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Modeling Methods

Presentation outline

• Multiscale and moving boundary problems

§ Multiple length and time scales

§ Formulation of mathematical problem

§ Moving boundary problems

§ Adaptive methods for resolving length scales

§ Solidification problems as a context

• Inverse methods for design and parameter identification

§ Design as a complement to analysis

§ Mathematical methods for inverse problems

§ Examples: shape and topology optimization

• Summary and conclusions
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Modeling Methods Solidification problems

Crystal pattern selection

• “Every snowflake is different”

§ Pattern set by environment during growth (FURUKAWA)

• Dendrite also canonical microstructural form in metals and alloys

§ Spot weld in Ni-based superalloy (BABU AND DAVID, ORNL)

• Processing conditions determine microstructure and properties
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Modeling Methods Solidification problems

Observations in succinonitrile

• Succinonitrile (SCN) is transparent organic analog for metals

• High purity SCN growing into undercooled melt

• Experiments by Glicksman, et al., 0.02< 1T/(L f /cp) < 0.06

• Left-hand photographs scaled on1T

• Right-hand photos at different orientations wrt gravity
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Modeling Methods Solidification problems

Solidification phenomena

• Vast range of length and time scales

• Slope of 1 cm/s typical interface speed
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Modeling Methods Solidification problems

Computational models and limits

• 2D: 103
× 103 in space, 103 in time, 8 bytes/datum = 8Gb

• 3D: 102
× 102

× 102 in space, 103 in time, 8 bytes/datum = 8Gb
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Modeling Methods Solidification problems

Solidification of a pure material in an undercooled melt

• Dendritic growth as a generalized Stefan problem
∂T

dt
=

k

ρcp
∇

2T = α∇2T

§ Interface conditions:

ρL f Vn = k (∇T · En|S− ∇T · En|L)
T = Tm− 0[(a+ aθθ)κθ + (a+ aφφ)κφ)] − β(n)Vn

§ Anisotropy: a(n) = 1− 3ε4+ 4ε4
(
n4

x + n4
y + n4

z

)
§ Far-field condition: T(∞) = T∞

• Scaling temperature θ = T−Tm
L f /cp

gives

∂θ

∂t
= α∇2θ

Vn = α (∇θ · En|S− ∇θ · En|L)
θ = −d0[(a+ aθθ)κθ + (a+ aφφ)κφ)] − β

′Vn

θ(∞) = −1
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Modeling Methods Solidification problems

Moving boundary problems

• Must apply boundary conditions on interface whose location is
unknown

• Deforming mesh methods (UNGAR AND BROWN, PRB, 1985)

§ Adjust grid to align with interface

§ Works in 2D, when mesh deformation is not large

§ Satisfy one BC (Gibbs-Thomson), advance interface with other

§ Cannot accommodate topology changes

• Fixed grid methods

§ Grid remains fixed and interface moves through it

§ Level set method (OSHER AND SETHIAN, JCP, 1988)

§ Other hybrid methods (JURIC AND TRYGVASSON, JCP, 1996)

§ Phase field method (LANGER, REV. MOD. PHYS., 1980)
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Modeling Methods Phase-field method

Phase-field method for solidification

• Introduce phase-field on a fixed grid

§ Define a continuous order parameter−1< φ < 1

§ φ = −1 corresponds to liquid, φ = +1 to solid

§ Define interface position as φ = 0

• Interface is now a diffuse region, finite width W
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Modeling Methods Phase-field method

Physical interpretation of the phase-field

• Consider a rough interface (WARREN AND BOETTINGER)

• Plot atomic density near interface
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Modeling Methods Phase-field method

Phase-field model for a pure material

• Coupled equations for temperature and φ

∂θ

∂t
= ∇ · (α∇θ)+

1

2

∂φ

∂t

τ
∂φ

∂t
= −

δF
δφ

• Attributes: thin interface, φ = ±1 as stable states

F =
∫
V

(
1

2
|w(En)∇φ|2+ f (φ, T)

)
dV

f (φ, T) = φ(1−φ2)+λθ(1−φ2)2

§ λ controls double well tilt

§ f (φ, T) form not crucial -2 -1 0 1 2 3
φ

f(   ,T)φ T = Tm
T > Tm
T < Tm
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Modeling Methods Phase-field method

Hierarchy of length scales

∆x~W
Vnα/

  

Dendrite R

 T

• Length scales: d0(10−9m), R(10−5m), α/Vn(10−4m), W0,1x, L B

§ Grid convergence requires1x ∼ O(W)

§ Karma and Rappel, PRE, 1995: W/(α/Vn)� 1 (∼ 10−2)

§ Domain independence requires L B/(α/Vn)� 1 (∼ 10)
§ L B/W ∼ L B/1x ∼ 103

§ Uniform mesh requires Ng = (L B/1x)d (106 in 2-D, 109 in 3-D)

• Problem is even more acute at low1

§ Slow approach to steady state⇒ L B/(α/Vn) ∼ 100
§ Experiments at1 < 0.1
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Modeling Methods Phase-field method

Finessing the length scale problem

• Maximum resolution needed only near the interface

• Adaptive FEM grid (PROVATAS, GOLDENFELD AND DANTZIG, PRL, JCP, 1998-2000)

• Initial mesh of 4-noded quadrilateral elements

• Refinement/fusion based on local error estimator f (∇φ,∇U )

• Data structure

§ Linked lists and quadtrees makes element traversal efficient
§ Extra side nodes resolved with triangular elements (in 2D)

432143214321
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Modeling Methods Phase-field method

Dendritic growth at high and low undercooling

• Analytical theory for isolated arm in infinite medium

§ Tip speed and shape match theory at high1 (left)

§ Both arms within thermal boundary layer at low1 (right)
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Modeling Methods Phase-field method

Another approach to the length scale problem

• Combine FDM and random walkers (PLAPP AND KARMA, PRL, 2000):

§ Solve using combined FDM/Random walker method

§ Inner fine FDM mesh includes dendrite

§ Outer diffusion field solved using random walkers

§ Match solutions at boundary
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Modeling Methods 3D Dendrites with Flow

3D dendritic growth with fluid flow

2−D 3−D

• 3D nature is essential (DANTZIG AND CHAO, IUTAM, 1986)

§ 2D transport: Fluid must flow up and over the tip

§ 3D transport: Vertical and horizontal flow around the tip

• Formulation (BECKERMANN, DIEPERS, STEINBACH, KARMA AND TONG, JCP, 1999)

§ Volume averaged form

§ Special source to get correct drag force
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Modeling Methods 3D Dendrites with Flow

Adaptive grid procedure in 3D

• Octree data structure

• Disconnected nodes handled by constraints
Single level ruleError estimator

Error estimator
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Modeling Methods 3D Dendrites with Flow

Parallel implementation of 3D code

• Need large speedup factors (O(100))

• Domain decomposition not obvious

• Strategy

§ Distributed memory

§ CHARM++

• Code details

§ Explicit time stepping for phase-field, implicit for others

§ Flow computed using semi-implicit approximate projection
method

§ Element-by-element conjugate gradient solver
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Modeling Methods 3D Dendrites with Flow

Framework for parallelization by CHARM++

Processor NProcessor 3Processor 2Processor 1

Preprocessing
Create adapted grid
Partition domain (METIS)

METIS Intermediate

...

data file

Loop for iterative solver
Loop for assembling the nodal values

   (combine values at shared nodes)
 (sum errors from all nodes)

(memory allocation)

Postprocessing
Merge subdomains into global domain

Subroutine "INIT"

Subroutine "FINALIZE"

Subroutine "DRIVER"

Data transfer

Call "FEM_create_FIELD

Call "FEM_Update_Field"
Call "FEM_Reduce"
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Modeling Methods 3D Dendrites with Flow

Domain decomposition

• Processor assignment for 32 processors (METIS)
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Modeling Methods 3D Dendrites with Flow

Parallel performance of code

• Perform 20-100 time steps on a single mesh

• Speed-up approaches ideal as mesh size increases
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Modeling Methods 3D Dendrites with Flow

Biological application

• Cryobiology: freezing cells for preservation

• Cells segregate from freezing ice

§ Local concentration important

§ Minimize mechanical damage

• Frog blood (RAPATZ, MENZ AND LUYET, CRYOBIOLOGY, 1966)
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Modeling Methods 3D Dendrites with Flow

Modeling particle interaction

• Fixed particles, engulfed by interface

• Changes in dendritic growth patterns
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Modeling Methods 3D Dendrites with Flow

Summary: dendritic growth

• Dendritic growth is complex pattern selection problem

• Multiple length scales can be resolved using adaptive grids

• Fluid flow has a profound effect on structure evolution

• 2D is different from 3D

• High1 is different from low1

• Adaptive, 3-D Navier-Stokes, phase field code enables comparison
to experimental observations

• More than one way to solve this problem!
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Modeling Methods Inverse problems

Optimal design

• Have become adept at complex modeling

• Make transition from analysis to design

• Use simulations to improve design, or identify parameters

• Pose as an optimization problem:

§ Identify design variables b

§ Solve problem for a given design u(b)

§ Minimize (or maximize) and objective function G(u, b)

§ Possible constraints F(u, b)

• Design space is “orthogonal” to analysis space
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Modeling Methods Inverse problems

Example: Equilbrium of two springs
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• Equilibrium position is minimum potential energy P

P =
1

2
K1

(√
b2

1+ (L1− b2)2− L1

)2

+

1

2
K2

(√
b2

1+ (L2+ b2)2− L2

)2

− P1b1− P2b2

• How do you find minimum?

§ Generate contours (response surface) and select
§ Pick starting point and search discrete points
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Modeling Methods Inverse problems

Solution strategies

• Each design implies a full simulation for u(b)

• Simulations are costly⇒ limited number of designs

• Efficient search strategies require sensitivities, dG/db

• “Forward problem:” R(u, b) = 0

§ Solve by Newton-Raphson iteration

R(ui+1, b) = 0= R(ui , b)+
∂R

∂u

∣∣∣∣
i

∆u+ · · ·

§ Truncate and rearrange

∂R

∂u

∣∣∣∣
i

∆u = −R(ui , b)

§ Update ui+1
= ui

+∆u

§ Iterate to convergence
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Modeling Methods Inverse problems

Sensitivity evaluation

• Finite difference evaluation of sensitivity very costly

• dG/db involves “response sensitivity” ∂u/∂b

dG

db
=
∂G

∂b
+
∂G

∂u
·
∂u

∂b

• Direct differentiation of forward problem wrt b

dR

db
= 0=

∂R

∂b
+
∂R

∂u
·
∂u

∂b

• Rearrange to evaluate response sensitivity:

−

(
∂R

∂u

)−1

·
∂R

∂b
=
∂u

∂b

• Efficient implementation

§ Uses same tangent matrix as the forward problem
§ ∂R/∂b reforms force vector
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Modeling Methods Inverse problems

Example: Nonlinear FEM heat conduction

• Interpolation using shape functions

T = NT ; ∇T =

 N x

N y

N z

 T = BT
• Analysis, after assembly

R = 0= KT − F

§ Isoparametric form

K =

∫
V

BTk(T)BdV =
∫
Vr

J−TBT
r k(T)J−1Br |J |dVr

• Tangent matrix ∂R/∂T = K + (∂K/∂T )T + ∂F /∂T

∂K

∂T
=

∫
V

BT dk

dT
NBdV
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Modeling Methods Inverse problems

Sensitivity evaluation

• Parameter identification: k = k(b)

∂R

∂b
=
∂K

∂b
T =

∫
V

BT ∂k

∂b
BdV

• Shape optimization: J = J(b)

∂R

∂b
=

∫
Vr

(
∂J−T

∂b
BT

r k(T)J−1Br + J
−TBT

r k(T)
∂J−1

∂b
Br+

J−TBT
r k(T)J−1Br tr

(
J−1∂J

∂b

))
|J |dVr

• Form multiple right hand sides and back-substitute

−

(
∂R

∂T

)−1

·
∂R

∂b
=
∂T

∂b
;

dG

db
=
∂G

∂b
+
∂G

∂T
·
∂T

∂b
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Modeling Methods Inverse problems

Optimization strategy

d b
d T

d b
dG

Optimal?
Objective

Initial design
Parameters

Temperature
Solution

Numerical
Optimization

b T,b
Sensitivity

Sensitivity
Response

G

b’

Objective

No

• Link to standard analysis codes

• Requires access to code for efficient sensitivity evaluation
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Modeling Methods Inverse problems

Example: Hammer casting simulation

• Original design produced porosity

• Optimization problem

§ Design variables parameterize riser dimensions

§ Objective: Minimize riser volume

§ Constraint: Connected freezing path from part to riser

§ Solution: 24 designs evaluated, 5 line searches (totalO(week)
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Modeling Methods Inverse problems

Topology optimization

• Work of Bruns and Tortorelli

• Material density ρe in each element becomes a design variable

• Compliant mechanism

§ Maximize Fout/Fin

§ Discrete values through penalization of values 0< ρe < 1
§ Nonlinear (geometric) elastic analysis

u

Fout

outu in Fin
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Modeling Methods Inverse problems

Features of inverse problems

• Powerful method for improving product design, identifying
parameters

• Must be able to quantify objectives

• Problems are ill-posed

• Solutions are not unique

§ Regularization can be used, e.g.,

G = G0+

N∑
i=1

ai b
2
i

• Some strategies can trap local minima

• Multiple analyses need to be run

• Multiple objectives can be complicated to include
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Modeling Methods Conclusion

Conclusion

• Multiscale phenomena exist across a range of disciplines

• Mathematics can be similar

§ Disparate array of length scales

§ Moving interfaces driven by long range fields

• Numerous approaches to modeling

• Optimization methods extend analysis capability

§ Fashion design from analysis tools

§ Parameter identification

• Questions?
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