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”Ask no questions, and you’ll be told no lies”

Charles Dickens

• The Holy Grail of the developed turbulence:

The limit ν → 0 of the 3d Navier-Stokes ensemble with stochastic

homogeneous and isotropic large scale forcing exists and shows on short

distances a persistent direct energy cascade and a universal scaling



• We are pretty far from proving such a statement but the studies
of the inertial-range properties of large Reynolds number Re flows

indicate that it may be true.

• One of the anticipated properties of such a Re = ∞ ensemble would be

that its typical velocities are rough, with Hölder exponents less than
1/3, at least locally, as otherwise the injected energy could not be

dissipated (Onsager 1949, Duchon-Robert 2000)

• Spontaneous stochasticity is another layer on top of the Holy Grail,

a conjecture stating that in typical velocities of the Re = ∞ ensemble

the Lagrangian flow is stochastic rather than deterministic

Question: Why adding another layer to an already bold conjecture?

Answer: Because it may add an essential element for proving the Holy
Grail, capturing an important property of high Re flows

verifiable today



• The idea of spontaneous stochasticity has some similarity but is

different from the other attempts to introduce stochastic elements

at infinite Re :

• measure-valued solutions of the Euler equation of DiPerna-

Majda CMP 108 (1987)

• generalized flows of Brenier J. AMS 2 (1989)

• multiphase and sticky generalized flows of Shnirelman CMP

210 (2000)

The main difference is that the stochasticity concerns only the

Lagrangian flow in deterministic rough velocities, so the ODE rather

than the PDE aspect

On the other hand, the applications of the idea to nonlinear PDE

remain on the heuristic or conjectural level



• Lagrangian flow

• For a smooth velocity field v(t, r) the Lagrangian flow

(s, r) 7→ Rt,r(s) is defined by the ODE

dRt,r(s)

ds
= v(s,Rt,r(s)) , Rt,r(t) = r

• For a rough (non-Lipschitz) in space velocity field v(t, r) some
limiting procedure is required

1. one can consider a noisy Lagrangian flow solving the SDE

dRκ
t,r(s) = v(s,Rκ

t,r(s)) ds +
√
2κ dβ(s) , Rκ

t,r(t) = r
տ Brownian motion

that exists for κ > 0 even for rough (e.g. spatially Hölder)

velocities and has transition probabilities

Pκ
t,r(s,R |v) = E δ(R−Rκ

t,r(s))

2. one can use velocity vη(t, r) smoothed on a small scale η
and consider the usual Lagrangian flow R

η
t,r(s) for vη setting

P
η
t,r(s,R |v) = δ(R−R

η
t,r(s))



We shall say that the Lagrangian flow in velocity field v(t, r) is

stochastic if one of the limits

Pt,r(s,R |v) =











lim
κ→0

Pκ
t,r(s,R |v)

lim
η→0

P
η
t,r(s,R |v)

exists in a sufficiently weak sense but is not concentrated at a single

R = Rt,r(s) for each t, r, s

Such a behavior could be only possible in non-Lipschitz velocities

where there may be many solutions of the Lagrangian ODE with

a common initial or final value

Remarks. 1. Physically, κ would represent the molecular diffusivity

and η the viscous Kolmogorov scale. The κ → 0 limit

corresponds to the vanishing Prandtl number Pr = ν
κ

and the η → 0 one to Pr = ∞
2. The two limits may be different pointing to the Prandtl

number dependence of the limiting Lagrangian flow



• Why should we expect such behavior in Re = ∞ velocities?

• The first indication comes from the 1926 Richardson law for

the Lagrangian dispersion ρ(s) = |R0,r(s)−R0,r′ (s)|
〈

ρ(s)2
〉

∝ ǫ s3

for large s with the coefficient independent of ρ(0)

Extended to the smallest scales, this implies that Lagrangian trajectories

starting arbitrarily close separate to O(1) distance in finite time,

a behavior impossible for trajectories determined by the initial point

(

In contrast, in chaotic dynamical systems ρ(s) ∝ eλsρ(0) for small ρ
taking longer and longer to separate the smaller ρ(0)

)

• For a recent discussions of the pair dispersion statistics in developed

turbulence see Thalabard et al. JFM 755 R4 (2014) that questions

the Richardson diffusion but not the s3 finite-time separation



!"
!#

!"
!!

!"
"

!"
!

!"
#

!"
!!

!"
"

!"
!

!"
#

!"
$

!"
%

!"
&

!"
'

!"
(

time t [viscous units]

〈r
2
(t
)〉

[v
is
c
o
u
s
u
n
it
s]

(a) Backward Dispersion

)

)

P r = 1
12t
1 .35t3
P r = 0 .1
120t

10
−1

10
0

10
1

10
2

10
3

10
0

10
2

10
4

10
6

10
8

t / τ
η

<
|R

(t
)|

2
>

 /
 η

2

(a) R
λ
 = 730

L
2

τ
L

3

r
0
 = 2η

r
0
 = 3η

r
0
 = 4η

r
0
 = 6η

r
0
 = 8η

r
0
 = 12η

r
0
 = 16η

r
0
 = 24η

〈ρ(s)2〉 at Reλ = 433 ρ(0)-dependence
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• Further indication came from the study of the Lagrangian flow in

the Kraichnan homogeneous and isotropic ensemble of velocities

that are Hölder in space but decorrelated in time

This is a Gaussian ensemble with mean zero and 2-point function

〈

vi(t, r) vj(t′, r′)
〉

=
(

D0δ
ij −Dij(r − r′)

)

δ(t− t′)

with the isotropic tensor Dij(r) characterized by the Hölder

exponent α and the compressibility ℘ with 0 < α,℘ < 1

Dij(r) ∝ r2α for small r , ℘ =
∂i∂jD

ij(r)

∂i∂iD
jj(r)

It was observed in Bernard -G. -Kupiainen JSP 90 (1998) in the

℘ = 0 version of this model that the probability of the pair dispersion

P0,ρ0 (s, ρ) has a non-zero ρ0 → 0 limit leading to the Richardson

type law
〈

ρ(s)2
〉

∝ s
1

1−α

that holds for all s > 0 for ρ0 = 0



As was stressed, that leads to the breakdown of deterministic Lagrangian
flow in typical velocities and its replacement by a stochastic one, leading
to a direct cascade of advected tracer field with a dissipative anomaly

at κ = 0

It was then shown in G. -Vergassola Physica D 138 (2000) that such
a behavior persists in Kraichnan velocities with ℘ < d

4α2 whereas for

℘ > d
4α2 one recovers a deterministic Lagrangian flow at κ = 0 with

trajectories collapsing together in finite time, leading to an inverse

cascade of advected tracer field without dissipative anomaly

℘ < d
4α2 ℘ > d

4α2

Explosive separation of trajectories versus implosive collapse

(from Falkovich-G.-Vergassola Rev. Mod. Phys. 73 (2001))



In E -Vanden Eijnden PNAS 97 (2000) and Physica D 152153 (2001)

it was shown that for d−2+2α
4α

< ℘< d
4α2 the κ → 0 and η → 0

Lagrangian flows differ, the first being stochastic whereas the second

deterministic with collapsing trajectories

In G. -Horvai JSP 116 (2004) the Pr-dependence of the limiting flow

was revisited and a “sticky” limiting Lagrangian flow was constructed

for intermediate ℘ by fine-tuning κ and η

In Le Jan -Raimond C. R. Acad. Sci. 327 (1998) the transition

probabilities Pt,r(s,R |v) were rigorously constructed and in Ann.

Probab. 30 (2002) and 32 (2004) the Lagrangian flows in Krachnan

velocities were connected to “nonclassical noises” and the relation

between different limiting flows for intermediate ℘ was clarified

The Kraichnan model is time-reversal invariant unlike the real

turbulence where the backward-in-time Richardson separation is

considerably faster (Sawford et al. Phys. Fluids 17 (2005), Eyink

PR E 83 (2011), Buaria et al. J. Fluid Mech. 799 (2016))



• Lagrangian flow in rough velocities beyond Kraichnan model

In Chaves et al. JSP 113 (2003) we analyzed the Lagrangian flow in
Gaussian self-similar ensemble of Hölder velocities correlated in time
arguing for scaling laws but without definitive results

In Eyink-Drivas JSP 158 (2014) the backward-in-time Lagrangian

flow for the Burgers velocities was shown to become stochastic when
ν → 0 and Pr-dependent unlike the forward-in-time deterministic
flow with trajectories coalescing onto the shocks

The same authors showed in arXiv:1509.04941 the appearance of
stochastic Hamiltonian flows in the semiclassical limit of the 1d
Schrödinger equation with a rough potential

The works of Dubédat (2009) and of Miller-Sheffield (2012-2013)
studied the Lagrangian flow in time-frozen 2d compressible velocities

v(r) =
(

cos( 1
χ φ(r) + θ), sin( 1

χ φ(r) + θ)
)

for χ > 0, 0 < θ ≤ 2π and the random massless free field φ(r).
Their flow (probably the η → 0 one) is deterministic with trajectories

looking locally like SLEκ-curves for 0 < κ ≤ 4 and χ = 2√
κ

−
√

κ

2
that collapse together when meeting



From Miller-Sheffield arXiv:1201.1496v2 [math.PR]

κ = 1
2 , blue lines: θ = π

4 , magenta lines: θ = −π
4



• Terminology

In Bernard et al. (1998) we talked about “intrinsically probabilistic

character of the Lagrangian flow”

I used the terms “breakdown of deterministic Lagrangian flow”,

“stochastic flow” and “fuzzy trajectories” in 1998 reviews

E-Vanden-Eijnden (2000) coined the name “intrinsic stochasticity”

Le Jan-Raimond (2002, 2004) talk about “statistical solutions” and

“flow of kernels”

We employed the term “spontaneous stochasticity” in the review

Falkovich et al. RMP 73 (2001). The name was then repeatedly

used in Eyink’s papers

The deterministic flows with trajectories collapsing together are

generally called “coalescent flows”



• Lagrangian formulation of hydrodynamic equations

• Consider for a smooth velocity field v(t, r) with the Lagrangian flow

(s, r) 7→ Rt,r(s) the matrix

(W i
j)t,r(s) =

∂Ri
t,r(s)

∂rj

that propagates the infinitesimal dispersion of Lagrangian trajectories

δRt,r(s) = Wt,r(s) δr. It satisfies the ODE

dWt,r(s)

ds
= (∇v)T (s,Rt,r(s)))Wt,r(s) , Wt,r(t) = I

In smooth flows the eigenvalues of 1
s
lnWT

t,rWt,r(s) give when

s → ∞ the Lyapunov exponents of the flow and their large deviations

encode the multifractal structure of advection, see Grassberger et al.

JSP 51 (1988), Bec et al. PRL 92 (2004)



• The 3d hydrodynamic equations

∂tθ + (v ·∇)θ = 0 advection of scalar

∂tB − ∇× (v ×B) = 0 advection of magnetic field

∂tω − ∇× (v × ω) = 0 Euler equation for vorticity

∂tv + (v ·∇)v = −∇p Euler equation for velocity

with ∇ ·B = 0 and with ∇ · v = 0 in the last two equations have

equivalent Lagrangian reformulation: for any times s, t

θ(s,Rt,r(s)) = θ(t, r)

det(Wt.r(s))Wt,r(s)
−1B(s,Rt,r(s)) = B(t, r)

Wt,r(s)
−1ω(s,Rt,r(s)) = ω(t, r)

P (r)
(

v(s;Rt,r(s))Wt,r(s)
)

= v(t, r)

where P i
j(r) = δij − ∇

ri
∇

rj

∇2
r

is the transverse projector



Proof for the Euler equation for velocity:

d

ds

(

v(s,Rt,r(s))Wt,r(s)
)

=
(

(∂sv) + (v ·∇)v
)

(s,Rt,r(s))Wt,r(s)

+ v(s,Rt,r(s))(∇v)T (s,Rt,r(s))Wt,r(s)

=
(

− (∇p)(s,Rt,r(s)) +
1

2
∇(v2)(s,Rt,r(s))

)

Wt,r(s)

= ∇
r

(

− p(s,Rt,r(s)) +
1

2
v2(s,Rt,r(s))

)

Upon applying P (r) this gives

P (r)
(

v(s,Rt,r(s))Wt,r(s)
)

= const.

= P (r)
(

v(t,Rt,r(t))Wt,r(t)
)

= v(t, r)

�

(The application of ∇
r
× instead of P (r) would give Cauchy’s

1815/1827 formulation of the Euler equation, see Frisch-Villone

Eur. Phys. J. 39 (2014))



• As a consequence of the Lagrangian formulation of the Euler equation
∫

u(r) ·
(

v(s;Rt,r(s))Wt,r(s)
)

dr =

∫

u(r) · v(t, r) dr

whenever ∇ · u = 0

• Taking u(r) =
∫

δ(r − ℓ(σ))
dℓ(σ)
dσ

dσ for a closed loop σ 7−→ ℓ(σ)
one gets the Kelvin Theorem on conservation of velocity circulation

∫

v(s,Rt,ℓ(σ)(s)) ·
dRs,ℓ(σ)(s)

dσ
dσ =

∫

v(t, ℓ(σ)) · dℓ(σ)

dσ
dσ

that may be also rewritten in Helmholtz’s form as a conservation of the

flux of vorticity across a surface (σ1, σ2) 7−→ S(σ1, σ2) with ∂S = ℓ
∫

ω(s,Rt,S(~σ)) ·
(∂Rt,S(~σ)(s)

∂σ1 ×
∂Rt,S(~σ)(s)

∂σ2

)

d~σ

=

∫

ω(t,S(~σ)) ·
(

∂S(~σ)

∂σ1 × ∂S(~σ)

∂σ2

)

d~σ

with its magnetic field counterpart where ω is replaced by B called

the Alfvén Theorem



Rt, (s) (  )o(  )o

(0)(t, )

Rt, (0)(s))(s,

Backward in time Lagrangian evolution of a contour

S S Rt, (s) o(  )o

(

( t,

t,S(0))

s,R S(0)(s))

(  )

Backward in time Lagrangian evolution of a surface



• Probabilistic Lagrangian interpretation of dissipative

hydrodynamic equations

∂tθ + (v ·∇)θ − κ∇2θ = 0 advection−diffusion of scalar

∂tB − ∇× (v ×B) − κ∇2B = 0 advection−diffusion of magnetic field

∂tω − ∇× (v × ω) − ν∇2ω = 0 Navier−Stokes equation for vorticity

∂tv + (v ·∇)v − ν∇2v = −∇p Navier−Stokes equation for velocity

also have equivalent Lagrangian reformulation but with the stochastic

Lagrangian flows

dRt,r(s) = v(s,Rt,r(s) ds +
{√

2κ√
2ν

}

dβ(s) , Rt,r(t) = r
տ
Brownian motion

with the same equation as before for Wt,r(s) but
(

Rt,r(s),Wt,r(s)
)

becoming a random process



• The Lagrangian equivalent of the hydrodynamic equations with

dissipation takes now the form: for any s ≤ t

E θ(s,Rt,r(s)) = θ(t, r)

E det(Wt.r(s))Wt,r(s)
−1B(s,Rt,r(s)) = B(t, r)

E Wt,r(s)
−1ω(s,Rt,r(s)) = ω(t, r)

E P (r)
(

v(s;Rt,r(s))Wt,r(s)
)

= v(t, r)

where E denotes the expectation with respect to the Brownian noise

• Note that the dissipation fixes the time direction

• The last reformulation of the Navier-Stokes equations is due to

Constantin-Iyer (2008) and it is equivalent to the Stochastic

Kelvin Thm (Eyink 2008)

E

∫

v(s, Rt,ℓ(σ)(s)) ·
dRs,ℓ(σ)(s)

dσ
dσ =

∫

v(t, ℓ(σ)) · dℓ(σ)

dσ
dσ



or its Helmholtz’s form

E

∫

ω(s,Rt,S(~σ)) ·
(∂Rt,S(~σ)(s)

∂σ1 ×
∂Rt,S(~σ)(s)

∂σ2

)

d~σ

=

∫

ω(t,S(~σ)) ·
(

∂S(~σ)

∂σ1
× ∂S(~σ)

∂σ2

)

d~σ

(and similarly for the magnetic field for which one obtains the

Stochastic Alfvén Thm)

• One may also rephrase the Lagrangian formulation of the dissipative
hydrodynamic equations as the condition that the random processes

parameterized by time s ≤ t

θ(s,Rt,r(s))

det(Wt.r(s))Wt,r(s)
−1B(s,Rt,r(s))

Wt,r(s)
−1ω(s,Rt,r(s))

∫

v(s,Rt,ℓ(σ)(s)) ·
dRs,ℓ(σ)(s)

dσ
dσ

are backward-in-time martingales for all t, r and all loops ℓ(σ)



• Sources are straightforward to include. E.g. for the scalar
advection-diffusion

∂tθ + (v ·∇)θ − κ∇2θ = g

one has

E θ(s,Rt,r(s)) +

∫ t

s

g(τ,Rt,r(τ)) dτ = θ(t, r)

and it is

θ(s,Rt,r(s)) +

∫ t

s

g(τ,Rt,r(τ)) dτ

which is a backward-in-time martingale, i.e. for s < s′ < t

E[s,s′] θ(s,Rt,r(s)) +

∫ t

s

g(τ,Rt,r(τ))

= E[s,s′] θ(s,Rs′,Rt,r(s′)(s)) +

∫ s′

s

g(τ,Rs′,Rt,r(s′)(τ)) dτ

+

∫ t

s′
g(τ,Rt,r(τ)) dτ

= θ(s′,Rt,r(s
′)) +

∫ t

s′
g(τ,Rt,r(τ)) dτ



• Spontaneous stochasticity and hydrodynamic equations

• It was stressed in Eyink CRAS 7 (2006) (with some numerical evidence

in Chen et al. PRL 97 (2006)) that the spontaneous stochasticity of

the Lagrangian flow in the limit ν → 0 of the Navier-Stokes

turbulence is compatible with the stochastic Kelvin-Helmholtz Thm

In Eyink PR E 83 (2011) a similar picture for the MHD in the limit
κ, ν → 0 with persistent stochastic Alfvén Thm was developed and

the spontaneous stochasticity of the Lagrangian flow was subsequently

employed by Eyink et al. (see e.g. Nature 497 (2013)) as the corner-

stone of the magnetic reconnection mechanism in astrophysical plasma

• This requires, however, an extension of the spontaneous stochasticity

scenario where not only Rt,r(s) but also Ws,r(s) would make some

stochastic sense in rough turbulent velocities

We would need that some limiting procedure may be applied to the

matrix-valued kernels that enter the probabilistic Lagrangian formulation

of the hydrodynamic equations allowing to define



lim
κ,η→0

E W
κ,η
t,r (s) δ(R−R

κ,η
t,r (s)) ≡ Ft,r(s,R |v)

lim
κ,η→0

E det(Wκ,η
t,r (s))Wκ,η

t,r (s)−1) δ(R−R
κ,η
t,r (s)) ≡ Gt,r(s,R)

in the velocity-ensemble correlations

The limiting kernels should satisfy the composition laws, the time
reversal Gt,r(s,R) = Fs,R(t, r) and satisfy, at least weakly, the
relation

∂RiFt,r(s,R |v)ij = − ∂rjPs,r(t,R |v)
• In the incompressible Kraichnan model the 2-point expectations of such

limiting kernels exist and were analyzed in Celani et al. Proc. R. Soc.

A 462 (2006), Arponen-Horvai JSP 129 (2007) and in Eyink-Neto New

J. Phys. 12 (2009) in the context of kinematic dynamo studies initiated

by Kazantsev JETP 26 (1968) followed by Vergassola PR E 53 (1996)

• A more complete theory of such random kernels remains to be
constructed even in the Kraichnan model

• Some numerical data on the 2-point function of the kernels G in high

Re flows may be found in Eyink PR E 83 (2011)



• Conlusions

• If the stochastic Lagrangian formulation of dissipative hydrodynamic
equations is better suited to control their Re → ∞ or Re,Rem → ∞

limits then the spontaneous stochasticity of the Lagrangian flows

in such limits may be an essential element of such a control

• The signs of spontaneous stochasticity seem visible in numerical

simulations of high Re turbulence showing the Richardson-type
separation of Lagrangian trajectories or the persistence of the stochastic

versions of the Kelvin-Helmholtz or Alfvén laws

• Admittingly, the evidence for the spontaneous stochasticity from the
high Re flows is not yet overwhelming and calls for further numerical tests

• The spontaneous stochasticity requiring the roughness of typical
velocities in the Re → ∞ limit should be responsible for the dissipative

anomaly assuring the energy dissipation in the inviscid limit

• Even in the Kraichnan model, where the spontaneous stochasticity

has been rigorously established some work remains to be done that could

throw more light on this phenomenon



• Some more details on the Lagrangian flows in the Kraichnan model

are discussed in a reader-friendly fashion in:

G. “Turbulent advection and breakdown of the Lagrangian flow”,

in Turbulent Flows, ed. J. C. Vassilicos, Cambridge University

Press 2001, pp. 86-104

“Spontaneity is a meticulously prepared art”

Oscar Wilde


