MULTISCALE METHODS, MOVING BOUNDARIES AND INVERSE PROBLEMS

J. A. Dantzig University of Illinois at Urbana-Champaign

IPAM Workshop on Tissue Engineering February 19, 2003

Acknowledgment

• Support

- **§** National Science Foundation
- § NASA Microgravity Research Program
- § Deere & Co.
- § Ford
- Collaborators
 - § Nigel Goldenfeld (UIUC)
 - § Dan Tortorelli (UIUC)
 - § Nik Provatas (McMaster)
 - § Jun-Ho Jeong (KIMM)
 - § Tae Kim
 - § Anthony Chang
 - § Tim Morthland
 - § Paul Byrne

odeling Methods	
	Presentation outlin
 Multiscale and moving boundary probl 	lems
§ Multiple length and time scales	
§ Formulation of mathematical proble	em
§ Moving boundary problems	
§ Adaptive methods for resolving leng	th scales
§ Solidification problems as a context	
• Inverse methods for design and parame	eter identification
§ Design as a complement to analysis	
§ Mathematical methods for inverse p	oroblems
§ Examples: shape and topology optin	nization
 Summary and conclusions 	
7	

Solidification problems

Modeling Methods

Crystal pattern selection

- "Every snowflake is different"
 - § Pattern set by environment during growth (FURUKAWA)
- Dendrite also canonical microstructural form in metals and alloys § Spot weld in Ni-based superalloy (BABU AND DAVID, ORNL)
- Processing conditions determine microstructure and properties

Solidification problems

Modeling Methods

Observations in succinonitrile

- Succinonitrile (SCN) is transparent organic analog for metals
- High purity SCN growing into undercooled melt
- Experiments by Glicksman, et al., $0.02 < \Delta T/(L_f/c_p) < 0.06$
- Left-hand photographs scaled on ΔT
- Right-hand photos at different orientations wrt gravity

Solidification problems

Solidification of a pure material in an undercooled melt

• Dendritic growth as a generalized Stefan problem

$$\frac{\partial T}{dt} = \frac{k}{\rho c_p} \nabla^2 T = \alpha \nabla^2 T$$

§ Interface conditions:

 θ

$$\rho L_f V_n = k \left(\nabla T \cdot \vec{n} |_S - \nabla T \cdot \vec{n} |_L \right)$$

$$T = T_m - \Gamma[(a + a_{\theta\theta})\kappa_{\theta} + (a + a_{\phi\phi})\kappa_{\phi})] - \beta(n) V_n$$

§ Anisotropy: $a(n) = 1 - 3\epsilon_4 + 4\epsilon_4 \left(n_x^4 + n_y^4 + n_z^4\right)$

§ Far-field condition:
$$T(\infty) = T_{\infty}$$

• Scaling temperature $\theta = \frac{T - T_m}{L_f/c_p}$ gives

$$\begin{aligned} \frac{\partial \theta}{\partial t} &= \alpha \nabla^2 \theta \\ V_n &= \alpha \left(\nabla \theta \cdot \vec{n} |_S - \nabla \theta \cdot \vec{n} |_L \right) \\ \theta &= -d_0 [(a + a_{\theta\theta}) \kappa_{\theta} + (a + a_{\phi\phi}) \kappa_{\phi})] - \beta' V_n \\ (\infty) &= -\Delta \end{aligned}$$

Iodeling Methods	Solidification problems
	Moving boundary problems
 Must apply boundary con unknown 	nditions on interface whose location is
• Deforming mesh method	ds (Ungar and Brown, PRB, 1985)
§ Adjust grid to align wi	th interface
§ Works in 2D, when me	esh deformation is not large
§ Satisfy one BC (Gibbs-	-Thomson), advance interface with other
§ Cannot accommodate	e topology changes
 Fixed grid methods 	
§ Grid remains fixed an	d interface moves through it
§ Level set method (OSHE	ER AND SETHIAN, JCP, 1988)
§ Other hybrid methods	S (JURIC AND TRYGVASSON, JCP, 1996)
§ Phase field method (LA	ANGER, REV. MOD. PHYS., 1980)

Phase-field model for a pure material

• Coupled equations for temperature and ϕ

$$\frac{\frac{\partial \theta}{\partial t}}{\frac{\partial \phi}{\partial t}} = \nabla \cdot (\alpha \nabla \theta) + \frac{1}{2} \frac{\partial \phi}{\partial t}$$
$$\tau \frac{\frac{\partial \phi}{\partial t}}{\frac{\partial \phi}{\partial t}} = -\frac{\delta \mathcal{F}}{\delta \phi}$$

• Attributes: thin interface, $\phi = \pm 1$ as stable states

$$\mathcal{F} = \int_{V} \left(\frac{1}{2} |w(\vec{n}) \nabla \phi|^2 + f(\phi, T) \right) dV$$

$$f(\phi, T) = \phi (1 - \phi^2) + \lambda \theta (1 - \phi^2)^2$$

§ λ controls double well tilt

§ $f(\phi, T)$ form *not* crucial

- Length scales: $d_0(10^{-9}\text{m})$, $R(10^{-5}\text{m})$, $\alpha/V_n(10^{-4}\text{m})$, W_0 , Δx , L_B
 - § Grid convergence requires $\Delta x \sim \mathcal{O}(W)$
 - § Karma and Rappel, *PRE*, 1995: $W/(\alpha/V_n) \ll 1 ~(\sim 10^{-2})$
 - § Domain independence requires $L_B/(\alpha/V_n) \gg 1 \ (\sim 10)$

$$\int L_B/W \sim L_B/\Delta x \sim 10^3$$

- § Uniform mesh requires $N_g = (L_B/\Delta x)^d$ (10⁶ in 2-D, 10⁹ in 3-D)
- Problem is even more acute at low Δ
 - § Slow approach to steady state $\Rightarrow L_B/(\alpha/V_n) \sim 100$
 - § Experiments at $\Delta < 0.1$

Dendritic growth at high and low undercooling

- Analytical theory for isolated arm in infinite medium
 - § Tip speed and shape match theory at high Δ (left)
 - § Both arms within thermal boundary layer at low Δ (right)

Another approach to the length scale problem

- Combine FDM and random walkers (PLAPP AND KARMA, PRL, 2000):
 - § Solve using combined FDM/Random walker method
 - § Inner fine FDM mesh includes dendrite
 - § Outer diffusion field solved using random walkers
 - § Match solutions at boundary

3D Dendrites with Flow

- 3D nature is essential (Dantzig and Chao, IUTAM, 1986)
 - § 2D transport: Fluid must flow up and over the tip
 - § 3D transport: Vertical and horizontal flow around the tip
- Formulation (Beckermann, Diepers, Steinbach, Karma and Tong, JCP, 1999)
 - § Volume averaged form
 - § Special source to get correct drag force

3D Dendrites with Flow

Framework for parallelization by CHARM++

1867

Modeling Methods

Modeling Methods	3D Dendrites with Flow
	Summary: dendritic growth
• Dendritic growth is complex	pattern selection problem
• Multiple length scales can be	resolved using adaptive grids
• Fluid flow has a profound effe	ect on structure evolution
• 2D is different from 3D	
• High Δ is different from low 2	2
 Adaptive, 3-D Navier-Stokes, to experimental observations 	phase field code enables comparison
 More than one way to solve the 	his problem!

Modeling Methods	Inverse problems
	Optimal design
 Have become adept at complex modeling Make transition from <i>analysis</i> to <i>design</i> Use simulations to improve design, or identify pathologies in the sign of the	arameters on $G(u, b)$
 Design space is "orthogonal" to analysis space 	
	25

Modeling Methods *Example: Equilbrium of two springs* K_{2} P_1 b. K_1 L_2 -5 -10 5 10

• Equilibrium position is minimum potential energy *P*

$$P = \frac{1}{2}K_1 \left(\sqrt{b_1^2 + (L_1 - b_2)^2} - L_1 \right)^2 + \frac{1}{2}K_2 \left(\sqrt{b_1^2 + (L_2 + b_2)^2} - L_2 \right)^2 - P_1 b_1 - P_2 b_2$$

- How do you find minimum?
 - § Generate contours (response surface) and select
 - § Pick starting point and search discrete points

Sensitivity evaluation

- Finite difference evaluation of sensitivity very costly
- dG/db involves "response sensitivity" $\partial u/\partial b$

$$\frac{dG}{db} = \frac{\partial G}{\partial b} + \frac{\partial G}{\partial u} \cdot \frac{\partial u}{\partial b}$$

 \bullet Direct differentiation of forward problem wrt $\,b$

$$\frac{d\mathbf{R}}{d\mathbf{b}} = 0 = \frac{\partial\mathbf{R}}{\partial\mathbf{b}} + \frac{\partial\mathbf{R}}{\partial\mathbf{u}} \cdot \frac{\partial\mathbf{u}}{\partial\mathbf{b}}$$

• Rearrange to evaluate response sensitivity:

$$-\left(\frac{\partial \boldsymbol{R}}{\partial \boldsymbol{u}}\right)^{-1} \cdot \frac{\partial \boldsymbol{R}}{\partial \boldsymbol{b}} = \frac{\partial \boldsymbol{u}}{\partial \boldsymbol{b}}$$

- Efficient implementation
 - § Uses *same* tangent matrix as the forward problem
 - $\frac{\delta}{\partial \mathbf{R}} \partial \mathbf{b}$ reforms force vector

Inverse problems

Modeling Methods

Example: Nonlinear FEM heat conduction

• Interpolation using shape functions

$$T = NT; \quad \nabla T = \begin{bmatrix} N_x \\ N_y \\ N_z \end{bmatrix} T = BT$$

• Analysis, after assembly

$$R = 0 = KT - F$$

§ Isoparametric form

$$\boldsymbol{K} = \int_{V} \boldsymbol{B}^{T} \boldsymbol{k}(T) \boldsymbol{B} dV = \int_{V_{r}} \boldsymbol{J}^{-T} \boldsymbol{B}_{r}^{T} \boldsymbol{k}(T) \boldsymbol{J}^{-1} \boldsymbol{B}_{r} |\boldsymbol{J}| dV_{r}$$

• Tangent matrix $\partial \mathbf{R} / \partial \mathbf{T} = \mathbf{K} + (\partial \mathbf{K} / \partial \mathbf{T})\mathbf{T} + \partial \mathbf{F} / \partial \mathbf{T}$

$$\frac{\partial \mathbf{K}}{\partial \mathbf{T}} = \int_{V} \mathbf{B}^{T} \frac{dk}{dT} \mathbf{N} \mathbf{B} dV$$

Sensitivity evaluation

• Parameter identification: k = k(b)

$$\frac{\partial \mathbf{R}}{\partial \mathbf{b}} = \frac{\partial \mathbf{K}}{\partial \mathbf{b}} \mathbf{T} = \int_{V} \mathbf{B}^{T} \frac{\partial k}{\partial \mathbf{b}} \mathbf{B} dV$$

• Shape optimization: J = J(b)

$$\frac{\partial \boldsymbol{R}}{\partial \boldsymbol{b}} = \int_{V_r} \left(\frac{\partial \boldsymbol{J}^{-T}}{\partial \boldsymbol{b}} \boldsymbol{B}_r^T \boldsymbol{k}(T) \boldsymbol{J}^{-1} \boldsymbol{B}_r + \boldsymbol{J}^{-T} \boldsymbol{B}_r^T \boldsymbol{k}(T) \frac{\partial \boldsymbol{J}^{-1}}{\partial \boldsymbol{b}} \boldsymbol{B}_r + \boldsymbol{J}^{-T} \boldsymbol{B}_r^T \boldsymbol{k}(T) \frac{\partial \boldsymbol{J}^{-1}}{\partial \boldsymbol{b}} \boldsymbol{B}_r + \boldsymbol{J}^{-T} \boldsymbol{B}_r^T \boldsymbol{k}(T) \boldsymbol{J}^{-1} \boldsymbol{B}_r \operatorname{tr} \left(\boldsymbol{J}^{-1} \frac{\partial \boldsymbol{J}}{\partial \boldsymbol{b}} \right) \right) |\boldsymbol{J}| dV_r$$

• Form multiple right hand sides and back-substitute

$$-\left(\frac{\partial \mathbf{R}}{\partial \mathbf{T}}\right)^{-1} \cdot \frac{\partial \mathbf{R}}{\partial \mathbf{b}} = \frac{\partial \mathbf{T}}{\partial \mathbf{b}}; \qquad \frac{dG}{d\mathbf{b}} = \frac{\partial G}{\partial \mathbf{b}} + \frac{\partial G}{\partial \mathbf{T}} \cdot \frac{\partial \mathbf{T}}{\partial \mathbf{b}}$$

- Link to standard analysis codes
- Requires access to code for efficient sensitivity evaluation

Example: Hammer casting simulation

- Original design produced porosity
- Optimization problem
 - § Design variables parameterize riser dimensions
 - § Objective: Minimize riser volume
 - § Constraint: Connected freezing path from part to riser
 - § Solution: 24 designs evaluated, 5 line searches (total $\mathcal{O}(week)$

Topology optimiza	ition
 Work of Bruns and Tortorelli 	
• Material density ρ_e in each element becomes a design variable	
 Compliant mechanism 	
§ Maximize F_{out}/F_{in}	
§ Discrete values through penalization of values $0 < \rho_e < 1$	
§ Nonlinear (geometric) elastic analysis	
$u_{in} - F_{in} = u_{out}$	
	00

Inverse problems

	Inverse problems
	Features of inverse problems
 Powerful method for improving parameters 	ng product design, identifying
• Must be able to quantify object	ctives
 Problems are ill-posed 	
 Solutions are not unique 	
§ Regularization can be used	l, e.g.,
<i>G</i> =	$=G_0 + \sum_{i=1}^N a_i b_i^2$
• Some strategies can trap local	minima
• Multiple analyses need to be a	run
• Multiple objectives can be con	mplicated to include

Modeling Methods	Conclusion
	Conclusion
 Multiscale phenomena exist across a range of discipli Mathematics can be similar § Disparate array of length scales § Moving interfaces driven by long range fields Numerous approaches to modeling Optimization methods extend analysis capability 	nes
 § Parameter identification • Questions? 	
I 1867	35