from linear algebra to multi-linear algebra

Anna SeigalUniversity of Oxford

9th March 2021

overview

- extending linear algebra to multi-linear algebra
 - challenges
 - algebraic properties of tensors

- focus: aspects of the singular value decomposition
 - singular vectors
 - notions of rank
 - ► low-rank approximation
 - analogues for symmetric tensors

the singular value decomposition

decomposes a matrix $A \in \mathbb{R}^{n_1 n_2}$ as

$$A = U\Sigma V^{\mathsf{T}},$$

 $U \in \mathbb{R}^{n_1n_1}, V \in \mathbb{R}^{n_2n_2}$ orthogonal, $\Sigma \in \mathbb{R}^{n_1n_2}$ diagonal, non-negative.

singular vector pair (u_i, v_i) with singular value σ_i .

in tensor product notation: $A \in \mathbb{R}^{n_1} \otimes \mathbb{R}^{n_2}$

$$A=\sum_{i=1}^n\sigma_iu_i\otimes v_i^*.$$

¹A. Edelman, Y. Wang (2020).

properties of the SVD

- finds (orthogonal) basis so that A is diagonal
- matrix A is linear map $\mathbb{R}^{n_2} \to \mathbb{R}^{n_1}$, $v \mapsto Av$.

$$v_i \mapsto \sigma_i u_i$$
.

- rank of A is number of non-zero singular values $\sum_{i=1}^{n} \sigma_i u_i \otimes v_i^*$
- best rank r approximation is truncation to top r singular values²

$$\sum_{i=1}^r \sigma_i u_i \otimes v_i^*$$

²C. Eckart, G. Young. "The approximation of one matrix by another of lower rank." (1936).

tensor rank

 $X=(x_{ijk})$ order three tensor, $X\in V_1\otimes V_2\otimes V_3$.

X has rank 1 if

$$X = a \otimes b \otimes c$$

i.e. $x_{ijk} = a_i b_j c_k$.

X has rank r if it is the sum of r rank 1 tensors, $X = \sum_{i=1}^{r} a_i \otimes b_i \otimes c_i$.

[later: different types of rank]

change of basis

tensor $X \in V_1 \otimes V_2 \otimes V_3$ multiply by matrix $A^{(\ell)}$ in each vector space V_ℓ .

 $[X; A^{(1)}, A^{(2)}, A^{(3)}]$

$$(i,j,k)$$
 entry $\sum_{lpha,eta,\gamma} x_{lphaeta\gamma} a^{(1)}_{ilpha} a^{(2)}_{jeta} a^{(3)}_{k\gamma}$

(or $V_1 \otimes \cdots \otimes V_d$)

multi-linear map

matrix $A \in V_1 \otimes V_2$ gives linear and bi-linear maps

tensor $X \in V_1 \otimes \cdots \otimes V_d$ gives multi-linear maps

e.g.

$$\begin{array}{ccc} V_d^* & \to & V_1 \otimes \cdots \otimes V_{d-1} \\ v & \mapsto & \llbracket X; \ \mathrm{I}, \ldots, \ \mathrm{I}, v \rrbracket & = \sum_j x_{i_1, \ldots, i_{d-1}, j} v_j \end{array}$$

$$\begin{array}{ccc} V_{2}^{*} \times \cdots \times V_{d}^{*} & \to & V_{1} \\ (v^{(2)}, \dots, v^{(d)}) & \mapsto & [\![X; \ \mathrm{I}, v^{(2)}, \dots, v^{(d)}]\!] & = \sum_{j_{2}, \dots, j_{d}} x_{i, j_{2}, \dots, j_{d}} v_{j_{2}}^{(2)} \cdots v_{j_{d}}^{(d)} \end{array}$$

singular vectors

matrix $A \in V_1 \otimes V_2$.

$$(w, v)$$
 singular vector pair: $[A; w, I] = \sigma v$ and $[A; I, v] = \sigma w$.

tensor $X \in V_1 \otimes \cdots \otimes V_d$.

$$(v^{(1)},\ldots,v^{(d)})$$
 singular vectors tuple: critical point³ of

maximize
$$[\![X; v^{(1)}, \dots, v^{(d)}]\!]$$

subject to
$$\|v^{(1)}\| = \cdots = \|v^{(d)}\| = 1$$
.

equivalently,

$$[\![X;v^{(1)},\ldots,v^{(k-1)},\,\mathrm{I}_k\,,v^{(k+1)},\ldots,v^{(d)}]\!]=\sigma v^{(k)},\quad \text{for all } k=1,\ldots,d.$$

singular value $\sigma = [X; v^{(1)}, \dots, v^{(d)}]$.

how many singular vectors?4

³Lek-Heng Lim "Singular values and eigenvalues of tensors: a variational approach." (2005)

⁴S. Friedland, G. Ottaviani. "The number of singular vector tuples and uniqueness of best rank-one approximation of tensors." (2014)

best rank one approximation

matrix $A \in V_1 \otimes V_2$. best rank one approximation: $\sigma_1 w_1 \otimes v_1$ (w_1, v_1) singular vector pair with largest singular value σ_1 .

tensor $X \in V_1 \otimes \cdots \otimes V_d$. singular vector tuple $(v^{(1)}, \ldots, v^{(d)})$ with singular value σ gives rank one tensor

$$\sigma v^{(1)} \otimes \cdots \otimes v^{(d)}$$
.

Theorem: best rank one approximation of X is singular vector tuple with largest singular value

proof.

minimise $\|X - \sigma v^{(1)} \otimes \cdots \otimes v^{(d)}\|^2$

i.e. maximise $\langle X, v^{(1)} \otimes \cdots \otimes v^{(d)} \rangle = \llbracket X; v^{(1)}, \ldots, v^{(d)}
rbracket$.

⁵L. De Lathauwer, B. De-Moor, J. Vandewalle. "On the Best Rank-1 and Rank-(R1 R2... RN) Approximation of Higher-order Tensors." (2000)

⁶Liqun Qi, Ziyan Luo. Tensor analysis: spectral theory and special tensors. (2017)

challenges for higher ranks

not true:

- best rank r approximation of tensor X is the sum of the singular vector tuples with top r singular values
- rank of tensor *X* is number of non-zero singular values

problems

- 1. set of rank r tensors not closed.
- 2. tensor rarely expressibly as a sum of orthogonal rank one tensors those that are: orthogonally decomposable (odeco)
- 3. best rank r approximation not given by successive best rank one approximations

low-rank approximation

recall: limit of rank r matrices has rank < r

limit of rank r tensors can have rank > r

example

$$\lim_{\epsilon \to 0} \frac{1}{2\epsilon} \begin{pmatrix} \begin{bmatrix} 1 \\ \epsilon \end{bmatrix} \otimes \begin{bmatrix} 1 \\ \epsilon \end{bmatrix} \otimes \begin{bmatrix} 1 \\ \epsilon \end{bmatrix} \end{pmatrix} + \begin{bmatrix} -1 \\ \epsilon \end{bmatrix} \otimes \begin{bmatrix} -1 \\ \epsilon \end{bmatrix} \otimes \begin{bmatrix} -1 \\ \epsilon \end{bmatrix} \end{pmatrix}.$$

$$= \lim_{\epsilon \to 0} \frac{1}{2\epsilon} \begin{pmatrix} \begin{bmatrix} 1 & \epsilon & \epsilon^2 & \epsilon^2 & \epsilon^2 \\ \epsilon & \epsilon^2 & \epsilon^3 & \epsilon^2 \end{bmatrix} + \begin{bmatrix} -1 & \epsilon & \epsilon^2 & \epsilon^2 \\ \epsilon & -\epsilon^2 & \epsilon^3 \end{bmatrix} \end{pmatrix}$$

$$= \begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

border rank r: limit of rank r tensors

set of border rank r tensors is an algebraic variety 7 (secant variety of Segre variety)

(given by vanishing of some polynomials)

dimension⁸ and approximation⁹

⁷ JM Landsberg, "Tensors: geometry and applications." (2012).

⁸ James Alexander, André Hirschowitz: Polynomial interpolation in several variables. (1995).

 $^{^9\}mathrm{Y}$. Qi, M. Michałek, L-H. Lim. "Complex tensors almost always have best low-rank approximations." (2017)

real rank

for real problems, usually require real vectors in decomposition

tensor has
$${complex \atop real}$$
 rank r : sum of r ${complex \atop real}$ rank 1 tensors

example: complex rank 2, real rank 3

$$\begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & -1 & 0 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 & i & i & -1 \\ i & -1 & -i & -i \end{bmatrix} + \frac{1}{2} \begin{bmatrix} 1 & -i & -i & -i \\ -i & -1 & -i & i \end{bmatrix}$$
$$= \frac{1}{2} \begin{bmatrix} 1 \\ i \end{bmatrix} \otimes \begin{bmatrix} 1 \\ i \end{bmatrix} \otimes \begin{bmatrix} 1 \\ i \end{bmatrix} + \frac{1}{2} \begin{bmatrix} 1 \\ -i \end{bmatrix} \otimes \begin{bmatrix} 1 \\ -i \end{bmatrix} \otimes \begin{bmatrix} 1 \\ -i \end{bmatrix}$$

$2 \times 2 \times 2$ tensors

eight-dimensional space

real rank two \iff hyperdeterminant $\mathbf{h}(X) \geq 0$.

$$\begin{array}{lll} \mathbf{h}(X) & = & x_{000}^2 x_{111}^2 + x_{001}^2 x_{110}^2 + x_{010}^2 x_{101}^2 + x_{011}^2 x_{100}^2 + 4x_{000} x_{011} x_{101} x_{110} + 4x_{001} x_{010} x_{110} x_{111} \\ & - 2x_{000} x_{011} x_{110} x_{111} - 2x_{000} x_{010} x_{101} x_{111} - 2x_{000} x_{011} x_{100} x_{111} \\ & - 2x_{001} x_{010} x_{101} x_{100} - 2x_{001} x_{011} x_{100} x_{110} - 2x_{010} x_{011} x_{100} x_{101}. \end{array}$$

$$\lim_{\epsilon \to 0} \frac{1}{2\epsilon} \left(\left[\begin{array}{cc} 1 & \epsilon \\ \epsilon & \epsilon^2 \end{array} \right| \left[\begin{array}{cc} \epsilon & \epsilon^2 \\ \epsilon^2 & \epsilon^3 \end{array} \right] + \left[\begin{array}{cc} -1 & \epsilon \\ \epsilon & -\epsilon^2 \end{array} \right| \left[\begin{array}{cc} \epsilon & -\epsilon^2 \\ -\epsilon^2 & \epsilon^3 \end{array} \right] \right).$$

stopping at ϵ : badly conditioned, no solution.

real rank approximation

set of tensors of real rank $\leq r$ is semi-algebraic set: described by polynomial equations and inequalities.

- restrict set of tensors
- different notion of rank
- study closure of real rank r.
 best approximation is closest critical point to set and boundary.
 e.g. real rank two: secant variety and tangential variety¹⁰.

 $^{^{10}}$ AS, Bernd Sturmfels. "Real rank two geometry." (2017)

orthogonally decomposable tensors

 $X \in \mathbb{R}^{n_1 \times \cdots \times n_d}$ is odeco¹¹ if

$$X = \sum_{i} \sigma_{i} v_{i}^{(1)} \otimes \cdots \otimes v_{i}^{(d)},$$

 $X = \sum_i \sigma_i v_i^{(1)} \otimes \cdots \otimes v_i^{(d)},$ $v_1^{(j)}, \ldots, v_n^{(j)} \in \mathbb{R}^{n_j}$ orthonormal for every $1 \leq j \leq d, \quad \sigma_i \in \mathbb{R}.$

which tensors are odeco?¹² what are singular vectors?¹³

best rank r approximation: keep the top r terms. generalisations:

- for which tensors does such a truncation property hold?¹⁴
- DSVD: weaker orthogonality of summands¹⁵
- X is a linear combination of its singular vectors¹⁶

¹¹T. Zhang, G.H. Golub. Rank-one approximation to high order tensors (2001).

¹²A. Boralevi, et al. "Orthogonal and unitary tensor decomposition from an algebraic perspective." (2017).

 $^{^{13}\}mbox{E.}$ Robeva, AS. "Singular vectors of orthogonally decomposable tensors." (2017).

 $^{^{14}}$ N. Vannieuwenhoven, et al. "On generic nonexistence of the Schmidt–Eckart–Young decomposition for complex tensors." (2014).

 $^{^{15}}$ Derksen, Harm. "On the nuclear norm and the singular value decomposition of tensors." (2016).

¹⁶ J. Draisma, G. Ottaviani, A. Tocino, "Best rank-k approximations for tensors: generalizing Eckart-Young." (2018)

other extensions of the SVD

flattening

higher-order singular value decomposition¹⁷ (special Tucker decomposition)

t-SVD (tubal rank)¹⁸

...tensor networks

 $^{^{17}}$ L. De Lathauwer, B. De Moor, and J. Vandewalle. "A multilinear singular value decomposition." (2000)

¹⁸Z. Zhang, S. Aeron. "Exact tensor completion using t-SVD." (2016).

symmetric tensors

matrix A is symmetric if $A = A^{\mathsf{T}}$ (i.e. $a_{ij} = a_{ji}$). tensor X symmetric if its entries are the same under permuting indices:

$$x_{iik} = x_{iki} = x_{iik} = x_{iki} = x_{kii} = x_{kii}$$

e.g. moments, cumulants, partial derivatives of smooth functions.

symmetric rank 1:
$$X = v \otimes v \otimes v$$
 i.e. $x_{ijk} = v_i v_j v_k$.

symmetric rank r: sum of r tensors of symmetric rank 1.

eigenvectors: critical points of [X; v, ..., v], $||v||^2 = 1$.

rank vs. symmetric rank

recall: symmetric matrix of rank r has symmetric rank r

Comon's conjecture 19 : symmetric tensor of rank r has symmetric rank r.

true in some cases but false in general:

example: rank 903, symmetric rank \geq 904 rank 761, symmetric rank 762

(complex) (real)

¹⁹Comon P, Golub G, Lim LH, Mourrain B. Symmetric tensors and symmetric tensor rank. SIAM Journal on Matrix Analysis and Applications. 2008;30(3):1254-79.

²⁰ Yaroslaw Shitov: A counterexample to Comon's conjecture, SIAM J. Appl. Algebra Geometry, 2 (2018) no. 3, 428–443.
18/21

tensors and polynomials

 $\begin{array}{ccc} \text{symmetric tensors} & \leftrightarrow \\ \text{size } n \times \cdots \times n \ (d \text{ times}) \end{array}$

homogeneous polynomials degree *d* in *n* variables

$$T \leftrightarrow \sum_{i,j,\ldots,k=1}^{n} T_{ij\ldots k} x_i x_j \cdots x_k.$$

symmetric matrix M order three sym tensor rank one tensor $\mathbf{v}^{\otimes d}$ $\sum_{i=1}^{r} \mathbf{v}_{i}^{\otimes d}$

symmetric matrix $M \leftrightarrow \text{quadratic form } \mathbf{x}^T M \mathbf{x}, \ \mathbf{x} = (x_1, \dots, x_n)$

 \leftrightarrow linear power $\ell^d = (v_1 x_1 + \dots + v_n x_n)^d$

 \leftrightarrow Waring rank decomposition $\sum_{i=1}^{r} \ell_i^d$

 $4 \times 4 \times 4$ sym tensors

→ cubic surfaces.

19/21

classical tensor decomposition

 $4 \times 4 \times 4$ sym tensors \leftrightarrow cubic surfaces.

Theorem (Sylvester's Pentahedral Theorem, 1851)

a generic cubic surface can be decomposed uniquely as the sum of five cubes of linear forms, $f = \ell_1^3 + \ell_2^3 + \ell_3^3 + \ell_4^3 + \ell_5^3$.

proof. Hessian(
$$f$$
) = det $\left(\frac{\partial^2 f}{\partial x_i \partial x_j}\right)_{ij}$ find ℓ_i from Hessian.

$$\rightarrow$$
 10 lines, where $\ell_i = \ell_i = 0$

$$\rightarrow$$
 10 singular points, $\ell_i = \ell_i = \ell_k = 0$.

outlook

- can extend aspects of linear algebra to tensors
- but need to choose most important properties for some context (orthogonality, low rank, ...)
- encourages us to think about the structure we really need
- vast space of tensors divides into semi-algebraic subsets on which properties of interest hold

Thank you!