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Presentation outline
L

e Multiscale and moving boundary problems

5 Multiple length and time scales

5 Formulation of mathematical problem

5 Moving boundary problems

5 Adaptive methods for resolving length scales
5 Solidification problems as a context

e Inverse methods for design and parameter identification
5 Design as a complement to analysis

5 Mathematical methods for inverse problems
5 Examples: shape and topology optimization

e Summary and conclusions
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Crystal pattern selection

01-2993-11c #1 ( TMS75-No slope-L) % 20um

Glyceregia

e “Every snowflake is different”
§ Pattern set by environment during growth (Furuxawa)

e Dendrite also canonical microstructural form in metals and alloys
5 Spot weld in Ni-based superalloy (Basu anp Davip, ORNL)

e Processing conditions determine microstructure and properties
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Observations in succinonitrile

e Succinonitrile (SCN) is transparent organic analog for metals
e High purity SCN growing into undercooled melt

e Experiments by Glicksman, et al., 0.02 < AT/(L/cp) < 0.06
e Left-hand photographs scaled on AT

e Right-hand photos at different orientations wrt gravity
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Solidification phenomena
D

10"

e Vast range of length and time scales

e Slope of 1 cm/s typical interface speed
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Computational models and limits
D

e 2D: 10° x 10°in space, 10° in time, 8 bytes/datum = 8Gb
e 3D: 1(* x 1(¥ x 107 in space, 10° in time, 8 bytes/datum = 8Gb
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Solidification of a pure material in an undercooled melt
D

e Dendritic growth as a generalized Stefan problem
oT K
— = — VT =aVT
dt  pcy
¢ Interface conditions:
oLiVh = K(VT -fils— VT -Al,)
T = Tn—T[(@+ ag)ky + (@ + aqbqb)’(qb)] — B(n)V;
5 Anisotropy: a(n) = 1 — 3e4 + 4e4 (ny + n§ + n3)
5 Far-field condition: T (00) = T4
T—Tm

e Scaling temperature 6 = L1 /cp gives
00
— = aV?%
ot _ _
Vn = (V@ . nls— Vo - n||_)
0 = —do[(@a+ aye)ks + (@ + agg)ky)] — B'Vn

A(c0) = —A
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Moving boundary problems
D

e Must apply boundary conditions on interface whose location is
unknown

e Deforming mesh methods (Uncar anp Brown, PRB, 1985)

5 Adjust grid to align with interface

5 Works in 2D, when mesh deformation is not large

5 Satisfy one BC (Gibbs-Thomson), advance interface with other
& Cannot accommodate topology changes

e Fixed grid methods

5 Grid remains fixed and interface moves through it
5 Level set method (OsuEr aND SETHIAN, JCP, 1988)
5 Other hybrid methods guric anp TryGvasson, JCP, 1996)

5 Phase field method (anGer, REv. Mop. Phys., 1980)
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Phase-field method for solidification

e Introduce phase-field on a fixed grid

5 Define a continuous order parameter —1 < ¢ < 1
5 ¢ = —1 corresponds to liquid, ¢ = +1 to solid
5 Define interface positionas ¢ =0

e Interface is now a diffuse region, finite width W
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_— Interface
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Physical interpretation of the phase-field

e Considerar ough interface (WARREN AND BOETTINGER)

e Plot atomic density near interface
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Phase-field model for a pure material
D

e Coupled equations for temperature and ¢

W _y (@V0) + 10¢
JR— f— - a [ —
ot 2 ot
3¢ va

T— = ———
ot 56

e Attributes: thin interface, ¢ = +1 as stable states

]—"=/(:—2L|w(ﬁ)V¢|2-|— f(qb,T)) dvVv
V

f(p, T) = p(1—0?)+10(1—¢*)*

5 A controls double well tilt

5 (¢, T) form not crucial 5
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Hierarchy of length scales

D
T

Dendrite R

O(/\'ﬁ
— I AX~W

e Length scales: dp(10°m), R(10°m), ar/ V,,(10~%m), Wo, AX, Lg
§ Grid convergence requires Ax ~ O(W)
& Karma and Rappel, PRE, 1995: W/(a/Vyn) < 1 (~ 1079)
5 Domain independence requires Lg/(a/V,) > 1 (~ 10)
& Lg/W ~ Lg/Ax ~ 10°
§ Uniform mesh requires Ny = (Lg/Ax)% (10° in 2-D, 10° in 3-D)

e Problem is even more acute at low A

5 Slow approach to steady state = Lg/(a/V,) ~ 100
5 Experiments at A < 0.1
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Finessing the length scale problem
D

e Maximum resolution needed only near the interface

° Adaptive FEM gl‘id (PROVATAS, GOLDENFELD AND DANTZIG, PRL, JCP, 1998-2000)
e Initial mesh of 4-noded quadrilateral elements

e Refinement/fusion based on local error estimator f(Vg¢, VU)

e Data structure

¢ Linked lists and quadtrees makes element traversal efficient
5 Extra side nodes resolved with triangular elements (in 2D)
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Dendlritic growth at high and low undercooling
D

e Analytical theory for isolated arm in infinite medium

5 Tip speed and shape match theory at high A (left)
& Both arms within thermal boundary layer at low A (right)

TEMPERATURE FIELD

Temperature Field

DT =0.1

ORDER PARAMETER : INTERFACE


http://www.ipam.ucla.edu/publications/te2003/dendrite_hirez_zoom.mpg
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Another approach to the length scale problem
D

e Combine FDM and random walkers (PLaprp aND KarRMA, PRL, 2000):

5 Solve using combined FDM/Random walker method
¢ Inner fine FDM mesh includes dendrite
§ Outer diffusion field solved using random walkers

& Match solutions at boundary
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3D dendritic growth with fluid flow

%

2-D 3-D
e 3D nature is essential (DANTZIG AND CHAO, IUTAM, 1986)

5 2D transport: Fluid must flow up and over the tip
§ 3D transport: Vertical and horizontal flow around the tip

) Formulation (BECKERMANN, DIEPERS, STEINBACH, KARMA AND TONG, JCP, 1999)

& Volume averaged form

5 Special source to get correct drag force
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Adaptive grid procedure in 3D

e Octree data structure

e Disconnected nodes handled by constraints

Error estimator Single level rule

Error estimator
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Parallel implementation of 3D code
D

e Need large speedup factors (O(100)
e Domain decomposition not obvious
e Strategy

¢ Distributed memory
5 CHARM++

e Code details

& Explicit time stepping for phase-field, implicit for others

5 Flow computed using semi-implicit approximate projection
method

5 Element-by-element conjugate gradient solver
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3D Dendrites with Flow

Framework for parallelization by CHARM++

Subroutine "INIT"

® Preprocessing
® Create adapted grid
® Partition domain (METIS)

METIS

Intermediate

Datatransfer

dat’qfile

Procr 2) ( Processor 3) LI ]

Processor N

C Pr oc; ’1’> (
l

l

e Loop for iterative

Call "FEM_Red

Subroutine "DRIVER"

Call "FEM create FIELD  (memory allocation)

solver

Loop for assembling the nodal values
Call "FEM _Update Field" (combine vaues at shared nodes)

uce" (sum errors from al nodes)

Subroutine "FINALIZE"
® Merge subdomainsinto global domain

e Postprocessing
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Domain decomposition
L

e Processor assignment for 32 processors (METIS)



http://www.ipam.ucla.edu/publications/te2003/flow_100.gif
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Parallel performance of code
D

e Perform 20-100 time steps on a single mesh

e Speed-up approaches ideal as mesh size increases
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Biological application
D

e Cryobiology: freezing cells for preservation
e Cells segregate from freezing ice

5 Local concentration important
5 Minimize mechanical damage

L APATZ, MENZ AND LUYET, CRYOBIOLOGY,
Frog blood (r M LUYET, C 1966)
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Modeling particle interaction
D

e Fixed particles, engulfed by interface

e Changes in dendritic growth patterns

|

1867
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Summary: dendritic growth
D

e Dendritic growth is complex pattern selection problem

e Multiple length scales can be resolved using adaptive grids
e Fluid flow has a profound effect on structure evolution

e 2D is different from 3D

e High A is different from low A

e Adaptive, 3-D Navier-Stokes, phase field code enables comparison
to experimental observations

e More than one way to solve this problem!




Modeling Methods Inverse problems

Optimal design

e Have become adept at complex modeling

e Make transition from analysis to design

e Use simulations to improve design, or identify parameters
e Pose as an optimization problem:

5 Identify design variables b

& Solve problem for a given design u(b)

5 Minimize (or maximize) and objective function G(u, b)
5 Possible constraints F (u, b)

e Design space is “orthogonal” to analysis space
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Example: Equilbrium of two springs

30 ———
20 ———

10 ——
20
40
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e Equilibrium position is minimum potential energy P

1 2
P = EKI(\/bi‘F(Ll_bZ)Z_ |_1> +

1 2
éKz (\/bf + (Lo + bp)? — Lz) — Pib; — Poby

e How do you find minimum?

5 Generate contours (response surface) and select
§ Pick starting point and search discrete points
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Solution strategies
D

e Each design implies a full simulation for w(b)
e Simulations are costly = limited number of designs
e Efficient search strategies require sensitivities, dG/db
e “Forward problem:” R(u, b) =0
5 Solve by Newton-Raphson iteration
R(u't™ b)=0= R(u', b) + ?3_}; Au+ -

§ Truncate and rearrange

oR -
—| Au=—R(u', b
du |,

§ Update u' ™ =u' + Au
o Iterate to convergence
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Sensitivity evaluation
D

e Finite difference evaluation of sensitivity very costly

e dG/db involves “response sensitivity” du/db
dG 096G N 0G du
db  9b du adb

e Direct differentiation of forward problem wrt b
d—R=O= 8R+8R.8u
db b du 0b
e Rearrange to evaluate response sensitivity:

(8R)1 IR du

du) b ab

e Efficient implementation

5 Uses same tangent matrix as the forward problem
5 0 R/0breforms force vector
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Example: Nonlinear FEM heat conduction
D

e Interpolation using shape functions

T=NT; VI=| N, |T=BT

e Analysis, after assembly
R=0=KT - F
§ Isoparametric form

K:/BTk(T)BdVZ/J—TBIk(T)J—lBr|J|d\/r
V

Vi

e Tangent matrix 0 R/0T = K + (0 K /0T)T + 0 F /0T
J K dk
—:/BT—NBdV
0T dT

Vv
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Sensitivity evaluation
D

e Parameter identification: k = k( b)

IR

- /BT—BdV
ob ab

e Shape optimization: J = J(b)

R oJ T oJ 1
= B'k(MJ 1B, + J"BTK(T B
ab/<abf() . f()ab c+

3J
J "B k(T)J ' Btr (J‘lﬁ)) | J|dV,;

e Form multiple right hand sides and back-substitute

JR\™" 9R 9T  dG 3G 3G T
0T

" 9b b’ db — 9b 3T 3b




.

Response
Sensitivity

Modeling Methods Inverse problems
Optimization strategy
( )
o Temperature
Objective Solution T.b Objective G Sotimals
Initial design aT Sensitivity 9G p -
Parameters db db

J

No

( Numerical
LOptimization

e Link to standard analysis codes

e Requires access to code for efficient sensitivity evaluation
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Example: Hammer casting simulation
D

e Original design produced porosity
e Optimization problem

§ Design variables parameterize riser dimensions
5 Objective: Minimize riser volume
5 Constraint: Connected freezing path from part to riser

§ Solution: 24 designs evaluated, 5 line searches (total O(week)



http://www.ipam.ucla.edu/publications/te2003/hammer.mpg
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Topology optimization
D

e Work of Bruns and Tortorelli
e Material density p in each element becomes a design variable

e Compliant mechanism

§ MaXimiZG Fout/ F|n
§ Discrete values through penalization of values 0 < pe < 1
5 Nonlinear (geometric) elastic analysis
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Features of inverse problems
D

e Powerful method for improving product design, identifying
parameters

e Must be able to quantify objectives
e Problems are ill-posed
e Solutions are not unique

¢ Regularization can be used, e.g.,

N
G:Go+Za4bi2

i=1
e Some strategies can trap local minima

e Multiple analyses need to be run

e Multiple objectives can be complicated to include
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Conclusion
e ——————————————————————————————————————————————————————————————————————

e Multiscale phenomena exist across a range of disciplines
e Mathematics can be similar

5 Disparate array of length scales
5 Moving interfaces driven by long range fields

e Numerous approaches to modeling
e Optimization methods extend analysis capability

¢ Fashion design from analysis tools
5 Parameter identification

e Questions?




