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tutorial 1

e from linear algebra to multi-linear algebra

» challenges
» algebraic properties of tensors

-

e aspects of the singular value decomposition
» singular vectors
» notions of rank
» low-rank approximation
> analogues for symmetric tensors
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today

tensors in applications:

1. probabilities and statistical models

2. encodings (e.g. moments, signature)
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3. data values
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focus: tensor decompositions that arise, their algebraic properties

lAS, M. Beguerisse-Diaz, B. Schoeberl, M. Niepel, H. Harrington: Tensor clustering with algebraic constraints gives
interpretable groups of crosstalk mechanisms in breast cancer, (2019).
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probability tensors

random variable Y on {1,...,n}
probability mass function is vector

random variables Yj on {1,...,n;}, 1</ <d.
joint probability mass function is ny X --- X ng4 tensor

Xiy..ig = P(Yl = il, ey Yd = id).

properties of tensor <+ properties of distribution
family of tensors < statistical model
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rank one

random variables Y; on {1,...,n;}
probability mass function is ny X - -+ X ng tensor

Xi iy =P(Yi=h, ..., Ye=lq) %

Y1,..., Yy independent means

Xy ... :P(Y1:i1)~--P(Yd:id)
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(non-negative) rank one decomposition

family of tensors < statistical model

rank one <> independence model
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beyond independence

&

T

e conditional independence
(Y1 L Y2)|Y3 means “Y; independent of Y, given Y3”

Xijiiy = P(Yi=1i1, Ya=1, Y3=13)

= iz bi2f3

e rank one <> independence model

slices rank one (for fixed i3)

e more general graphs O an O
o] "]
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conditional independence equations

Xiy...is = iyipis Disiy Cinis Aigi
conditional independence <> rank one conditions on various slices
...conditional independence ideals?

2Seth Sullivant, Algebraic statistics. Vol. 194. American Mathematical Soc., 2018.
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hidden variables

(Y) :
X;on{l,...,n;
jon{l,....ni} Xibis = Y i jbin jCis j
j=1

Yon{l,...,r} @@@

non-negative rank < r <  mixture model, r state hidden variable.

other graphs e.g. restricted Boltzmann machines®:
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Hadamard product of non-negative rank r tensors
e.g.

r

,
Xibis = | D aijbaicig | | D Ui kVi kWi k
j=1 k=1

3G. Montdfar " Restricted Boltzmann machines: Introduction and review.” (2018).
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equations and inequalities

set of tensors in model give semi-algebraic set
what are equations and inequalities? which non-negative ranks occur?
e.g. 2 X 2 x 2 tensors with xjj > 0

X .
01 X111 non-negative rank 2 8%
10/
X001 or real rank three, 10%
: 67%
5| X110 non-negative rank 3
" X010 o non-negative rank 4 25%
Xo0 100

non-negative rank 2: four pieces*, one is:

X000X011 = X010X001, X100X111 = X110X101,
X000X101 = X100X001, X010X111 = X110X011,
X000X110 = X100X0105 X001X111 = X101X011-

non-negative rank < 3: three pieces® , one is:

(X000X011 - X001X010)(X100X111 - X101X110) >0

4E Allman, J Rhodes, B Sturmfels, P Zwiernik. Tensors of nonnegative rank two (2015).
5AS, G Montifar “Mixtures and products in two graphical models” (2018).
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connection to tensor networks

graphical model:

Xiripizia = § : afljlbjl i2j2Cj i3j3dj3 7
J1sJ2:43

tensor network:

6E Robeva, AS “Duality of graphical models and tensor networks” (2019).
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estimating parameters

maximum likelihood estimate: point(s) on model most likely to give data

Se - -

data: u;_j, = fraction of times i = (i,. .., iy) occurs.
likelihood: L(p) = [; p;"
or log-likelihood: ¢(p) = >; uilog p;
maximize ¢ over the model
(minimize Kullback-Leibler divergence KL(p||u) )

7LH Lim, P Comon “Nonnegative approximations of nonnegative tensors” (2009)
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‘best’ rank one approximation

independence model <> rank one
Aofto  Aopt

two binary random variables
y [M#o A1p1

], A+Ad=1 pot+ur=1

>

u u . . ..
data: | 20 O ujj = fraction of times (i, j) occurs.
ulp U1

likelihood: (Xofi0) 00 (Aopi ) 0 (A1 a0) 0 (A1 )™ = Ao A" g™y ™
maximum likelihood estimate

Ao = Uoy fio = U0 Uo+Uto  Ui4Uio
AL = U1y i1 = Uy Ul4Uyo Ul Uyl
...hidden variables®

8E Allman et al. “Maximum likelihood estimation of latent class model through model boundary decomposition” (2017).
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moments and cumulants

random vector X taking values in R
e.g. d-dimensional Gaussian, X ~ N(u,X)

moment tensors E[X ® - -+ ® X] (or cumulant tensors)

e.g. moments: (i, piptj + 0ij, Hifjfpk + Ri0jk + WOk + kT, - - .)
cumulants: (uj, 0j7, 0, ...,)

properties of tensors <> properties of distribution
e tensor decomposition <> estimate parameters®
e dimension of tensors + identifiability of model!©
e equations in tensor entries <> model membership!!

9AA Anandkumar et al. “Tensor decompositions for learning latent variable models.” (2012).

IOC. Améndola, K. Ranestad, B. Sturmfels. “Algebraic identifiability of Gaussian mixtures.” (2018).

1lE. Robeva, J.B. Seby. “Multi-trek separation in Linear Structural Equation Models.” (2020).
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the signature

a path is a function ¢ : [0,1] = RY, t <w1(t),w2(t), .. ,wd(t)>
the signature!? is a sequence of tensors

d, d?, d3,

H

...whose entries are iterated integrals. e.g.

= g = (1) — i(0), e = / 1 ([ ([ aw)) av@) avw)

properties of tensors <> properties of path

b Unljl Jﬁﬁ, IUHJL

12 KT Chen. Integration of paths, geometric invariants and a generalized Baker-Hausdorff formula (1957)
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signatures of paths

linear path 9(t) = tv has signature
v, Vv, VRVEYV,

v € V, can write signature as exp(v) € T(V) = @ - V&
piecewise linear path with pieces v1,..., v,

has signature

1 1
exp(v1)®- - -®exp(vy) = (1+v1+§vf92+- )@ -®(1+v,,+§v,?2+‘ )

tensor product of signatures <> concatenation of paths
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tensor decomposition of signatures

piecewise linear path with pieces v1, ..., v, € R? has signature
exp(v1) ® - - - ® exp(va)
exp-rank one decomposition fits piecewise linear path to signature
i.e. given signature S € T(RY), seek vi,...,v, € RY such that
S~ exp(vi) ® - ®exp(vp).

e recovery from infinite signature!3

o finite truncation of signature, connection to statistical moments'4

e third order signature!®

13T Lyons, W Xu “Inverting the signature of a path” (2014).

14C Améndola, P Friz, B Sturmfels. “Varieties of signature tensors.” (2019).

15M Pfeffer, AS, B Sturmfels. “Learning paths from signature tensors.” (2019).
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equivariance of the signature

linear transformation of path

T N

transforms signature under congruence

vis gy, M~ gMgT, T [Tigl = tap8iagis8ky-

aBy
Y 4
[T;g,g,gl-r -
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properties and applications

e signature invariant under (exactly) re-parametrisation and
tree like equivalencel® 17

3 \Sv

[ X X ]
e applications:

machine learning pipelines!® 19 biological time-series data
16

KT Chen: Integration of paths—A faithful representation of paths by noncommutative formal power series, Transactions
of the AMS 89.2 (1958): 395-407.

7 Ben Hambly, Terry Lyons. " Uniqueness for the signature of a path of bounded variation and the reduced path group.”
Annals of Mathematics (2010): 109-167.

18I Chevyrev, A Kormilitzin. A primer on the signature method in machine learning. arXiv preprint arXiv:1603.03788.
2016 Mar 11.

20 21

P Bonnier, et al. “Deep signatures.” (2019) .

20I. P. Arribas, et al. “A signature-based machine learning model for distinguishing bipolar disorder and borderline
personality disorder.” (2018).

J. Morrill, et al. “The signature-based model for early detection of sepsis from electronic health records in the intensive

care unit.” (2019). 18/21



tensors of biological data

each entry of tensor is a data value
indices can be ordered (e.g. spatial, temporal) or unordered
e.g. signaling pathways in cancer cells®?
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how are the 5 variables related?
if we flatten to matrix, what do we lose?

e cell lines x everything else = 36 x 224
e cell lines & ligands x everything else = 504 x 16

22AS, M. Beguerisse-Diaz, B. Schoeberl, M. Niepel, H. Harrington: Tensor clustering with algebraic constraints gives
interpretable groups of crosstalk mechanisms in breast cancer, (2019).
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tensor decompositions of biological data

e low rank CP decomposition?3
e high rank CP with sparsity®*

Components
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Genes Tissues - "/ Tissue scores matrix
" —_—
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e higher order singular value decomposition®®
e semi non-negative Tucker decomposition” 2%

e _non-negative Tucker decomposition?”
23

A Williams, et al. “Unsupervised discovery of demixed, low-dimensional neural dynamics across multiple timescales
through tensor component analysis” (2018)

V. Hore, et al. “Tensor decomposition for multiple-tissue gene expression experiments” (2016)

25 . . . . . .

L Omberg, G H Golub, O Alter. “A tensor higher-order singular value decomposition for integrative analysis of DNA
microarray data from different studies” (2007)

M Wang, J Fischer, Y S Song, “Three-way clustering of multi-tissue multi-individual gene expression data using
semi-nonnegative tensor decomposition (2019)

C M Schiirch, S S Bhate et al. “Coordinated cellular neighborhoods orchestrate antitumoral immunity at the colorectal
cancer invasive front” (2020) 20/21



outlook
e connection between tensor structure and application

probability distribution
property of tensors <> property of path
biological setting?

e new tensor decompositions from applications
e new applications of tensor decompositions

-ﬂ,:
B

Thank you!
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