in comparison to Eq. (1).

Despite its very simple formulation, the problem of solving
spin glass instances can not be easily tackled using a brute force
approach even for a modest number of spin variables. This is
since the number of possible spin assignments grows exponen-
tially with the number of nodes in the graph. For instance, when
L = 40 the number of possible states is greater than the number
of bits in a 32GB memory chip. Already when L = 64, size of
the search space is greater than the estimated age of the Universe
in seconds [32]. In fact the problem of finding the ground state
of the Ising model defined on an arbitrary graph is long known to
be NP-hard [33]. This means, in particular, that even verifying if
a given configuration minimizes the cost function (1) is di�cult.

3. Description of the algorithm

A general idea underlying this work is to perform an ex-
haustive search over the whole state space, taking advantage of
massive parallel capabilities of modern GPUs. This requires an
e�cient strategy to encoding all states, q = (q1, q2, . . . , qL), on
a GPU. A naive approach would required storing an array of L

integers, qi = 0, 1, for each state q. However, this would also
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E({σ}) = ∑
i<j

Jijσiσj + ∑
i

hiσi

E* = min
σ

E({σ}) ???

• Same as QUBO, has broad applications in statistical physics, 
machine learning, coding theory…

σi ∈ {±1}



Example: frustrated Ising model on a football

What is the ground state ? 

- Energy

- Spin configuration

How many are they ?

https://github.com/QuantumBFS/SSSS/blob/master/Challenge.md

“residual entropy”

Optimization problem Counting problem



Tropical algebra

x ⊕ y = min(x, y)

x ⊙ y = x + y



Multiplication table

Tropical algebra

∞ ⊙ x = ∞∞ ⊕ x = x
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Tropical tensor networks

 semiring is sufficient 

to define tensor network contraction

( ⊕ , ⊙ )

T = [ ⋅ ⋅ ⋅
⋅ ⋅ ⋅
⋅ ⋅ ⋅ ]

Tropical number



Tropical tensor networks for 
Ising spin glasses
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FIG. 1. (a) The tensor network representation of a square lattice
Ising spin glass. (b) An equivalent circuit representation used for the
practical simulation. See texts for definition of the symbols.

Tropical Tensor Network– The tropical algebra is defined
by replacing the usual sum and product operators for ordi-
nary real numbers with the max and sum operations respec-
tively [29]

x � y = max(x, y), x � y = x + y. (2)

One sees that �1 acts as zero element for the tropical number
since �1 � x = x and �1 � x = �1. On the other hand, 0
acts as the multiplicative identity since 0� x = x. The � and �
operators still have the commutative, associative, and distribu-
tive properties. However, since there is no additive inverse, the
� and � and operations define a semiring over R[ {�1}. The
semiring formulation unifies a large number of inference al-
gorithms in the graphical models based on dynamic program-
ming [30, 31]. Recently, there have been e↵orts in combing
the semiring algebra with modern deep learning frameworks
with optimized tensor operations and automatic di↵erentia-
tion [32, 33].

One can consider tensor networks whose elements are trop-
ical numbers with the algebra Eq. (2). Since the elementary
operations involved in contracting tensor networks are just
sum and product, contraction of tropical tensor networks is
well defined. One can use such contraction to solve the ground
state of the Ising spin glass. For example, consider the Ising
spin glasses Eq. (1) defined on two dimensional square lattice,
the tropical tensor network is shown in Fig. 1(a). The ten-
sor network representation corresponds to the factor graph of
the spin glass graphical model [30]. There are 2 ⇥ 2 tropical

tensors =

 
Ji j �Ji j
�Ji j Ji j

!
reside on the bond connect-

ing vertices i and j, with the tensor elements being the neg-
ative coupling energies. The dots are diagonal tensors with

= hi, = �hi, and �1 for all other ten-

sor elements. In cases where the local field vanishes, these
dots reduce to the copy tensor in terms of the tropical algebra
which demands that all the legs have the same indices. Con-
traction of the tensor network under the tropical algebra gives
the ground state energy of the Ising spin glass. In the contrac-
tion, the � operation selects the optimal spin configuration and
the � operation sums the energy contribution from subregions

of the graph. The intermediate tensors record the minimal en-
ergy given the external tensor indices, so they corresponds to
max-marginals in the graphical model [34].

From the physics perspective, the tropical tensor net-
work naturally arises from computing the zero temper-
ature limit of the partition function Z =

P
{�} e��E .

The ground state energy, E⇤ = � lim�!1 1
� ln Z =

� lim�!1 1
� ln

P
{�}

Q
i< j e�Ji j�i� j

Q
i e�hi�i , involves ordinary

sum and product operations for the Boltzmann weights. When
taking the zero temperature limit, it is more convenient to deal
with the the exponents directly

lim
�!1

1
�

ln(e�x + e�y) = x � y,
1
�

ln(e�x · e�y) = x � y, (3)

which leads to the tropical algebra Eq. (2). The tropical rep-
resentation also corresponds to the logarithmic number sys-
tem [LW: add a citation here] which avoids the numerical
issue in dealing with exponentially large numbers on comput-
ers with finite precision numerics [22].

Moreover, one can also employ the present approach to
count the number of ground states at the same computational
complexity of computing the ground state energy. To im-
plement this, we further generalize the tensor element to be
a tuple (x, n) composed by a tropical number x and an or-
dinary number n. The tropical number records the nega-
tive energy, while the ordinary number counts the number of
minimal energy configurations. For tensor network contrac-
tion, we need the product and sum arithmetics of the tuple
(x1, n1) � (x2, n2) = (x1 + x2, n1 · n2) and (x1, n1) � (x2, n2) =
(max(x1, x2), n1 � n2) where

n1 � n2 =

8>>>>><
>>>>>:

n1 + n2 if x1 = x2

n1 if x1 > x2

n2 if x1 < x2

. (4)

Essentially, these two numbers in the tuple correspond to
leading order and the O(1/�) contributions (energy and en-
tropy) in the low temperature expansion of the log-partition
function. After contracting the tensor network, one reads out
the ground state energy and degeneracy from the two elements
of the tuple. In this way, one can count the number of opti-
mal solutions exactly without explicitly enumerating the solu-
tions [35, 36].

Contract Tropical Tensor Networks– We have formulated
the computation of the ground state energy and the ground
state degeneracy of the Ising spin glass Eq. (1) as contraction
of the tropical tensor network. On a tree graph, contraction of
the tropical tensor network is equivalent to the max-sum algo-
rithm [2], i.e. the maximum a posterior version of the sum-
product (belief propagation) algorithm on graphical models.
On a general graph, when the junction tree algorithm [37] ap-
plies it can be treated as a special case of the tropical tensor
network contraction algorithm using a specific contraction or-
der ultilizing a tree decomposition of the graph.

Contraction of general tensor network belongs to the class
of #P hard problems [38], so it is unlikely to find polynomial
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resentation also corresponds to the logarithmic number sys-
tem [LW: add a citation here] which avoids the numerical
issue in dealing with exponentially large numbers on comput-
ers with finite precision numerics [22].

Moreover, one can also employ the present approach to
count the number of ground states at the same computational
complexity of computing the ground state energy. To im-
plement this, we further generalize the tensor element to be
a tuple (x, n) composed by a tropical number x and an or-
dinary number n. The tropical number records the nega-
tive energy, while the ordinary number counts the number of
minimal energy configurations. For tensor network contrac-
tion, we need the product and sum arithmetics of the tuple
(x1, n1) � (x2, n2) = (x1 + x2, n1 · n2) and (x1, n1) � (x2, n2) =
(max(x1, x2), n1 � n2) where

n1 � n2 =
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n2 if x1 < x2

. (4)

Essentially, these two numbers in the tuple correspond to
leading order and the O(1/�) contributions (energy and en-
tropy) in the low temperature expansion of the log-partition
function. After contracting the tensor network, one reads out
the ground state energy and degeneracy from the two elements
of the tuple. In this way, one can count the number of opti-
mal solutions exactly without explicitly enumerating the solu-
tions [35, 36].

Contract Tropical Tensor Networks– We have formulated
the computation of the ground state energy and the ground
state degeneracy of the Ising spin glass Eq. (1) as contraction
of the tropical tensor network. On a tree graph, contraction of
the tropical tensor network is equivalent to the max-sum algo-
rithm [2], i.e. the maximum a posterior version of the sum-
product (belief propagation) algorithm on graphical models.
On a general graph, when the junction tree algorithm [37] ap-
plies it can be treated as a special case of the tropical tensor
network contraction algorithm using a specific contraction or-
der ultilizing a tree decomposition of the graph.

Contraction of general tensor network belongs to the class
of #P hard problems [38], so it is unlikely to find polynomial
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FIG. 1. (a) The tensor network representation of a square lattice
Ising spin glass. (b) An equivalent circuit representation used for the
practical simulation. See texts for definition of the symbols.
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the ground state energy and degeneracy from the two elements
of the tuple. In this way, one can count the number of opti-
mal solutions exactly without explicitly enumerating the solu-
tions [35, 36].

Contract Tropical Tensor Networks– We have formulated
the computation of the ground state energy and the ground
state degeneracy of the Ising spin glass Eq. (1) as contraction
of the tropical tensor network. On a tree graph, contraction of
the tropical tensor network is equivalent to the max-sum algo-
rithm [2], i.e. the maximum a posterior version of the sum-
product (belief propagation) algorithm on graphical models.
On a general graph, when the junction tree algorithm [37] ap-
plies it can be treated as a special case of the tropical tensor
network contraction algorithm using a specific contraction or-
der ultilizing a tree decomposition of the graph.
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all other elements are ∞
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Tropical tensor network contraction 
 ground state energy (value problem)  →

⊕k=
i j

⊙
k ki j

*also known as algebraic dynamic programming

Tropical tensor stores min-marginals of  the energy



Tropical tensor network contraction 
 ground state energy (value problem)  →

min
k

=
i j

+
k ki j

*also known as algebraic dynamic programming

Tropical tensor stores min-marginals of  the energy



Physical understanding of 
the tropical algebra

lim
β→∞

−1
β

ln(e−βx + e−βy) = x ⊕ y

lim
β→∞

−1
β

ln(e−βx ⋅ e−βy) = x ⊙ y

E* = lim
β→∞

−1
β

ln ZZ = ∑
{σ}

e−βE consider
a tensor network


with ordinary algebra

 zero temperature limit of the partition function

*also corresponds to log-number system, which avoids numerical issue at low temperature 1903.07721



Gradient with respect to the field  
ground state configuration (optimization problem) 

→

hi

Jij

E*

σ*i =
∂E*
∂hi

This can be done with automatic differentiation through contraction



Extracting physical quantities (response function, scaling dimension,…)

“training tensor networks as if they were neural networks”

Interclude: Differentiable programming tensor networks

Variational optimization
Tu et al, 2101.03935 

Lyu et al, 2102.08136 

Liao et al PRX ’19, Hasik et al, SciPost ’20



Mix tropical with ordinary algebra 
ground state degeneracy (counting problem) 

→

(x, n)
ordinary

number

tropical

number

The second field counts the minimal energy configurations 

(x, n) ⊙ (y, m) = (?, ?)
(x, n) ⊕ (y, m) = (?, ?)[ ⋅ ⋅ ⋅

⋅ ⋅ ⋅
⋅ ⋅ ⋅ ]



Counting with tensor networks

Construct 0-1 tensor for # constraint satisfaction problems

SciPost Phys. 7, 060 (2019)

i1i2 i3

i4 i5 i6 i7

i8
i9

Figure 1: Representation of a CSP instance as a graph. Circles (triangles) represent
variables (clauses). The dashed rectangle delineates the tensor contraction example
discussed in the text.

which is referred to as tensor trace or full contraction and yields the solution of the under-
lying instance. In general, tensor entries can take either continuous (e.g., R, C) or discrete
(e.g., Z, N, B) values. For simplicity and concreteness, below we focus on counting satisfying
assignments in boolean satisfiability (SAT) problems. Tensor entries will hence be nonnega-
tive integers. We stress, however, that all results are straightforwardly generalizable to CSPs
beyond the boolean domain.

A SAT problem is the problem of deciding whether a logic formula built from a set of
boolean variables {x} = {x1, x2, . . . , xn} and the operators ^ (conjunction), _ (disjunction),
and ¬ (negation) evaluates to TRUE, i.e., is satisfiable. In the so-called conjunctive normal
form, variables and negations thereof — collectively called literals — are combined in clauses,
i.e., disjunctions of literals, m of which are in turn combined conjunctively to form the SAT
formula. The general SAT problem defined in this manner, as well as many of its special
cases, is NP-complete. In particular, when clauses are restricted to contain exactly k variables
each, the corresponding problem is called kSAT and is also NP-complete for all k � 3. The
corresponding counting problems (#SAT) — determining how many satisfying assignments,
if any, a SAT formula has — are at least as hard as their decision counterparts, and belong to
the class #P-complete. In fact, #kSAT is #P-complete for any k � 2.

Instances of (#)SAT problems can be straightforwardly represented as tensor networks [32–
34]. Each variable and clause is encoded into a tensor Ti1 i2...id , where d is the rank of the ten-
sor and all indices are boolean. Clause tensors reflect the underlying boolean operations on
variables. For example, OR tensors are of the form

TOR
i1 i2...id

=

®
0, if i1 = i2 = · · ·= id = 0
1, otherwise

, (3)

where each index labels a bond and represents a variable appearing in the clause. If a variable
is to appear negated in a clause, the values of the corresponding boolean index of the clause
tensor are reversed. Reversed indices are overlined, e.g., Ti1 i2 i3

. Since variables can appear in
more than one clauses, we need to be able to “replicate” the same index across clause tensors.
This is achieved with COPY tensors of the form

TCOPY
i1 i2...id

=

®
1, if i1 = i2 = · · ·= id
0, otherwise

, (4)

which indeed just “copies” the value of a variable across all indices.
With these definitions, tensor entries reveal how many assignments — if any — of the

participating variables satisfies the underlying clause. For example, TOR
000 = 0 means that an

4

10 CHAPTER 1. DIMER COVERINGS

Figure 1.1: An example dimer covering of a portion of the square lattice.

configuration C, we assign a Boltzmann weight

⇡(C) :=
Y

e2C

⇡(e) .

The partition function is defined as

ZG :=
X

C

⇡(C) =
X

C

Y

e2C

⇡(e) , (1.1.1)

where the sum runs over all possible dimer configurations on G. In particular, if we set
⇡(e) = 1 for every edge, ZG is the number of dimer configurations on G.

We now restrict the discussion to the case when G is bipartite. This means that
the vertices of G can be coloured in black and white, in such a way that every white
vertex is only adjacent to black vertices, and vice-versa. Examples of bipartite graphs
are the square lattice and the honeycomb lattice. The triangular lattice is not bipartite.
We denote by (w1, . . . , wN ) the white vertices, and (b1, . . . , bN ) the black ones. Also, we
choose an orientation of the edges of G, and we introduce the N ⇥N weighted adjacency
matrix K (called the Kasteleyn matrix), defined by:

Kij =

8
><

>:

+⇡(wi, bj) if wi ! bj ,
�⇡(wi, bj) if wi  bj ,
0 otherwise.

(1.1.2)

Consider the determinant of this matrix:

detK =
X

�2SN

sgn(�)K1,�(1) . . . KN,�(N) ,

where SN is the group of permutations of N elements. The permutations � which con-
tribute to detK are those which satisfy the condition

8i 2 {1, . . . , N} , wi is adjacent to b�(i) .

This is equivalent to saying that the set of edges

C(�) := {(w1, b�(1)), . . . , (wN , b�(N))}

is a dimer configuration! Also, the contribution of � to detK equals the weight ⇡[C(�)], up

to a sign. We will now show that, if the orientation of G is well chosen, every contribution
to detK picks the same sign, and we have

ZG = |detK| . (1.1.3)

Residual entropy density 
of infinite periodic system

García-Sáez et al, ‘12 
Biamonte et al, ‘15 
Kourtis et al ‘19

#SAT problems

Vanderstraeten et al ’18 
Vanhecke et al ‘21



 Frustrated Ising model on a football

16,000

What is the ground state ? 

How many are they ?



Tropical Tensor Networks

Nevertheless, it nicely leverages the engine of  deep learning: 

differentiable tensors on GPU/TPU/…

It is not conceptually new (tensor network reformulation of dynamic 
programming inference method in graphical models)

Exact tensor network contraction is still difficult in general (#P hard)

TensorBFS/TropicalGEMM.jl
“Tropical BLAS”



Exact computation on 1 Nvidia V100 GPU

322 square  63 cube 8*82 chimera 

graph

220 spin random

3-regular graph

Ising spin glasses



More combinatorial optimization & 
counting problems

Potts glass Max 2-SAT Maximal independent set

Construct local tropical tensors for the energy function, then contract 



• Optimal contraction order is NP hard


• Many heuristics (talk by Johnnie Gray on Thursday April 1) 


• Relevant to graphical model inference and quantum circuit 
simulation

1.2 Technical contributions and comparisons
In addition to developing and conglomerating a number of technical optimizations, we achieve
these runtimes by introducing a powerful new method for simulating quantum circuits: stem

optimization. The key insight is that the random circuits in [7], which are subject to the 2D
nearest-neighbor constraints of the device, are highly regular tensor networks. This regularity
manifests at the level of tensor network contraction as a single stem: a path of contractions that
dominates the overall cost of the computation. By identifying and optimizing this stem, we
are able to increase the efficiency of our simulator to 1, 000⇥ the efficiency of the state-of-the-
art simulator introduced in [9], and to approximately 200, 000⇥ the efficiency of the original
estimate in [7].

Figure 1: Tensor network contraction of a quantum circuit from the random circuit family [7],
visualized as a binary contraction tree. Each node in the tree represents a step in the contraction.
Larger, darker nodes indicate more expensive steps. The central stem dominates the overall
contraction cost.

Several challenges have been levied against quantum supremacy. The most relevant to this
work is not an explicit simulator, but rather a proposal by Pednault et al. [10] to leverage the
immense secondary storage on Summit to perform full state-vector updates [11, 12]. It estimates
that the quantum supremacy task at 20 cycles can be accomplished in 2.5 days. There are two
main drawbacks to this work. First, although this simulation strategy scales linearly in depth,
it runs into a hard memory limit with even a small increase in the number of qubits. Second,
the estimate is based on optimistic assumptions that are difficult to judge without real device-
level tests. Even if we make only a small subset of analogous assumptions, we estimate that
running qFlex [8] on tasks generated by our algorithm would already reduce the runtime to less
than two days. This uses its out-of-core tensor contraction capabilities while assuming that the
FLOPS efficiency reported in [7] is preserved; see Section A.4 of the supplementary material
for more details. We reemphasize that these are proposals; it is difficult to judge their feasibility
or accuracy without an explicit simulator tested on a Summit-comparable platform, and may
lead to orders-of-magnitude differences.

3

Tensor network contraction order

…Gray et al 2002.01935, Huang et al 2005.06787, Pan el al 2103.03074…



Repurpose high-performance tensor network 
contraction engine for optimization 

⊕ ⊙overload and operations 



Solve spin glass with a 
quantum circuit simulator

(a) (b)
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Contracting tropical tensor networks via simulating 
non-unitary circuits with unexpected algebra https://yaoquantum.org/

Luo, Liu, Zhang, LW, 1912.10877

Warning: Input type of `ArrayReg` is not Complex, got Tropical{Float64}



Square lattice spin glasses
Time for ground state energy Time for ground state configuration



Chimera graph Ising spin glass
Time for ground state energy Histogram of ground state degeneracy



Summary

WANTED: Approximated contraction under tropical algebra ?

Differentiable programming as a unified way to optimal solution

Tensor network contraction for combinatorial optimization

Generic design utilizes computing power for unexpected applications

Thank You!


