tensors in statistics and data analysis

Anna Seigal

University of Oxford

17th March 2021

tutorial 1

- from linear algebra to multi-linear algebra
 - challenges
 - algebraic properties of tensors

- aspects of the singular value decomposition
 - singular vectors
 - notions of rank
 - Iow-rank approximation
 - analogues for symmetric tensors

today

tensors in applications:

1. probabilities and statistical models

2. encodings (e.g. moments, signature)

¹AS, M. Beguerisse-Díaz, B. Schoeberl, M. Niepel, H. Harrington: Tensor clustering with algebraic constraints gives interpretable groups of crosstalk mechanisms in breast cancer, (2019).

probability tensors

random variable Y on $\{1, ..., n\}$ probability mass function is vector

$$x_i = \mathbb{P}(Y = i).$$

random variables Y_j on $\{1, \ldots, n_j\}$, $1 \le j \le d$. joint probability mass function is $n_1 \times \cdots \times n_d$ tensor

$$x_{i_1\ldots i_d} = \mathbb{P}(Y_1 = i_1, \ldots, Y_d = i_d).$$

properties of tensor \leftrightarrow properties of distribution family of tensors \leftrightarrow statistical model

rank one

random variables Y_j on $\{1, \ldots, n_j\}$ probability mass function is $n_1 \times \cdots \times n_d$ tensor

$$x_{i_1\ldots i_d} = \mathbb{P}(Y_1 = i_1, \ldots, Y_d = i_d)$$

 Y_1, \ldots, Y_d independent means

$$\begin{aligned} \mathsf{x}_{i_1 \dots i_d} &= \mathbb{P}(Y_1 = i_1) \cdots \mathbb{P}(Y_d = i_d) \\ &= \mathsf{x}_{i_1}^{(1)} \cdots \mathsf{x}_{i_d}^{(d)} \end{aligned}$$

(non-negative) rank one decomposition

beyond independence

• rank one \leftrightarrow independence model

 conditional independence (Y₁ ⊥ Y₂)|Y₃ means "Y₁ independent of Y₂ given Y₃"

$$x_{i_1i_2i_3} = \mathbb{P}(Y_1 = i_1, Y_2 = i_2, Y_3 = i_3)$$

= $a_{i_1i_3}b_{i_2i_3}$

slices rank one (for fixed i_3)

3

more general graphs

 $a_{i_1i_2i_3}b_{i_3i_4}c_{i_2i_5}d_{i_4i_5}$

conditional independence equations $x_{i_1...,i_5} = a_{i_1i_2i_3} b_{i_3i_4} c_{i_2i_5} d_{i_4i_5}$

conditional independence \leftrightarrow rank one conditions on various slicesconditional independence ideals^2

²Seth Sullivant, Algebraic statistics. Vol. 194. American Mathematical Soc., 2018.

hidden variables

non-negative rank $\leq r \quad \leftrightarrow \quad$ mixture model, *r* state hidden variable.

other graphs e.g. restricted Boltzmann machines³:

Hadamard product of non-negative rank r tensors e.g.

$$x_{i_{1}i_{2}i_{3}} = \left(\sum_{j=1}^{r} a_{i_{1}j}b_{i_{2}j}c_{i_{3}j}\right) \left(\sum_{k=1}^{r} u_{i_{1}k}v_{i_{2}k}w_{i_{3}k}\right)$$

³G. Montúfar "Restricted Boltzmann machines: Introduction and review." (2018).

equations and inequalities

set of tensors in model give semi-algebraic set what are equations and inequalities? which non-negative ranks occur? e.g. $2 \times 2 \times 2$ tensors with $x_{ijk} > 0$

non-negative rank 2: four pieces⁴, one is: $\begin{cases}
x_{000}x_{011} \ge x_{010}x_{001}, & x_{100}x_{111} \ge x_{110}x_{101}, \\
x_{000}x_{101} \ge x_{100}x_{001}, & x_{010}x_{111} \ge x_{110}x_{011}, \\
x_{000}x_{110} \ge x_{100}x_{010}, & x_{001}x_{111} \ge x_{101}x_{011}.
\end{cases}$

non-negative rank \leq 3: three pieces^5 , one is: $(x_{000}x_{011}-x_{001}x_{010})(x_{100}x_{111}-x_{101}x_{110})\geq 0$

⁴E Allman, J Rhodes, B Sturmfels, P Zwiernik. Tensors of nonnegative rank two (2015).

⁵AS, G Montúfar "Mixtures and products in two graphical models" (2018).

connection to tensor networks

graphical model:

$$x_{i_1i_2i_3i_4} = \sum_{j_1, j_2, j_3} \mathsf{a}_{i_1j_1} \mathsf{b}_{j_1i_2j_2} \mathsf{c}_{j_2i_3j_3} \mathsf{d}_{j_3i_4}$$

tensor network:

 $^{^{6}\}mathsf{E}$ Robeva, AS "Duality of graphical models and tensor networks" (2019).

estimating parameters

maximum likelihood estimate: point(s) on model most likely to give data

data: $u_{i_1...i_d} = \text{fraction of times } \mathbf{i} = (i_1, ..., i_d) \text{ occurs.}$ likelihood: $L(p) = \prod_i p_i^{u_i}$ or log-likelihood: $\ell(p) = \sum_i u_i \log p_i$ maximize ℓ over the model (minimize Kullback-Leibler divergence KL(p||u))

⁷LH Lim, P Comon "Nonnegative approximations of nonnegative tensors" (2009)

'best' rank one approximation

data: $\begin{bmatrix} u_{00} & u_{01} \\ u_{10} & u_{11} \end{bmatrix}$, u_{ij} = fraction of times (i, j) occurs.

8

likelihood: $(\lambda_0\mu_0)^{u_{00}}(\lambda_0\mu_1)^{u_{01}}(\lambda_1\mu_0)^{u_{10}}(\lambda_1\mu_1)^{u_{11}} = \lambda_0^{u_{0+}}\lambda_1^{u_{1+}}\mu_0^{u_{+0}}\mu_1^{u_{+1}}$ maximum likelihood estimate

$$\hat{\lambda_0} = u_{0+} \quad \hat{\mu_0} = u_{+0} \qquad \begin{bmatrix} u_{0+} u_{+0} & u_{1+} u_{+0} \\ u_{1+} u_{+0} & u_{1+} u_{+1} \end{bmatrix}$$

al. "Maximum likelihood estimation of latent class model through model boundary decomposition" (2017).

moments and cumulants

random vector X taking values in \mathbb{R}^d e.g. *d*-dimensional Gaussian, $X \sim N(\mu, \Sigma)$ moment tensors $\mathbb{E}[X \otimes \cdots \otimes X]$

(or cumulant tensors)

e.g. moments: $(\mu_i, \mu_i \mu_i + \sigma_{ii}, \mu_i \mu_i \mu_k + \mu_i \sigma_{ik} + \mu_i \sigma_{ik} + \mu_k \sigma_{ii}, \ldots)$ cumulants: $(\mu_i, \sigma_{ii}, 0, \ldots,)$

- properties of tensors \leftrightarrow properties of distribution
- tensor decomposition \leftrightarrow estimate parameters⁹
 - dimension of tensors \leftrightarrow identifiability of model¹⁰
- equations in tensor entries \leftrightarrow model membership¹¹

⁹A. Anandkumar et al. "Tensor decompositions for learning latent variable models." (2012).

¹⁰C. Améndola, K. Ranestad, B. Sturmfels. "Algebraic identifiability of Gaussian mixtures." (2018).

¹¹E. Robeva. J.B. Sebv. "Multi-trek separation in Linear Structural Equation Models." (2020).

the signature

a path is a function $\psi : [0,1] \to \mathbb{R}^d$, $t \mapsto \left(\psi_1(t), \psi_2(t), \dots, \psi_d(t)\right)$ the signature¹² is a sequence of tensors

d.

 d^3 .

...whose entries are iterated integrals. e.g.

$$c_i = \int_0^1 \mathrm{d}\psi_i(t) = \psi_i(1) - \psi_i(0), \qquad c_{ijk} = \int_0^1 \left(\int_0^v \left(\int_0^u \mathrm{d}\psi_i(t)\right) \,\mathrm{d}\psi_i(u)\right) \,\mathrm{d}\psi_k(v)$$

properties of tensors \leftrightarrow properties of path

 d^2 .

 $^{^{12}}$ KT Chen. Integration of paths, geometric invariants and a generalized Baker-Hausdorff formula (1957)

signatures of paths

 $v \in V$, can write signature as $\exp(v) \in T(V) = \bigoplus_{d \ge 0} V^{\otimes d}$ piecewise linear path with pieces v_1, \ldots, v_n

tensor product of signatures \leftrightarrow concatenation of paths

tensor decomposition of signatures

piecewise linear path with pieces $v_1, \ldots, v_n \in \mathbb{R}^d$ has signature

$$\exp(v_1) \otimes \cdots \otimes \exp(v_n)$$

exp-rank one decomposition fits piecewise linear path to signature

i.e. given signature $S \in \mathcal{T}(\mathbb{R}^d)$, seek $v_1, \ldots, v_n \in \mathbb{R}^d$ such that

$$S \approx \exp(v_1) \otimes \cdots \otimes \exp(v_n).$$

- recovery from infinite signature¹³
- finite truncation of signature, connection to statistical moments¹⁴
- third order signature¹⁵

 $^{^{13}\}mathrm{T}$ Lyons, W Xu "Inverting the signature of a path" (2014).

¹⁴ C Améndola, P Friz, B Sturmfels. "Varieties of signature tensors." (2019).

¹⁵M Pfeffer, AS, B Sturmfels. "Learning paths from signature tensors." (2019).

equivariance of the signature

linear transformation of path

transforms signature under congruence

properties and applications

 signature invariant under (exactly) re-parametrisation and tree like equivalence¹⁶ ¹⁷

• applications:

machine learning pipelines¹⁸ ¹⁹ biological time-series data²⁰ ²¹

 16 KT Chen: Integration of paths–A faithful representation of paths by noncommutative formal power series, Transactions of the AMS 89.2 (1958): 395-407.

¹⁷ Ben Hambly, Terry Lyons. "Uniqueness for the signature of a path of bounded variation and the reduced path group." Annals of Mathematics (2010): 109-167.

¹⁸I Chevyrev, A Kormilitzin. A primer on the signature method in machine learning. arXiv preprint arXiv:1603.03788. 2016 Mar 11.

¹⁹ P Bonnier, et al. "Deep signatures." (2019).

²⁰I. P. Arribas, et al. "A signature-based machine learning model for distinguishing bipolar disorder and borderline personality disorder." (2018).

²¹ J. Morrill, et al. "The signature-based model for early detection of sepsis from electronic health records in the intensive care unit." (2019).

tensors of biological data

each entry of tensor is a data value indices can be ordered (e.g. spatial, temporal) or unordered e.g. signaling pathways in cancer cells²²

how are the 5 variables related?

if we flatten to matrix, what do we lose?

- cell lines \times everything else = 36×224
- cell lines & ligands \times everything else = 504 \times 16

²²AS, M. Beguerisse-Díaz, B. Schoeberl, M. Niepel, H. Harrington: Tensor clustering with algebraic constraints gives interpretable groups of crosstalk mechanisms in breast cancer, (2019).

tensor decompositions of biological data

- low rank CP decomposition²³
- high rank CP with sparsity²⁴

Tissues

ndividuals

- higher order singular value decomposition²⁵
- semi non-negative Tucker decomposition"²⁶
- non-negative Tucker decomposition²⁷

 23 A Williams, et al. "Unsupervised discovery of demixed, low-dimensional neural dynamics across multiple timescales through tensor component analysis" (2018)

²⁴V. Hore, et al. "Tensor decomposition for multiple-tissue gene expression experiments" (2016)

²⁵L Omberg, G H Golub, O Alter. "A tensor higher-order singular value decomposition for integrative analysis of DNA microarray data from different studies" (2007)

²⁶M Wang, J Fischer, Y S Song, "Three-way clustering of multi-tissue multi-individual gene expression data using semi-nonnegative tensor decomposition (2019)

 21 C M Schürch, S S Bhate et al. "Coordinated cellular neighborhoods orchestrate antitumoral immunity at the colorectal cancer invasive front" (2020) 20/21

outlook

connection between tensor structure and application

property of tensors ↔ property of path biological setting?

- new tensor decompositions from applications
- new applications of tensor decompositions

