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goals of these tutorials

e very elementary introduction to tensors

through the lens of linear algebra and numerical linear algebra

highlight their roles in computations

e trace chronological development through three definitions

@ a multi-indexed object that satisfies tensor transformation rules
@ a multilinear map

® an element of a tensor product of vector spaces

all three definitions remain useful today



tensors via transformation rules



earliest definition

trickiest among the three definitions

first appearance in Woldemar Voigt's 1898 book on crystallography
> “An abstract entity represented by an array of components that are
functions of coordinates such that, under a transformation of
cooordinates, the new components are related to the transformation
and to the original components in a definite way”

e main issue: defines an entity by giving its change-of-bases formulas
but without specifying the entity itself

likely reason for notoriety of tensors as a difficult subject to master
» J. Earman, C. Glymour, “Lost in tensors: Einstein's struggles with
covariance principles 1912-1916," Stud. Hist. Phil. Sci., 9 (1978),
no. 4, pp. 251-278



definition in Dover books c. 1950s
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e “a multi-indexed object that satisfies certain transformation rules”



fortunately for us

e linear algebra as we know it today was a subject in its infancy when
Einstein was trying to learn tensors

e vector space, linear map, dual space, basis, change-of-basis, matrix,
matrix multiplication, etc, were all obscure notions back then

> 1858: 3 x 3 matrix product' (Cayley)
» 1888: vector space and n x n matrix product (Peano)
> 1898: tensor (Voigt)

e we enjoy the benefit of a hundred years of pedagogical progress

e next slides: look at tensor transformation rules in light of linear
algebra and numerical linear algebra

Lwe still do not know the optimal algorithm for this



eigen and singular values

e eigenvalue and vectors: A € C"™", Av = Av, for any invertible
X c Cnxn,
(XAX " HXv = A\Xv

> cigenvalue \' = ), eigenvector v/ = Xv, and A’ = XAX !
e singular values and vectors: A € R™*",

Av =ou,
{ATu =ov
for any orthogonal X € R™*m Y € R"™",
(XAYT)Yv = o Xu,
{(XAYT)TXU =oYv

» singular value ¢’ = o, left singular vector u’ = Xu, left singular
vector v/ = Yv, and A" = XAY"



matrix product and linear systems

e matrix product: Ac C™*" B e C"™P, C e C"™P AB = C, for
any invertible X, Y, Z,

(XAY)(YBZz7') = xcz!

> A =XAY !, B'=YBzZ7! C' =XCz!
e linear system: A€ C™*" b e C™, Av = b, for any invertible X, Y,

(XAY 1) (Yv) = Xb

> A =XAY L b =Xb, v = Yv



ordinary and total least squares

e ordinary least squares: A € R™*" b e R™,
min ||Av — b|> = min |[(XAY 1) Yv — Xb|?
vER? vER?

for any orthogonal X € R™*™ and invertible Y € R"*"
> A= XAY ! b = Xb, v/ = Yv, minimum value p' = p
e total least squares: A€ R™*" and b € R™, then

min {|E|2 + ||r|]>: (A+E)v=>b+r}
= min {||XEYT||2 + || Xr||? : (XAYT + XEY")Yv = Xb + Xr}

for any orthogonal X € R™*™ and orthogonal Y € R"*"
> A =XAY" E' = XEY", b = Xb, ' = Xr, vV. = Yv



rank, norm, determinant, intertia

e rank, norm, determinant: A ¢ R™*"
rank(XAY 1) = rank(A), det(XAY ') =det(A), [XAY || = |A]

for X and Y invertible, special linear, or orthogonal, respectively

» determinant identically zero whenever m # n
» || - || either spectral, nuclear, or Frobenius norm

e positive definiteness: A € R"*" positive definite iff
XAXT or X TAX!

positive definite for any invertible X € R"*"



observation

e almost everything we study in linear algebra and numerical linear
algebra satisfies tensor transformation rules
e different names, same thing:
» equivalence of matrices: A’ = XAY ™1
» similarity of matrices: A’ = XAX ™!
» congruence of matrices: A = XAX"
e almost everything we study in linear algebra and numerical linear
algebra is about 0-, 1-, 2-tensors



triply ambiguous

e transformation rules may mean different things
A = XAY L, A = XAY", A =XAX"l, A = XAXT

and more

e matrices in transformation rules may have different properties

X € GL(n), SL(n), O(n),
(X,Y) € GL(m) x GL(n), SL(m) x SL(n), O(m) x O(n), O(m) x GL(n)

and more

e alternative (but equivalent) forms just as common

A =XTTAY, A =XTTAY T, A =XT1AX, A =XT1AXT
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math perspective

e multi-indexed object A € R, v € R", A € R™*" etc, represents the
tensor

e transformation rule A’ = XAY 1, A = XAY 1, A’ = XAXT, etc,
defines the tensor

e but the tensor has been left unspecified
e ecasily fixed with modern definitions @ and ®
e need a context in order to use definition @
. 123
o is A= [2 3 4} a tensor?
345
e it is a tensor if we are interested in, say, its eigenvalues and
eigenvectors, in which case A transforms as a mixed 2-tensor
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physics perspective

e remember definition @ came from physics — they don’t ask
» what is a tensor?
but

P is stress a tensor?
» is deformation a tensor?
P is electromagnetic field strength a tensor?

e unspecified quantity is placeholder for physical quantity like stress,
deformation, etc

e it is a tensor if the multi-indexed object satisfies transformation rules
under change-of-coordinates, i.e., definition @

e makes perfect sense in a physics context
. 123
o is A= [2 3 4} a tensor?
3145
e it is a tensor if it represents, say, stress, in which case A transforms

as a contravariant 2-tensor
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0-, 1-, 2-tensor transformation rules

contravariant 1-tensor:

covariant 1-tensor:

covariant 2-tensor:

contravariant 2-tensor:

mixed 2-tensor:

contravariant 2-tensor:

covariant 2-tensor:

mixed 2-tensor:

ad=X"1a
a=X"a

A = XTAX
A= XTTAXTT
A = XT1AX
A =XTTAY T
A = XTAY

A = XT1AY

a = Xa
a=X"a

A =XTAX !
A = XAXT

A = XAX!
A = XAY"

A =XTAy !
A = XAy !
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multilinear matrix multiplication

o Ac RMXXxng
o X e RMXm Y ¢ RmXm 7 c RMaXna

define

(X,Y,...,2)-A=B
where B € R™M**md gijven by

n.

biy.. g E E E Xivj Yiojp = Zigjg s+

=1 =1 Ja=1

e d =1: reducesto Xa= b forac R", bec R™

e d = 2: reduces to
(X,Y)-A=XAY"
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higher-order transformation rules 1

o Xy € GL(n1), X2 € GL(mp), ..., X4 € GL(ng)

e covariant d-tensor transformation rule:
A= (X[, X3,...,X3)- A

e contravariant d-tensor transformation rule:

e mixed d-tensor transformation rule:
/ —1 -1
A = (X] ,...,XP , ;+1,...7XJ)~A

e contravariant order p, covariant order d — p, or type (p,d — p)
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higher-order transformation rules 2

e whenny=n=---=nyg=n, X € GL(n)

e covariant d-tensor transformation rule:
A =(X",XT,....X")- A
e contravariant d-tensor transformation rule:
A =(XLX1 . X)) A
e mixed d-tensor transformation rule:
A= (X1 X LXT, L XT)-A

e getting ahead of ourselves, with definition @, difference is between
multilinear

f:Vix---xVg—R and f:Vx---xV—->R
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change-of-cooordinates matrices

e Xi,...,Xq or X may belong to:

GL(n) = {X € R™" : det(X) # 0}
SL(n) = {X € R™" : det(X) = 1}
O(n) = {X e R™": XX = [},
SO(n) = {X € R™": X" X = I, det(X) = 1}
U(n) = {X e C™": X*X = [}
SU(n) ={X eC™": X*X =1, det(X) =1}
O(p,q) = {X ER™": XTI, o X = Ip 4}
SO(p,q) = {X € R™": XTI, o X = I, 4, det(X) = 1}
Sp(2n,R) = {X € R?™2" . X" JX = J}
Sp(2n) = {X € C*™2" . XTJX = J, X*X =1}

e | :=1l,is nx nidentity, I, , = [IO -, } e R™n, J = [9]] e R2x2n
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change-of-cooordinates matrices

e again getting ahead of ourselves with definitions @ or ®,

> if vector spaces involve have no extra structure, then GL(n)

» if inner product spaces, then O(n)

» if equipped with yet other structures, then whatever group that
preserves those structures

e e.g., R* equipped with Euclidean inner product:

(x,¥) = Xoy0 + xiy1 + xey2 + X3y3
want X € O(4) or SO(4)
e e.g., R* equipped with Lorentzian scalar product,
(X,y) = Xo¥0 — X1y1 — Xay2 — X3Y3,

want X € O(1,3) or SO(1,3)

e called Cartesian tensors or Lorentzian tensors respectively
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transformation rule is the crux




why important (in machine learning)

e tensor transformation rules in modern parlance: equivariance

e exact same idea in equivariant neural network used by Google's
AlphaFold 2 [Jumper et al, 2020]
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why important (in physics)

e special relativity is essentially the observation that the laws of
physics are invariant under Lorentz transformations in O(1, 3)
[Einstein, 1920]

e transformation rules under O(1, 3)-analogue of Givens rotations:

coshf —sinhf® 0 0 cosh® 0 —sinhf 0 coshf 0 0 —sinh@
—sinhd coshd 0 0 0 1 0 0 0 10 0

0 0 10 —sinh@ 0 coshd 0]’ 0 01 0

0 0 0 1 0 0 0 1 —sinhd 0 0 coshé

enough to derive most standard results of special relativity

e “Geometric Principle: The laws of physics must all be expressible as
geometric (coordinate independent and reference frame independent)
relationships between geometric objects (scalars, vectors, tensors,
...) that represent physical entitities.” [Thorne, 1973]
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why important (in mat

e deriving higher-order tensorial analogues not a matter of just adding
more indices to

n n n
E 25 — [y, E ajixj = AXj, E sgn(o) H 3ic (i)
j=1 j=1 ceS, i=1

e need to satisfy tensor transformation rules

o eg., Ac R?%2X2 has hyperdeterminant

det(A) = a500ai11 + 3013310 + 103301 + 0113500
- 2(5700030015'11057111 + 200020104101 2111 + 30004011 21002111
+ a001201081012110 + 2001301131108100 + 3010301131013100)
+ 4(3000301131013110 + 3001801031003111),

e preserved by transformation A’ = (X, Y, Z) - Afor X,Y,Z € SL(2)
e just as determinant preserved by A’ = XAYT for X, Y € SL(n)
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tensor multiplication?

e Hadamard product:

|

ail
ari

aiz
()
an

seems a lot more obvious

|

a1
az

a2
a

I

by b

b1 b2 _ aybir  anbin
_b21 b a2 b1 axnbo

than standard matrix product

by b22_

_ |aubu +awba aubiz + a12b2
ao1bir + axby1  axibiz + axnbx

matrix product satisfies transformation rule for mixed 2-tensors
(XAY 1) (YBZ71) = X(AB)Z™1, i.e., defined on tensors

Hadamard product undefined on tensors — depends on coordinates

product on R™*"XP or R"*"*" that satisfies 3-tensor transformation

rules does not exist
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identity tensor?

e identity matrix / € R3x3

3
= Ze;®6; c R3x3
i=1
with e1, e, e3 € R3 standard basis vectors

e (Q,Q) - 1=QIQ" =1 for any Q € O(3), unique up to scalar
multiples

e [ is a Cartesian 2-tensor

e analogue in R3*3x3 is not

3
A:Ze,'@ei@e; €R3X3X3
=i

as (Q,Q,Q)-A#A
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identity tensor?

e analogue is

3

3
/= Z Z Z‘sljkei Qe e € R3x3x3

i=1 j=1 k=1
where ¢ is the Levi-Civita symbol
+1 if (i,4,k)=(1,2,3),(2,3,1),(3,1,2),

€ijk = =l If (i7j7 k) - (17372)7(2a 173)7(3a27 1)7
0 ifi=j,j=kk=i

e (Q,Q,Q)-J=Jforany Q € O(3), unique up to scalar multiples

e J is a Cartesian 3-tensor
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why important (in computations)

two simple properties:

e group: change-of-coordinates matrices may be multiplied /inverted:
» if X, Y orthogonal or invertible, so is XY
» if X orthogonal or invertible, so is X !
e group action: transformation rules may be composed:
> ifa’ =X Taand &’ = Y74, then " = (YX) Ta
> if A = XAX ' and A" = YA'Y™! then A” = (YX)A(YX)™!

plus one more fact about the change-of-coordinate matrices (next slides)
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why important (in computations)

e recall Givens rotation, Householder reflector, Gauss transform:

... 0 0 ... 0]
0 --- cosf --- —sinf --- 0
G=|: S : -| €50(n),
0 --- sinf - cos@ --- 0
0 - 0 0 soo ]
2w’

H=1-

€ O(n), M =1—vef € GL(n)

viv
e 2’ = Ga rotation of a in (/,j)-plane by an angle 0
e a' = Ha reflection of a in the hyperplane with normal v/||v||
e for judiciously chosen v, & = Ma € span{e;;1,...,e,}, i.e., has

(7 + 1)th through nth coordinates zero
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why important (in computations)

e facts about change-of-coordinate matrices in transformation rules

» any X € SO(n) is a product of Givens rotations

» any X € O(n) is a product of Householder reflectors

» any X € GL(n) is a product of elementary matrices

» any unit lower triangular X € GL(n) is a product of Gauss transforms
e in group theoretic lingo:

» Givens roations generate SO(n)

» Householder reflectors generate SO(n)

> elementary matrices generate GL(n)
> Grauss transforms generate lower unitriangular subgroup of GL(n)
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why important (in computations)

e algorithms in numerical linear algebra implicitly based on these:

» apply a sequence of tensor transformation rules

A= XiA = Xo(XA) —» - = B
A=XTA= X, "(X;TA)— - = B

A= XiAX{ = X (XAX))XS — -+ = B
A= XAXT = X (XAXT D)X == B
A= XAY 5 X (XAY )Y, P - = B

» required X obtained as either X, Xim—1... X1 or its limit as m — oo

e caveat: in numerical linear algebra, we tend to view these
transformation rules as giving matrix decompositions
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example: full-rank least squares

e tensor transformation rules for ordinary least squares: mixed 2-tensor
A" = XAY ! with change-of-coordinates (X, Y) € O(m) x GL(n)
e method of solution essentially obtains

X =Q € 0(m), Y =R € GL(n)

by applying a sequence of tensor transformation rules
e suppose rank(A) = n, with sequence of tensor transformation rules

R

A= QA= Q(QIA) —» - > QTA= 0

given by Householder QR algorithm, get
R

A =
o5

e practically Voigt's definition: transform problem into form where

solution of transformed problem is related to original solution in a

definite way
29



example: full-rank least squares

e minimum value is invariant Cartesian O-tensor
R
v—Q'b

=min||Rv — c|® + ||4|*> = ||d|I?

2
min ||Av — b||? = min||QT(Av — b)||?> = min

i
-]

e solution of transformed problem Rv = c equals original solution, and

2

= min

where

may be obtained through back substitution, i.e., a sequence
c=Yle= Y, (Y )= =R lc=v

where Y;'s are Gauss transforms
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example: Krylov subspaces

e A c R"™" with all eigenvalues distinct and nonzero, arbitrary b € R”

e change-of-coordinates matrix K whose columns are
b,Ab, A%b, ..., A" 1b

is invertible, i.e., K € GL(n)

e transformation rule gives

00 -+ 0 —o

1 0 0 —C
A=K |0 1 0 —-o | k!

o0 --- 1 —Cnp—1

e seemingly trivial but when combined with other techniques, give
powerful iterative methods for linear systems, least squares,
eigenvalue problems, or evaluating various matrix functions
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example: Krylov subspaces

e why not use more obvious

A 0 0 .- 0
0 X 0 - 0
A—x|0 0 X - 0] x1
0 0 0 -+ A

with change-of-coordinates matrix X € GL(n) given by eigenvectors?
e much more difficult to compute than K

e one way is in fact to implicitly exploit relation between K and X:

M 0 0 0 1T M0 A o Moo - 00— ]t oA A} AT
0 X 0 -+ 0 1 X A .. A1 0 —a PYED VIR Vi
0 0 A 0 =11 X A ... Mol 0 - PYREDY D W
0 0 0 - A, 1 Am A2 ... A |0 0 1 —coa |1 Am X2, ..o AT
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beyond linear algebra

e primal and dual forms of cone programming problem over a
symmetric cone K C V conform to transformation rules for
Cartesian 0-, 1-, 2-tensors

e but change-of-coordinates matrices would have to be replaced a
linear map from the orthgonal group of the cone:

O(K) := {¢: V= V : ¢ linear, invertible, and ¢* = ¢~}

e special cases include linear programming (LP), convex quadratic
programming (QP), second-order cone programming (SOCP), and
semidefinite programming (SDP)
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beyond linear algebra

e vector space V may not be R”, e.g., K=S87, and V = 8" for SDP

e numerical linear algebra notations we have been using to describe
definition @ awkward and unnatural

e want to work with tensors over arbitrary vector spaces

» space of Toeplitz or Hankel or Toeplitz-plus-Hankel matrices
P space of polynomials or differential forms or differential operators
» space of L[2-functions on homogeneous spaces

e another impetus for coordinate-free approach in definitions @ and ®@
next week
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e my former postdocs Ke Ye (Chinese Academy of Sciences), Yang Qi
(Ecole Polytechnique and INRIA): taught me everything about
tensors

e Keith Conrad, Shmuel Friedland, Edinah Gnang, Shenglong Hu, Risi
Kondor, J. M. Landsberg, Jiawang Nie, Peter McCullagh, Emily
Riehl, Thomas Schultz: learned a great deal from them too

e image credits: Alex Krizhevsky (p. 19, CIFAR-10), John Jumper
(p. 19, AlphaFold 2)
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