Geometry of configurations of points and symmetric rank
Luca Chiantini
Universitá di Siena, Italy

Abstract: Decompositions of symmetric tensors can be viewed as sets of points in a projective space. The geometry of sets of this type is usually studied in terms of a resolution of the associated homogeneous ideal. I will illustrate how one can study problems like the minimality or the uniqueness of a given decomposition by means of algebraic invariants of the corresponding configuration of points.
$T = \text{symmetric tensor} = \text{homogeneous polynomial (form)}$ /\mathbb{C}
\[T = \text{symmetric tensor} = \text{homogeneous polynomial (form)} / \mathbb{C} \]

(Waring) expression of \(T \):

\[T = \sum_{i=1}^{r} a_i T_i \]

\(T_i = L_i^d, \quad L_i \text{linear} \quad d = \deg(T), \quad r = \text{length}, \quad a_i \in \mathbb{C}. \]
\[T = \text{symmetric tensor} = \text{homogeneous polynomial (form)} \prod C \]

(Waring) expression of \(T \):

\[T = \sum_{i=1}^{r} a_i T_i \]

\(T_i = L_i^d, \ L_i \text{linear} \quad d = \deg(T), \quad r = \text{length}, \quad a_i \in \mathbb{C}. \)

Coefficients \(a_i \)'s will become important later in the talk.
(Waring) expression of T:

$$T = \sum_{i=1}^{r} a_i T_i$$

$$T_i = L_i^d \quad d = \deg(T) \quad r = \text{length, } a_i \in \mathbb{C}.$$
(Waring) expression of T:

$$T = \sum_{i=1}^{r} a_i T_i$$

$$T_i = L_i^d \quad d = \deg(T) \quad r = \text{length}, \quad a_i \in \mathbb{C}.$$

Notation:
- the expression is **non-redundant** if the T_i’s are independent and no a_i is zero.
(Waring) expression of T:

$$T = \sum_{i=1}^{r} a_i T_i$$

$$T_i = L_i^d \quad d = \deg(T) \quad r = \text{length}, \quad a_i \in \mathbb{C}.$$

Notation:
- the expression is **non-redundant** if the T_i’s are independent and no a_i is zero.
- the expression is **minimal** if there are no expressions of T of smaller length. I.e. r is the (symmetric) rank.
(Waring) expression of T:

$$T = \sum_{i=1}^{r} a_i T_i$$

$T_i = L_i^d$, $d = \deg(T)$, $r = \text{length}$, $a_i \in \mathbb{C}$.

Notation:
- the expression is **non-redundant** if the T_i’s are independent and no a_i is zero.
- the expression is **minimal** if there are no expressions of T of smaller length. I.e. r is the (symmetric) rank.
- the expression is **unique** if there are no other expressions of T of length $\leq r$, except trivialities. In this case T is **identifiable**.
For symmetric tensors it is not hard to find **some** expression of T

$$T = \sum_{i=1}^{r} a_i T_i$$
For symmetric tensors it is not hard to find some expression of T

$$T = \sum_{i=1}^{r} a_i T_i$$

- apolar equations;
For symmetric tensors it is not hard to find some expression of T

$$T = \sum_{i=1}^{r} a_i T_i$$

- apolar equations;
- Strassen Additivity Problem for forms $T = T' \oplus T''$;
For symmetric tensors it is not hard to find some expression of T

$$T = \sum_{i=1}^{r} a_i T_i$$

- apolar equations;
- Strassen Additivity Problem for forms $T = T' \oplus T''$;
- matrix multiplication symmetrized.
Introduction

Point of view

For symmetric tensors it is not hard to find \textbf{some} expression of T

$$T = \sum_{i=1}^{r} a_i T_i$$

It is hard to find a \textbf{minimal} decomposition, and/or to prove that it is \textbf{unique}.

- apolar equations;
- Strassen Additivity Problem for forms $T = T' \oplus T''$;
- matrix multiplication symmetrized.
The geometric (projective) setting

Most problems on tensors are invariant under rescaling (\(=\) multiplication by a non-zero scalar \(q\)).

\[
\text{rank}(T) = \text{rank}(qT) \quad \text{etc.}
\]

Advantages

- geometric insight on the problems;
- access to a huge set of tools from projective geometry.
Most problems on tensors are invariant under rescaling (= multiplication by a non-zero scalar q).

$$\text{rank}(T) = \text{rank}(qT) \text{ etc.}$$

Factor out the \mathbb{C}^*-action
Most problems on tensors are invariant under \textbf{rescaling} (\(=\) multiplication by a non-zero scalar \(q\)).

\[
\text{rank}(T) = \text{rank}(qT) \quad \text{etc.}
\]

Factor out the \(\mathbb{C}^*\)-action \(\Rightarrow\) projective geometry.
Most problems on tensors are invariant under rescaling (= multiplication by a non-zero scalar q).

$$\text{rank}(T) = \text{rank}(qT) \quad \text{etc.}$$

Factor out the \mathbb{C}^*-action \implies projective geometry.

Advantages

- a geometric insight on the problems;
Most problems on tensors are invariant under rescaling (= multiplication by a non-zero scalar q).

$$\text{rank}(T) = \text{rank}(qT) \quad \text{etc.}$$

Factor out the \mathbb{C}^*-action \Rightarrow projective geometry.

Advantages

- a geometric insight on the problems;
- access to a huge set of tools from projective geometry.
The geometric (projective) setting

\[T \Rightarrow [T] \in \mathbb{P}(\text{Sym}^d(\mathbb{C}^{n+1})). \]

Dictionary
The geometric (projective) setting

\[T \Rightarrow [T] \in \mathbb{P}(\text{Sym}^d(\mathbb{C}^{n+1})) \].

Dictionary

- **linear form** \(L_i \) \Rightarrow point \(P_i = [L_i] \in \mathbb{P}^n \)
- **power** \(L_i^d \) \Rightarrow image of \([L_i] \) in the Veronese map \(\nu_d : \mathbb{P}^n \to \mathbb{P}^N, N = \binom{n+d}{n} - 1 \)
- **expression** \(T = \sum_{i=1}^r a_i L_i^d \) \Rightarrow \(T \in \text{linear span } \mathbb{P}^{r-1} \) of the \(\nu_d([L_i]) \)'s
The geometric (projective) setting

\[T \Rightarrow [T] \in \mathbb{P}(\text{Sym}^d(\mathbb{C}^{n+1})). \]

Dictionary

linear form \(L_i \) \quad \Rightarrow \quad point \(P_i = [L_i] \in \mathbb{P}^n \)

power \(L_i^d \) \quad \Rightarrow \quad image \ of \ [L_i] \ in \ the \ Veronese \ map

expression \(T = \sum_{i=1}^{r} a_i L_i^d \) \quad \Rightarrow \quad \(T \in \text{linear span} \ \mathbb{P}^{r-1} \) \ of \ the \ \(v_d([L_i])'s \)

Definition A subset \(A = \{P_1, \ldots, P_r\} \subset \mathbb{P}^n \) is a (geometric) decomposition of \(T \) if

\[[T] \in \langle v_d(P_1), \ldots, v_d(P_r) \rangle. \]
The geometric (projective) setting

\[\mathbb{P}^n \to \mathbb{P}^N \]

Veronese map

Veronese variety

T
The geometric (projective) setting

beware: in general

\[
\left[\sum_{i=1}^{r} a_i L_i^d \right] \neq \left[\sum_{i=1}^{r} b_i L_i^d \right].
\]
Most celebrated criterion for uniqueness: **Kruskal’s criterion**.

Kruskal’s rank of a matrix $k(M) = \max \{ i : \text{all subsets of } i \text{ columns of } M \text{ are linearly independent} \}$.

Kruskal's criterion (symmetric case)

Let $T = \sum_{r_i=1} a_i L_i$. Let M be the matrix whose i-th column is formed by the coefficients of L_i. If $r \leq dk(M) - d + 1$ then the expression is (minimal and) unique. (Original statement was for general 3-way tensors).
Most celebrated criterion for uniqueness: **Kruskal’s criterion**.

Kruskal’s rank of a matrix

\[k(M) = \max \{ i : \text{all subsets of } i \text{ columns of } M \text{ are linearly independent} \} \]
Most celebrated criterion for uniqueness: **Kruskal’s criterion**.

Kruskal’s rank of a matrix

\[k(M) = \max\{i : \text{all subsets of } i \text{ columns of } M \text{ are linearly independent}\} \]

Kruskal’s criterion (symmetric case)

Let \(T = \sum_{i=1}^{r} a_i L_i^d \). Let \(M \) be the matrix whose \(i \)-th column is formed by the coefficients of \(L_i \). If

\[r \leq \frac{dk(M) - d + 1}{2} \]

then the expression is (minimal and) unique.
Most celebrated criterion for uniqueness: **Kruskal’s criterion**.

Kruskal’s rank of a matrix

\[k(M) = \max \{ i : \text{all subsets of } i \text{ columns of } M \text{ are linearly independent} \} \]

Kruskal’s criterion (symmetric case)

Let \(T = \sum_{i=1}^{r} a_i L_i^d \). Let \(M \) be the matrix whose \(i \)-th column is formed by the coefficients of \(L_i \). If

\[
 r \leq \frac{dk(M) - d + 1}{2}
\]

then the expression is (minimal and) unique.

(Original statement was for general 3-way tensors).
The geometric (projective) setting

The geometry of Kruskal’s condition.
The geometric (projective) setting

The geometry of Kruskal’s condition.

Let M be the matrix whose columns are given by the coefficients of the L_i’s, i.e. by projective coordinates for the points of $A = \{[L_1], \ldots, [L_r]\}$.

Denote with k_A the Kruskal’s rank of the matrix M above.

$k_A = \max\{i : \text{all subsets of } A \text{ of cardinality } i \text{ are in Linear General Position (no three on a line, no four in a plane, ...)}\}$.

Certainly $k_A \leq n + 1$.

Luca Chiantini
Geometry of configurations
The geometric (projective) setting

The geometry of Kruskal’s condition.

Let M be the matrix whose columns are given by the coefficients of the L_i’s, i.e. by projective coordinates for the points of $A = \{[L_1], \ldots, [L_r]\}$.

Denote with k_A the Kruskal’s rank of the matrix M above.
The geometric (projective) setting

The geometry of Kruskal’s condition.

Let M be the matrix whose columns are given by the coefficients of the L_i’s, i.e. by projective coordinates for the points of $A = \{[L_1], \ldots, [L_r]\}$.

Denote with k_A the Kruskal’s rank of the matrix M above.

$$k_A = \max\{i : \text{all subsets of } A \text{ of cardinality } i \text{ are in Linear General Position (no three on a line, no four in a plane, \ldots)}\}.$$
The geometric (projective) setting

The geometry of Kruskal’s condition.

Let M be the matrix whose columns are given by the coefficients of the L_i’s, i.e. by projective coordinates for the points of $A = \{[L_1], \ldots, [L_r]\}$.

Denote with k_A the Kruskal’s rank of the matrix M above.

$$k_A = \max\{ i : \text{all subsets of } A \text{ of cardinality } i \text{ are in Linear General Position (no three on a line, no four in a plane, \ldots)} \}.$$

Certainly $k_A \leq n + 1$.
Bad news for Kruskal’s criterion.
Bad news for Kruskal’s criterion.

Bad.1 \(k_A \leq n + 1 \implies \) one cannot hope to apply the criterion when \(2r > d(n + 1) - d + 1 \).
The geometric (projective) setting

Bad news for Kruskal’s criterion.

Bad.1) $k_A \leq n + 1 \Rightarrow$ one cannot hope to apply the criterion when $2r > d(n + 1) − d + 1$.

Bad.2) Kruskal’s criterion is sharp. One cannot hope to improve the previous range of application, by using k_A. (Derksen’s examples).
The geometric (projective) setting

Bad news for Kruskal’s criterion.

Bad.1) \(k_A \leq n + 1 \Rightarrow \) one cannot hope to apply the criterion when \(2r > d(n + 1) - d + 1. \)

Bad.2) Kruskal’s criterion is sharp. One cannot hope to improve the previous range of application, by using \(k_A. \) (Derksen’s examples).

What is so bad about the bad news?
Abstract secant variety (incidence variety):

$$A_{\sigma_r} = \{(T, A) : A \text{ is a decomposition for } T\}.$$

$$\dim(A_{\sigma_r}) = r(n + 1) - 1.$$
The geometric (projective) setting

Abstract secant variety (incidence variety):

\[A\sigma_r = \{(T, A) : A \text{ is a decomposition for } T\}. \]

\[\dim(A\sigma_r) = r(n + 1) - 1. \]

Consequence

No hope for uniqueness if \(r(n + 1) - 1 \geq N \), i.e. if

\[r \geq r_g = \frac{(n+d)}{n+1}, \]
The geometric (projective) setting

Abstract secant variety (incidence variety):

$$A\sigma_r = \{(T, A) : A \text{ is a decomposition for } T\}.$$

$$\dim(A\sigma_r) = r(n + 1) - 1.$$

Consequence

No hope for uniqueness if $$r(n + 1) - 1 \geq N$$, i.e. if

$$r \geq r_g = \frac{(n+d)}{n+1},$$

The natural range for identifiability is $$r < r_g$$ (subgeneric rank)
The geometric (projective) setting

The natural range for identifiability is $r < r_g$ (subgeneric range)

Theorem (Ottaviani-Vannieuwenhoven-C)

If $r < r_g$ then a ‘generic Waring expression’ (in the Zariski sense) is minimal and unique, except for a finite, small list of values of n, d.

Based on the works of Ciliberto-C, Ballico, Brambilla-Ottaviani, Ranestad-Voisin.

The Kruskal’s range $r \leq (dn + 1)/2$ is much smaller than the range $r < r_g$ in which the uniqueness is expected (and known to hold generically).

Further analysis needed.
The geometric (projective) setting

The natural range for identifiability is \(r < r_g \) (subgeneric range)

Theorem (Ottaviani-Vannieuwenhoven-C)

If \(r < r_g \) then a ‘generic Waring expression’ (in the Zariski sense) is minimal and unique, except for a finite, small list of values of \(n, d \).

Based on the works of Ciliberto-C, Ballico, Brambilla-Ottaviani, Ranestad-Voisin.
The geometric (projective) setting

The natural range for identifiability is $r < r_g$ (subgeneric range).

Theorem (Ottaviani-Vannieuwenhoven-C)

If $r < r_g$ then a ‘generic Waring expression’ (in the Zariski sense) is minimal and unique, except for a finite, small list of values of n, d.

Based on the works of Ciliberto-C, Ballico, Brambilla-Ottaviani, Ranestad-Voisin.

The Kruskal’s range $r \leq (dn + 1)/2$ is **much smaller** than the range $r < r_g$ in which the uniqueness is expected (and known to hold generically).
The geometric (projective) setting

The natural range for identifiability is $r < r_g$ (subgeneric range)

Theorem (Ottaviani-Vannieuwenhoven-C)

If $r < r_g$ then a ‘generic Waring expression’ (in the Zariski sense) is minimal and unique, except for a finite, small list of values of n, d.

Based on the works of Ciliberto-C, Ballico, Brambilla-Ottaviani, Ranestad-Voisin.

The Kruskal’s range $r \leq (dn + 1)/2$ is much smaller than the range $r < r_g$ in which the uniqueness is expected (and known to hold generically).

Further analysis needed.
The geometric (projective) setting

The geometry of Derksen’s example.

\[\mathbb{P}^n \rightarrow \mathbb{P}^N \]

rational normal curve
The Game

To overcome the problem: use deeper invariants, e.g. reshaped Kruskal.
The Game

To overcome the problem: use deeper invariants, e.g. **reshaped Kruskal**. Take a partition $d = d_1 + d_2 + d_3$, and write $L_i^d = (L_i^{d_1}) \cdot (L_i^{d_2}) \cdot (L_i^{d_3})$.

Definition

For a finite set $A \subset \mathcal{P}_n$ set:

- **Hilbert** i-th rank $h_A(i)$ = (affine) dimension of the linear span of $v_i(A)$;
- **Kruskal** i-th rank $k_A(i)$ = the Kruskal’s rank of $v_i(A)$.

Reshaped Kruskal’s Theorem

A decomposition A of length r is minimal and unique when $r \leq k_A(d_1) + k_A(d_2) + k_A(d_3) - 2$.

Not sharp!

Bad. Even if the $k_A(d_i)$'s are maximal (= $d_i + n$), the range of application remains much lower than the range $r < r_g$.
The Game

To overcome the problem: use deeper invariants, e.g. **reshaped Kruskal**. Take a partition $d = d_1 + d_2 + d_3$, and write $L_i^d = (L_i^{d_1}) \cdot (L_i^{d_2}) \cdot (L_i^{d_3})$.

Definition

For a finite set $A \subset \mathbb{P}^n$ set:

- **Hilbert** i-th rank $h_A(i) =$ (affine) dimension of the linear span of $v_i(A)$;
- **Kruskal** i-th rank $k_A(i) =$ the Kruskal’s rank of $v_i(A)$.
The Game

To overcome the problem: use deeper invariants, e.g. reshaped Kruskal.
Take a partition $d = d_1 + d_2 + d_3$, and write $L_i^d = (L_i^{d_1}) \cdot (L_i^{d_2}) \cdot (L_i^{d_3})$.

Definition

For a finite set $A \subset \mathbb{P}^n$ set:

Hilbert i-th rank $h_A(i) =$ (affine) dimension of the linear span of $v_i(A)$;

Kruskal i-th rank $k_A(i) =$ the Kruskal’s rank of $v_i(A)$.

Reshaped Kruskal’s Theorem

A decomposition A of length r is minimal and unique when

$$r \leq \frac{k_A(d_1) + k_A(d_2) + k_A(d_3) - 2}{2}.$$
The Game

To overcome the problem: use deeper invariants, e.g. **reshaped Kruskal**.

Take a partition \(d = d_1 + d_2 + d_3 \), and write \(L_i^d = (L_i^{d_1}) \cdot (L_i^{d_2}) \cdot (L_i^{d_3}) \).

Definition

For a finite set \(A \subset \mathbb{P}^n \) set:

- **Hilbert \(i \)-th rank** \(h_A(i) = \) (affine) dimension of the linear span of \(v_i(A) \);
- **Kruskal \(i \)-th rank** \(k_A(i) = \) the Kruskal’s rank of \(v_i(A) \).

Reshaped Kruskal’s Theorem

A decomposition \(A \) of length \(r \) is minimal and unique when

\[
 r \leq \frac{k_A(d_1) + k_A(d_2) + k_A(d_3) - 2}{2}.
\]

Bad.3 Even if the \(k_A(d_i) \)'s are maximal \((= \binom{d_i+n}{n})\), the range of application remains much lower than the range \(r < r_g \).
The Game

To overcome the problem: use deeper invariants, e.g. **reshaped Kruskal**. Take a partition \(d = d_1 + d_2 + d_3 \), and write \(L_i^d = (L_i^{d_1}) \cdot (L_i^{d_2}) \cdot (L_i^{d_3}) \).

Definition

For a finite set \(A \subset \mathbb{P}^n \) set:
- **Hilbert i-th rank** \(h_A(i) \) = (affine) dimension of the linear span of \(v_i(A) \);
- **Kruskal i-th rank** \(k_A(i) \) = the Kruskal's rank of \(v_i(A) \).

Reshaped Kruskal's Theorem

A decomposition \(A \) of length \(r \) is minimal and unique when

\[
r \leq \frac{k_A(d_1) + k_A(d_2) + k_A(d_3) - 2}{2}.
\]

Bad.3 Even if the \(k_A(d_i)'s \) are maximal \((= \binom{d_i+n}{n})\), the range of application remains much lower than the range \(r < rg \).
The Game

Definition

For a finite set $A \subset \mathbb{P}^n$ define

- **Hilbert function**: $i \mapsto h_A(i)$;

- **Kruskal function**: $i \mapsto k_A(i)$:

$(h_A(0) = k_A(0) = 1)$.

- **Difference Hilbert function**: $Dh_A(i) = h_A(i) - h_A(i - 1)$;

- **Difference Kruskal function**: $Dk_A(i) = k_A(i) - k_A(i - 1)$.
The Game

Definition

For a finite set $A \subset \mathbb{P}^n$ define

Hilbert function: $i \mapsto h_A(i)$;

Kruskal function: $i \mapsto k_A(i)$;

$(h_A(0) = k_A(0) = 1)$.

Difference Hilbert function: $Dh_A(i) = h_A(i) - h_A(i - 1)$;

Difference Kruskal function: $Dk_A(i) = k_A(i) - k_A(i - 1)$.

If A is general enough $h_A(i) = k_A(i)$.

Luca Chiantini
Geometry of configurations
IPAM - 2021 16 / 40
The Game

Many properties are known for the Hilbert function h_A.

- h_A is increasing from 1 to the maximum $r = \#A$,
- $\sum_{i=1}^{\infty} Dh_A(i) = r$;
- if $Dh_A(i) \leq i$ then $Dh_A(i+1) \leq Dh_A(i)$;
- Cayley-Bacharach properties $CB(i)$;
- ...
Most important properties.

Let A, B be two decompositions of T. Set $Z = A \cup B$.

- $h_Z(d) < \#Z$;
- $D_Z(d + 1) > 0$;
Most important properties.

Let A, B be two decompositions of T. Set $Z = A \cup B$.

- $h_Z(d) < \#Z$;
- $D_Z(d + 1) > 0$;
- if A, B are disjoint, then

$$\dim(\langle v_d(A) \rangle \cap \langle v_d(B) \rangle) = \#Z - h_Z(d) = \sum_{i=d+1}^{\infty} Dh_Z(i).$$

By means of properties of the Hilbert function and the Kruskal function of A, one can improve the Reshaped Kruskal’s Theorem.
By means of properties of the Hilbert function and the Kruskal function of \(A \), one can improve the Reshaped Kruskal’s Theorem.

Game

Player 1 (You) provides a beautiful set \(A \) of \(r \) points, decomposition of \(T \);
The Game

By means of properties of the Hilbert function and the Kruskal function of A, one can improve the Reshaped Kruskal’s Theorem.

Game

Player 1 (You) provides a beautiful set A of r points, decomposition of T;

Player 2 (the Rival) determines a set B of cardinality $\leq r$, which gives for $Z = A \cup B$ the inequality $Dh_Z(d + 1) > 0$
By means of properties of the Hilbert function and the Kruskal function of A, one can improve the Reshaped Kruskal’s Theorem.

Game

Player 1 (You) provides a beautiful set A of r points, decomposition of T;

Player 2 (the Rival) determines a set B of cardinality $\leq r$, which gives for $Z = A \cup B$ the inequality $Dh_Z(d + 1) > 0$

If the Rival cannot find B, you win (i.e. A is minimal, unique, ...)

Luca Chiantini

Geometry of configurations

IPAM - 2021 19 / 40
A decomposition A of cardinality r of a **ternary form** T of degree d is minimal and unique if:

- $d = 2m$ is even, $k_A(m - 1) = \min\{(\frac{m+1}{2}), r\}$, $h_A(m) = r \leq \left(\frac{m+2}{2}\right) - 2$;
- $d = 2m + 1$ is odd, $k_A(m) = \min\{(\frac{m+2}{2}), r\}$, $h_A(m + 1) = r \leq \left(\frac{m+2}{2}\right) + \lfloor\frac{m}{2}\rfloor$.

The Game

Theorem

A decomposition A of cardinality r of a ternary form T of degree d is minimal and unique if:

- $d = 2m$ is even, $k_A(m - 1) = \min\left\{(\binom{m+1}{2}, r)\right\}$, $h_A(m) = r \leq \binom{m+2}{2} - 2$;
- $d = 2m + 1$ is odd, $k_A(m) = \min\left\{(\binom{m+2}{2}, r)\right\}$, $h_A(m + 1) = r \leq \binom{m+2}{2} + \lfloor \frac{m}{2} \rfloor$.

sharp!

Theorem

A decomposition A of cardinality r of a ternary form T of degree d is minimal and unique if:

- $d = 2m$ is even, $k_A(m-1) = \min\{\binom{m+1}{2}, r\}$, $h_A(m) = r \leq \binom{m+2}{2} - 2$;
- $d = 2m+1$ is odd, $k_A(m) = \min\{\binom{m+2}{2}, r\}$, $h_A(m+1) = r \leq \binom{m+2}{2} + \lfloor \frac{m}{2} \rfloor$.

sharp!

There is a (non-sharp) version for forms in any number of variables.

Ottaviani-Vannieuwenoven-C, Angelini-C-Mazzon, Ballico, Mourrain-Oneto.
A decomposition A of cardinality r of a ternary form T of degree d is minimal and unique if:

- $d = 2m$ is even, $k_A(m - 1) = \min\{\binom{m+1}{2}, r\}$, $h_A(m) = r \leq \binom{m+2}{2} - 2$;
- $d = 2m + 1$ is odd, $k_A(m) = \min\{\binom{m+2}{2}, r\}$, $h_A(m + 1) = r \leq \binom{m+2}{2} + \lfloor \frac{m}{2} \rfloor$.

Bad news.

Bad.4 In any case we are still far (half-way, for ternary forms) from the expected range $r < r_g$.
Theorem

A decomposition A of cardinality r of a ternary form T of degree d is minimal and unique if:

- $d = 2m$ is even, $k_A(m-1) = \min\{(m+1)/2, r\}$, $h_A(m) = r \leq (m+2)/2 - 2$;
- $d = 2m + 1$ is odd, $k_A(m) = \min\{(m+2)/2, r\}$, $h_A(m+1) = r \leq (m+2)/2 + \lfloor(m/2)\rfloor$.

Bad news.

Bad.4 In any case we are still far (half-way, for ternary forms) from the expected range $r < r_g$.

(Even if the version for many variables is not sharp).
The fine tuning

The intrinsic weakness, that makes hopeless to cover the whole range with a similar analysis: The analysis only takes care of properties of the decomposition A.

Luca Chiantini
Geometry of configurations
IPAM - 2021 22 / 40
The fine tuning

The intrinsic weakness, that makes hopeless to cover the whole range $r < r_g$ with a similar analysis:

The analysis only takes care of properties of the decomposition A.
The fine tuning

The intrinsic weakness, that makes hopeless to cover the whole range \(r < r_g \) with a similar analysis:

The analysis only takes care of properties of the decomposition \(A \).
The fine tuning

The intrinsic weakness: why one cannot hope to cover the whole range $r < r_g$ with a similar analysis.

The analysis only takes care of properties of the decomposition A.
The fine tuning

The intrinsic weakness: why one cannot hope to cover the whole range $r < r_g$ with a similar analysis.

The analysis only takes care of properties of the decomposition A.
The fine tuning

Example

Forms of degree $d = 9$ in $n + 1 = 3$ variables, $r = 18(= r_g - 1)$.

Veronese map v_9
The fine tuning

Example

Forms of degree $d = 9$ in $n + 1 = 3$ variables, $r = 18 (= r_g - 1)$.

Veronese map v_9
The fine tuning

Example

Forms of degree $d = 9$ in $n + 1 = 3$ variables, $r = 18(= r_g - 1)$. A general.
The fine tuning

Problem
Find a strategy to determine whether T lies in
- the bad locus W in which A is not unique; or
- the bad locus W' in which A is not minimal.
The fine tuning

The strategy of fine tuning

- Step 1. Determine parameters of all possible alternative decompositions B for \textbf{forms in the span} of $\nu_d(A)$.

Luca Chiantini

Geometry of configurations
The fine tuning

The strategy of fine tuning

- Step 1. Determine parameters of all possible alternative decompositions B for \textbf{forms in the span} of $v_d(A)$.
- Step 2. Compute if the specific T can be obtained from a choice of the parameters.
The fine tuning

The strategy of fine tuning

- Step 1. Determine parameters of all possible alternative decompositions B for forms in the span of $v_d(A)$.
- Step 2. Compute if the specific T can be obtained from a choice of the parameters.

Step 1:

Parametric expressions for alternative B can be found by analyzing:

- the Hilbert and Kruskal functions of A;
- a free resolution of the homogeneous ideal I_A of A.

The fine tuning

The strategy of fine tuning

- Step 1. Determine parameters of all possible alternative decompositions B for forms in the span of $v_d(A)$.
- Step 2. Compute if the specific T can be obtained from a choice of the parameters.

Step 1:

Parametric expressions for alternative B can be found by analyzing:
- the Hilbert and Kruskal functions of A;
The fine tuning

The strategy of fine tuning

- Step 1. Determine parameters of all possible alternative decompositions B for forms in the span of $v_d(A)$.
- Step 2. Compute if the specific T can be obtained from a choice of the parameters.

Step 1:

Parametric expressions for alternative B can be found by analyzing:
- the Hilbert and Kruskal functions of A;
- a free resolution of the homogeneous ideal I_A of A

$$0 \to \mathcal{M}_k \to \mathcal{M}_{k-1} \to \cdots \to \mathcal{M}_1 \to I_A \to 0$$
The fine tuning

Step 1:

Parameters for alternative decompositions B can be found by analyzing:
the Hilbert and Kruskal functions of A;
a free resolution of the homogeneous ideal I_A of A

$$0 \to M_k \to M_{k-1} \to \cdots \to M_1 \to I_A \to 0$$

\Rightarrow one can describe parametrically the homogeneous ideals I_B of all possible candidates for an alternative decomposition of cardinality $s \leq r$ for forms in the span of $v_d(A)$.
Step 1:

Parameters for alternative decompositions \(B \) can be found by analyzing:
the Hilbert and Kruskal functions of \(A \);
a free resolution of the homogeneous ideal \(I_A \) of \(A \)

\[
0 \to \mathcal{M}_k \to \mathcal{M}_{k-1} \to \cdots \to \mathcal{M}_1 \to I_A \to 0
\]

\(\Rightarrow \) one can describe parametrically the homogeneous ideals \(I_B \) of all
possible candidates for an alternative decomposition of cardinality \(s \leq r \)
for forms in the span of \(v_d(A) \).
The procedure turns out to be (reasonably) easy for ternary forms,
The fine tuning

Step 1:

Parameters for alternative decompositions B can be found by analyzing:
the Hilbert and Kruskal functions of A;
a free resolution of the homogeneous ideal I_A of A

$$0 \to \mathcal{M}_k \to \mathcal{M}_{k-1} \to \cdots \to \mathcal{M}_1 \to I_A \to 0$$

\Rightarrow one can describe parametrically the homogeneous ideals I_B of all possible candidates for an alternative decomposition of cardinality $s \leq r$ for forms in the span of $v_d(A)$.
The procedure turns out to be (reasonably) easy for ternary forms, much more complicated for forms in $n + 1 \geq 4$ variables.
Step 1:

Parameters for alternative decompositions B can be found by analyzing:
- the Hilbert and Kruskal functions of A;
- a free resolution of the homogeneous ideal I_A of A

$$0 \to M_k \to M_{k-1} \to \cdots \to M_1 \to I_A \to 0$$

\Rightarrow one can describe parametrically the homogeneous ideals I_B of all possible candidates for an alternative decomposition of cardinality $s \leq r$ for forms in the span of $v_d(A)$.

The procedure turns out to be (reasonably) **easy** for ternary forms, much more complicated for forms in $n + 1 \geq 4$ variables.

Challenge for algebraic geometers: parametrize sets B such that

$$Dh_{A \cup B}(d + 1) > 0.$$
Step 2: the fine tuning

Once we have the ideals of all B’s that decompose some forms in $\langle v_d(A) \rangle$, then compute if the fixed T in the span can be obtained by some alternative decomposition B.
The fine tuning

Step 2: the fine tuning

Once we have the ideals of all B’s that decompose some forms in $\langle v_d(A) \rangle$, then compute if the fixed T in the span can be obtained by some alternative decomposition B.

Theorem

T belongs to the intersection of $\langle v_d(A) \rangle$ and $\langle v_d(B) \rangle$ iff

$$(l_A)_d + (l_B)_d \subseteq T^\vee$$
Examples

T ternary form of degree 9, $r = 18$.

Even if A is a general set of 18 points in P^2, yet the span of $v_9(A)$ contains forms T having (exactly one) second decomposition B, disjoint from A, of cardinality 17.

Thus the rank of T is 17, and the two decompositions A, B are separate.
T ternary form of degree 9, $r = 18$.

Even if A is a **general** set of 18 points in \mathbb{P}^2, yet the span of $v_9(A)$ contains forms T having (exactly one) second decomposition B, **disjoint from** A, of cardinality 17.
T ternary form of degree 9, $r = 18$.

Even if A is a **general** set of 18 points in \mathbb{P}^2, yet the span of $v_9(A)$ contains forms T having (exactly one) second decomposition B, **disjoint from** A, of cardinality 17.

Thus the rank of T is 17, and the two decompositions A, B are separate.
Examples

A ternary form of degree 9, \(r = 18 \).

If \(A \) is a general set of 18 points in \(\mathbb{P}^2 \), then the span of \(v_9(A) \) contains forms \(T \) having (exactly one) second decomposition \(B \), disjoint from \(A \), of cardinality 17.

When the Hilbert function of \(A \) is generic (a condition easy to test, with elementary algorithms), then the Hilbert function of \(A \cup B \) is fixed.
Examples

\(T \) ternary form of degree 9, \(r = 18 \).

If \(A \) is a general set of 18 points in \(\mathbb{P}^2 \), then the span of \(v_9(A) \) contains forms \(T \) having (exactly one) second decomposition \(B \), disjoint from \(A \), of cardinality 17.

When the Hilbert function of \(A \) is generic (a condition easy to test, with elementary algorithms), then the Hilbert function of \(A \cup B \) is fixed.
Examples

T ternary form of degree 9, $r = 18$.

If A is a general set of 18 points in \mathbb{P}^2, then the span of $v_9(A)$ contains forms T having (exactly one) second decomposition B, disjoint from A, of cardinality 17.

When the Hilbert function of A is generic (a condition easy to test, with elementary algorithms), then the Hilbert function of $A \cup B$ is fixed.
Examples

T ternary form of degree 9, $r = 18$.

The shape of $Dh_{A∪B}$ implies that:

$A ∪ B$ is complete intersection of curves of degree 5, 7 (i.e. A is linked to B by a complete intersection of type $(5, 7)$).
Examples

A ternary form of degree 9, $r = 18$.

The shape of $Dh_{A \cup B}$ implies that:

\[A \cup B \text{ is complete intersection of curves of degree } 5, 7 \text{ (i.e. } A \text{ is linked to } B \text{ by a complete intersection of type } (5, 7) \).\]

Thus the admissible B’s are parametrized by the choice of a quintic and a septic form in I_A.
Examples

A ternary form of degree 9, \(r = 18 \).

The shape of \(Dh_{A \cup B} \) implies that:

\[A \cup B \text{ is complete intersection of curves of degree 5, 7 (i.e. } A \text{ is linked to } B \text{ by a complete intersection of type (5, 7)).} \]

Thus the admissible \(B \)'s are parametrized by the choice of a quintic and a septic form in \(I_A \).
Moreover \(I_B \) can be easily recovered from \(I_A \) and the two forms that determine the linkage. The fine tuning analysis is effective.

Concrete case: $T =$

\[
= [9666x_0^9 + 13004x_0^8x_1 + 12463x_0^7x_1^2 - 13235x_0^6x_1^3 - 15442x_0^5x_1^4 + 15509x_0^4x_1^5 + -6311x_0^3x_1^6 + \\
-2390x_0^2x_1^7 + 547x_0x_1^8 - 119x_1^9 - 14916x_0^8x_2 + 1822x_0^7x_1x_2 - 8022x_0^6x_1^2x_2 - 9386x_0^5x_1^3x_2 + \\
-2742x_0^4x_1^4x_2 + 10541x_0^3x_1^5x_2 + 1156x_0^2x_1^6x_2 - 12023x_0^7x_1^2x_2 + 4417x_1^8x_2 - 11823x_0^7x_2^2 - 737x_0^6x_1^2x_2 + \\
-7616x_0^5x_1^3x_2 + 11293x_0^4x_1^4x_2 - 8260x_0^3x_1^5x_2 - 9332x_0^2x_1^6x_2 + 7078x_0^6x_1^2x_2 - 4553x_1^7x_2^2 - 15941x_0^6x_2^3 + \\
+4339x_0^5x_1^3x_2^2 - 4251x_0^4x_1^4x_2^2 + 9854x_0^3x_1^5x_2^2 - 22x_0^2x_1^6x_2^2 + 8408x_0^5x_1^2x_2^3 + 11858x_1^6x_2^3 + \\
-9161x_0^5x_1^3x_2^3 - 9854x_0^4x_1^4x_2^3 - 13165x_0^3x_1^5x_2^3 - 2105x_0^2x_1^6x_2^3 - 8715x_0^4x_1^4x_2^4 + 390x_1^5x_2^4 - 9955x_0^4x_2^5 + \\
-11013x_0^3x_1^5x_2^5 - 10651x_0^2x_1^6x_2^5 - 3850x_0^3x_1^5x_2^5 + 4029x_1^4x_2^5 - 11735x_0^3x_2^6 - 12427x_0^2x_1^6x_2^6 + 12255x_0^2x_1^6x_2^6 + \\
-3686x_1^3x_2^6 - 2271x_0^2x_1^7 + 5939x_0x_1^8x_2 - 3402x_1^2x_2^7 + 13298x_0^2x_2^8 + 6455x_1^8x_2^8 + x_2^9].
\]
Examples

\[T = \sum_{i=1}^{18} a_i L_i^9 \]

\[(a_i) = (10308, -9437, -13956, -12270, 2135, -4854, -2213, 1755, -13629, 7308, -8496, 2940, 11348, -12437, -6712, 4086, -823, -2818) \]

\[A \leftrightarrow \begin{pmatrix} 1 & 0 & -1 & 1 & 1 & 2 & 4 & 1 & 5 & 6 & 1 & 1 & 6 & -7 & 3 & 2 & 6 & -7 \\ 1 & 1 & 2 & 2 & -2 & 1 & 2 & 5 & 2 & 2 & 7 & 7 & 5 & 2 & 7 & -5 & 3 & 6 \\ 1 & 2 & 1 & 3 & 0 & 4 & -3 & 1 & 3 & 3 & 7 & 3 & 4 & 3 & 4 & 1 & -4 & 6 \end{pmatrix} \]
Examples

\[T = \sum_{i=1}^{18} a_i L_i^9 = \sum_{i=1}^{17} M_i^9 \]

\[B \leftrightarrow \]

\[
\begin{pmatrix}
1 & 62.6659 & 29.7378 \\
1 & 13.368 + 38.1825 i & -19.099 + 7.53788 i \\
1 & 13.368 - 38.1825 i & -19.099 - 7.53788 i \\
1 & 35.333 & 40.797 \\
1 & 14.7061 & 27.8538 \\
1 & 10.7119 & 4.95399 \\
1 & -0.796312 & 2.23381 \\
1 & 1.06064 + 0.13583 i & 1.62951 - 0.563286 i \\
1 & 1.06064 - 0.13583 i & 1.62951 + 0.563286 i \\
1 & 0.737271 & -0.0631582 \\
1 & -0.245331 & -0.76262 \\
1 & -0.187307 & 0.100519 \\
1 & -0.0870499 & -0.126324 \\
1 & 0.00104432 & 0.00164595 \\
1 & 0.306581 + 0.0182712 i & -0.877193 - 0.031211 i \\
1 & 0.306581 - 0.0182712 i & -0.877193 + 0.031211 i \\
1 & 0.390447 & 0.585521
\end{pmatrix}
\]
Examples

\[T = \sum_{i=1}^{18} a_i L_i^9 = \sum_{i=1}^{17} M_i^9 \]

From the **wrong** (= too long) decomposition \(A = ([L_1], \ldots, [L_{18}]) \) one finds the **minimal** decomposition \(B = ([M_1], \ldots, [M_{17}]) \).
Examples

Sextic ternary forms of rank $r = 9$ ($< r_g = 10$).
Examples

Sextic ternary forms of rank $r = 9$ ($< r_g = 10$).

A general sextic ternary forms of rank $r = 9$ has exactly two minimal decompositions.
Examples

Sextic ternary forms of rank \(r = 9 \ (< r_g = 10) \).

A general sextic ternary forms of rank \(r = 9 \) has exactly two minimal decompositions.

Ottaviani-C. A footnote to a footnote to a paper of B.Segre. arXiv:2103.04659
Examples

Sextic ternary forms of rank $r = 9$ ($< r_g = 10$).

A general sextic ternary forms of rank $r = 9$ has exactly two minimal decompositions.

Ottaviani-C. A footnote to a footnote to a paper of B.Segre. arXiv:2103.04659

Problem

Given one decomposition $T = \sum_{i=1}^{9} L_i^9$, find the second, different decomposition $T = \sum_{i=1}^{9} M_i^9$.
Examples

\[B \] is linked to \[A \] by a complete intersection of type \((3, 6)\).

Fine tuning: Take in \(I_A \) a cubic form (unique) and a sextic form (depends on 9 parameters) and compute \(I_B \).

\[
\begin{align*}
M & \rightarrow \mathbb{R}^3(-5) \\
& \rightarrow \mathbb{R}^3(-4) \oplus \mathbb{R}(-3) \\
& \rightarrow I_A \\
& \rightarrow 0
\end{align*}
\]

\[
M = \begin{pmatrix}
2 & 1 & 1 & 1 \\
2 & 1 & 1 & 1 \\
2 & 1 & 1 & 1
\end{pmatrix}
\]

\[
\Rightarrow \begin{pmatrix}
0 \\
x \\
\ell \\
q
\end{pmatrix} = M'
\]

\(\ell \) = general linear form, \(q \) = general quadratic form (9 parameters).

\(I_B \) is generated by the maximal minors of \(M' \).

Then solve the fine tuning equation

\[
T^\vee = (I_A)^6 + (I_B)^6
\]

Luca Chiantini
Geometry of configurations
IPAM - 2021 39 / 40
Examples

B is linked to A by a complete intersection of type $(3, 6)$.
Examples

B is linked to A by a complete intersection of type $(3, 6)$.

Fine tuning: Take in I_A a cubic form (unique) and a sextic form (depends on 9 parameters) and compute I_B.

$$
\begin{bmatrix}
2 & 1 & 1 & 1 \\
2 & 1 & 1 & 1 \\
2 & 1 & 1 & 1
\end{bmatrix}
\quad \Rightarrow
\begin{bmatrix}
0 \\
x \\
\ell \\
q
\end{bmatrix}
= M'$$

$\ell = $ general linear form, $q = $ general quadratic form (9 parameters).

I_B is generated by the maximal minors of M'. Then solve the fine tuning equation $T^\lor = (I_A)^6 + (I_B)^6$.

Luca Chiantini
Geometry of configurations
IPAM - 2021
B is linked to A by a complete intersection of type $(3, 6)$.

Fine tuning: Take in I_A a cubic form (unique) and a sextic form (depends on 9 parameters) and compute I_B.

$$0 \rightarrow R^3(-5) \xrightarrow{M} R^3(-4) \oplus R(-3) \rightarrow I_A \rightarrow 0$$

$$M = \begin{pmatrix} 2 & 1 & 1 & 1 \\ 2 & 1 & 1 & 1 \\ 2 & 1 & 1 & 1 \end{pmatrix}$$
Examples

B is linked to A by a complete intersection of type $(3, 6)$.

Fine tuning: Take in I_A a cubic form (unique) and a sextic form (depends on 9 parameters) and compute I_B.

\[
0 \to R^3(-5) \xrightarrow{M} R^3(-4) \oplus R(-3) \to I_A \to 0
\]

\[
M = \begin{pmatrix}
2 & 1 & 1 & 1 \\
2 & 1 & 1 & 1 \\
2 & 1 & 1 & 1
\end{pmatrix} \Rightarrow \begin{pmatrix}
0 & x_0 \ell & q \\
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix} = M'
\]

$\ell = \text{general linear form}, \ q = \text{general quadratic form (9 parameters)}.$
Examples

B is linked to A by a complete intersection of type (3, 6).

Fine tuning: Take in I_A a cubic form (unique) and a sextic form (depends on 9 parameters) and compute I_B.

\[
0 \rightarrow R^3(-5) \xrightarrow{M} R^3(-4) \oplus R(-3) \rightarrow I_A \rightarrow 0
\]

\[
M = \begin{pmatrix}
2 & 1 & 1 & 1 \\
2 & 1 & 1 & 1 \\
2 & 1 & 1 & 1 \\
\end{pmatrix} \Rightarrow \begin{pmatrix}
0 & x_0 \ell & q \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
\end{pmatrix} = M'
\]

\[\ell = \text{general linear form, } q = \text{general quadratic form (9 parameters).}\]

I_B is generated by the maximal minors of M'.
Examples

B is linked to A by a complete intersection of type $(3, 6)$.

Fine tuning: Take in I_A a cubic form (unique) and a sextic form (depends on 9 parameters) and compute I_B.

\[
0 \to R^3(-5) \xrightarrow{M} R^3(-4) \oplus R(-3) \to I_A \to 0
\]

\[
M = \begin{pmatrix}
2 & 1 & 1 & 1 \\
2 & 1 & 1 & 1 \\
2 & 1 & 1 & 1
\end{pmatrix} \Rightarrow \begin{pmatrix}
0 & x_0 \ell & q \\
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix} = M'
\]

$\ell = \text{general linear form}, \ q = \text{general quadratic form (9 parameters)}$.

I_B is generated by the maximal minors of M'.

Then solve the fine tuning equation $T^\vee = (I_A)_6 + (I_B)_6$.
Examples

What if A is not general? E.g. A is complete intersection of two cubics?
What if A is not general? E.g. A is complete intersection of two cubics?

(One gets A, for free, from the apolar ideal!)
Examples

What if A is not general? E.g. A is complete intersection of two cubics?

(One gets A, for free, from the apolar ideal!)

Theorem. (Ottaviani-C) *If A is complete intersection of two cubics, then it is unique.*
What if A is not general? E.g. A is complete intersection of two cubics?

(One gets A, **for free**, from the apolar ideal!)

Theorem. (Ottaviani-C) *If A is complete intersection of two cubics, then it is unique. These forms T are dense in $W = \text{Sing}(\sigma_9(v_6(\mathbb{P}^2)))$.***
Examples

What if \(A \) is not general? E.g. \(A \) is complete intersection of two cubics?

(One gets \(A \), **for free**, from the apolar ideal!)

Theorem. (Ottaviani-C) *If \(A \) is complete intersection of two cubics, then it is unique. These forms \(T \) are dense in \(W = \text{Sing}(\sigma_9(v_6(\mathbb{P}^2))) \).*

<table>
<thead>
<tr>
<th>(\sigma_9)</th>
<th>(\mathbb{R})</th>
<th>(W)</th>
<th>(\sigma_8)</th>
<th>(W')</th>
<th>(\sigma_7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\dim)</td>
<td>(\deg)</td>
<td>(\text{eq})</td>
<td>(\dim)</td>
<td>(\deg)</td>
<td>(\text{eq})</td>
</tr>
<tr>
<td>26</td>
<td>10</td>
<td>(\det C^3)</td>
<td>9-secant</td>
<td>25</td>
<td>270</td>
</tr>
</tbody>
</table>
Examples

What if A is not general? E.g. A is complete intersection of two cubics?

(One gets A, for free, from the apolar ideal!)

Theorem. (Ottaviani-C) *If A is complete intersection of two cubics, then it is unique. These forms T are dense in $W = \text{Sing}(\sigma_9(v_6(\mathbb{P}^2)))$.***

<table>
<thead>
<tr>
<th></th>
<th>dim</th>
<th>deg</th>
<th>eq</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>σ_9</td>
<td>26</td>
<td>10</td>
<td>$\det C^3$</td>
<td>9-secant</td>
</tr>
<tr>
<td>R</td>
<td>25</td>
<td>270</td>
<td>$\det C^3, H_{27}$</td>
<td>ramif. $A\sigma_9 \rightarrow \sigma_9$</td>
</tr>
<tr>
<td>W</td>
<td>24</td>
<td>165</td>
<td>$(C^3)_9$</td>
<td>compl. inters.</td>
</tr>
<tr>
<td>σ_8</td>
<td>23</td>
<td>1485</td>
<td>$(C^3)9, H{27}$</td>
<td>8-secant</td>
</tr>
<tr>
<td>W'</td>
<td>21</td>
<td>2640</td>
<td>$(C^3)_8$</td>
<td>3 apolar cubics</td>
</tr>
<tr>
<td>σ_7</td>
<td>20</td>
<td>11880</td>
<td>$(C^3)8, H{27}$</td>
<td>7-secant</td>
</tr>
</tbody>
</table>
What if A is not general? E.g. A is complete intersection of two cubics?

(One gets A, for free, from the apolar ideal!)

Theorem. (Ottaviani-C) If A is complete intersection of two cubics, then it is unique. These forms T are dense in $W = \text{Sing}(\sigma_9(v_6(\mathbb{P}^2)))$.

<table>
<thead>
<tr>
<th></th>
<th>dim</th>
<th>deg</th>
<th>eq</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ_9</td>
<td>26</td>
<td>10</td>
<td>$\det C^3$</td>
</tr>
<tr>
<td>\mathcal{R}</td>
<td>25</td>
<td>270</td>
<td>$\det C^3, H_{27}$</td>
</tr>
<tr>
<td>W</td>
<td>24</td>
<td>165</td>
<td>$(C^3)_9$</td>
</tr>
<tr>
<td>σ_8</td>
<td>23</td>
<td>1485</td>
<td>$(C^3)9, H{27}$</td>
</tr>
<tr>
<td>W'</td>
<td>21</td>
<td>2640</td>
<td>$(C^3)_8$</td>
</tr>
<tr>
<td>σ_7</td>
<td>20</td>
<td>11880</td>
<td>$(C^3)8, H{27}$</td>
</tr>
</tbody>
</table>

THANK YOU FOR YOUR ATTENTION