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Vanishing viscosity

Theme: vanishing viscosity in presence of a rigid boundary, no slip ∂
condition

From basic energy estimate get {uν} bounded in L∞(L2)

=⇒ there exists a weak limit v

Main questions: is v a weak solution of Euler? Do new phenomena
arise??

Key issue: sharp transition layer near ∂

vortex sheet structure near ∂
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More precisely...

Theorem
(J Kelliher, CMS 2008) If uν ⇀ v weakly in L2, uniformly in time, and if
v is a weak solution to incompressible Euler then

ων ⇀ curl v − (v · τ)µ, in 2D ,

ων ⇀ curl v − (v × n)µ, in 3D .

Here µ is a measure supported on ∂: arclength in 2D, surface area in
3D; the convergence of vorticity is weak-∗ (H1(Ω))′, uniform in time.

OBS. Actually, iff.
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Vanishing viscosity, in domains with ∂, no slip, established for flows
with special symmetry:

(2D) Circularly symmetric flow in a disk – let (r , θ) be polar
coordinates. Then u = uθ(r , t)eθ, on the domain
Ω = {(x , y) | x2 + y2 < R}. Matsui 1994, Bona-Wu 2002, Lopes
Filho-Mazzucato-NL 2008, Lopes Filho-Mazzucato-NL-Taylor
2008

Plane-parallel flow in a (periodic) channel, i.e.
u = (u1(z, t),u2(x , z, t),0), on the domain Ω = (0,L)2 × (0,h).
Mazzucato-Taylor 2008
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Parallel pipe flow in a (periodic) pipe – let (x , r , φ) be cylindrical
coordinates. Then u = uφ(r , t)eφ + ux (φ, r , t)ex, on the domain
Ω = {(x , y , z) | y2 + z2 < R, 0 < x < L}. Mazzucato-Taylor 2011

Optimal convergence rates, in higher Sobolev norms, wrt ν, and
quantification of vorticity production at ∂, in all these scenarios, for
well and ill-prepared data. Mazzucato-Niu-Wang 2011,
Han-Mazzucato-Niu-Wang 2012, Gie-Kelliher-Lopes
Filho-Mazzucato-NL 2017
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Focus on 2D flows –

simpler and possible to do rigorous analysis

Vanishing viscosity + rigid ∂ → vortex sheets→ Kelvin-Helmholtz
instability→ small scale generation→ passage to turbulence

Mechanism to generate small scales: ∂ layer + Kelvin-Helmholtz
instability

Seek framework for weak solutions of 2D Euler, in domains with (rigid)
boundary, vortex sheet regularity, which allow tracking vorticity
dynamics.
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Delort’s theorem, Schochet’s weak vorticity formulation in R2

Fluid domain Ω ⊂ R2. We assume: bounded open set, smooth
boundary, simply connected.

Euler equations for incompressible (ideal) fluid flow:
∂tu + (u · ∇)u = −∇p, in Ω× (0,∞)
div u = 0, in Ω× [0,∞)
u(x , t) · n̂(x) = 0, on ∂Ω× [0,∞)
u(x ,0) = u0(x), on Ω× {t = 0}.

(1)

Vorticity: ω = curl u.
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u(x ,0) = u0(x), on Ω× {t = 0}.

(1)

Vorticity: ω = curl u.
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Vorticity equation (curl of Euler):


∂tω + u · ∇ω = 0, in Ω× (0,∞)
div u = 0, in Ω× [0,∞)
curl u = ω, in Ω× [0,∞)
u(x , t) · n̂(x) = 0, on ∂Ω× [0,∞)
ω(x ,0) = ω0(x) = curl u0, on Ω× {t = 0}.

(2)

“Vortex sheet data"

ω ∈ BM(Ω) ∩ H−1(Ω),

BM(Ω) are bounded Radon measures on Ω.
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Discuss weak solutions for vortex sheet initial data:
ω0 ∈ BM(Ω) ∩ H−1(Ω).

L2
σ: L2, divergence-free vector fields. Weak velocity formulation:

Definition
Say u ∈ L∞loc((0,∞); L2

σ(Ω)) ∩ C0
loc([0,∞); H−L(Ω)), L > 0, is a weak

solution of (1) if, for all div-free Φ ∈ C∞c (R+ × Ω):∫ ∞
0

∫
Ω
∂t Φ · u + [(u · ∇)Φ] · u +

∫
Ω

Φ(x ,0) · u0(x) = 0,

if
div u = 0 in D′(Ω),

and if ∂ condition u · n̂ = 0 is satisfied in the trace sense for each t ≥ 0.

If u is a weak solution then possible to recover pressure
p ∈ L∞loc((0,+∞);D′(Ω)).
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Theorem (J.-M. Delort, JAMS, 1991)

Let u0 ∈ L2
σ(Ω) be such that ω0 = curl u0 ∈ BM+(Ω). Then there

exists (at least one!) weak solution
u ∈ L∞loc((0,∞); L2

σ(Ω)) ∩ C0
loc([0,∞); H−L(Ω)) of (1) with initial velocity

u0.

Delort proved this for a general bounded, smooth domain Ω, also,
versions for the fluid domain all of R2 or a compact manifold.

Boundary condition dealt with by linearity of trace, hence decoupled
from flow.

No qualitative information on solution!

No tracking vortex dynamics or “conserved quantities".
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Revisit Schochet’s proof (S. Schochet, CPDE, 1995) of the Delort
theorem (in R2);

based on the vorticity equation.
First, introduce Schochet’s weak vorticity formulation – for every
ϕ ∈ C∞c ([0,+∞)× R2) the identity below holds true:

∫ ∞
0

∫
R2
∂tϕω +

∫ ∞
0

∫
R2

∫
R2

Hϕ(x , y , t)ω(x , t)ω(y , t) dxdydt

+

∫
R2
ϕ(0, x)ω0(x) dx = 0,

where

Hϕ(x , y , t) = (∇ϕ(x , t)−∇ϕ(y , t)) · (x − y)⊥

4π|x − y |2
.

Term with
∫∞

0

∫
R2

∫
R2 comes from substituting u = ∇⊥∆−1ω in

nonlinear term and symmetrizing the kernel.
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Key observation:

smooth, compact support ϕ⇒ Hϕ bounded in
R+ × R4, discontinuous only on the diagonal x = y , vanishes at∞.
Hence: if ω does not attach mass to points (diffuse or continuous
measure) then ω 7→ 〈Hϕ, ω ⊗ ω〉 is weak-∗ continuous (wrt diffuse
measures).

It happens that BM+ ∩ H−1 consists of diffuse measures.

What about domains with boundaries?

Delort’s theorem is local so ∃ in domains with boundaries OK.

Boundary condition: satisfied in trace sense – decoupled from flow.

Explore vortex dynamics in domains with boundary.

Seek weak vorticity formulation in domains with boundary.
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Weak vorticity formulation

Start from definition of weak solution. Naïve calculations, irrespective
of (ir)regularity.

Recall u · n̂ = 0 on ∂Ω. Recall circulation:

γ = γ(t) =

∫
∂Ω

u · n̂⊥.

Take div-free Φ ∈ C∞c (R+ × Ω). Then:∫ ∞
0

∫
Ω
∂t Φ · u +

∫ ∞
0

∫
Ω

[(u · ∇)Φ] · u +

∫
Ω

Φ(x ,0) · u0 = 0,

div u = 0 in D′(Ω).
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Have:

div-free Φ, Φ ∈ C∞c (R+ × Ω)

plus

Ω bdd and simply connected

=⇒ Φ = ∇⊥ϕ, some ϕ ∈ C∞c (R+; C∞(Ω)), with ϕ ≡ c(t) on ∂Ω.

Hence, we have:∫ ∞
0

∫
Ω
∂t Φ · u =

∫ ∞
0

∫
Ω
∂t∇⊥ϕ · u

= −
∫ ∞

0

∫
Ω
∂tϕ · ω +

∫ ∞
0

c′(t)γ(t).

(3)
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Next, we have∫ ∞
0

∫
Ω

[(u · ∇)Φ] · u =

∫ ∞
0

∫
Ω

[(u · ∇)∇⊥ϕ] · u

= −
∫ ∞

0

∫
Ω

(u · ∇ϕ)ω

+

∫ ∞
0

∫
∂Ω

(∇⊥ϕ · u)(u · n̂) −
∫ ∞

0

∫
∂Ω
ϕ[(u · ∇)u] · n̂⊥

= −
∫ ∞

0

∫
Ω

(u · ∇ϕ)ω.

(4)

The yellow boundary term vanishes as u · n̂ = 0. The green boundary
term vanishes as ∂Ω is a closed curve and ϕ[(u · ∇)u] · n̂⊥ is a
tangential derivative.
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Finally, note that∫
Ω

Φ(x ,0) · u0 =

∫
Ω
∇⊥ϕ(x ,0) · u0

= −
∫

Ω
ϕ(x ,0) · ω0 +

∫
∂Ω
ϕ(x ,0)u0 · n̂⊥

= −
∫

Ω
ϕ(x ,0) · ω0 + c(0)γ(0).

(5)
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Putting together the red terms in (3),(4), (5) we obtain

∫ ∞
0

∫
Ω

[∂tϕ · ω + (u · ∇ϕ)ω]−
∫ ∞

0
c′(t)γ(t)

+

∫
Ω
ϕ(x ,0) · ω0 − c(0)γ(0) = 0.

(6)

In addition, have Biot-Savart law:

u = ∇⊥∆−1ω ≡ K [ω] =

∫
Ω

K (x , y)ω(y , t) dy .

Question: what survives in (6) for flows with vortex sheet regularity?
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Vortex sheet regularity flows –

What is circulation at vortex sheet regularity?

Lemma
Let u ∈ L1

loc(Ω) such that ω = curl u ∈ BM(Ω), bounded measure.
Then the circulation of u around ∂Ω is well-defined through the formula:∫

ϕω +

∫
u · ∇⊥ϕ = γϕ|∂Ω,

for all ϕ ∈ C∞(Ω) such that ∇ϕ is compactly supported in Ω.

Hence, the linear terms in (6), namely (3) and (5), hold true at vortex
sheet regularity.
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Nonlinear term (4): ∫
(u · ∇ϕ)ω =

∫
∇ϕ ·

[∫
K (x , y)ω(y)

]
ω(x)

Symmetrize:

=

∫ ∫
Hϕ(x , y)ω(x)ω(y).

Auxiliary function

Hϕ(x , y) =
∇ϕ(x) · K (x , y) +∇ϕ(y) · K (y , x)

2
.

Proposition

If ∇ϕ is Lipschitz and normal to ∂Ω then this Hϕ is bounded on the
closure of Ω; continuous off of the diagonal x = y.
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Compare with nonlinear term for weak velocity,

at vortex sheet
regularity.

Proposition

Let u ∈ L2
σ(Ω) be such that curl u = ω ∈ BM(Ω) and let γ be

circulation of u around ∂Ω. Then, if Φ = ∇⊥ϕ with ϕ ∈ C∞(Ω) and
Φ ∈ C∞c (Ω), then∫

[(u · ∇)Φ] · u = −
∫ ∫

Hϕ(x , y)ω(x)ω(y).

The proof of this proposition is not trivial.

Use Delort’s argument with insight from “Schochet-proof". Ingredients:

Hϕ continuous off diagonal and bounded everywhere;
If ω is curl of L2 velocity then there are no point masses;
ω is the curl in the sense of distributions, hence no mass at
boundary.
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Put together to obtain that vorticity of “Delort" solution u verifies the
weak vorticity formulation

∫ ∞
0

∫
Ω
∂tϕω(x , t) dxdt −

∫ ∞
0

γ(t)∂tϕ|∂Ω(t) dt

+

∫ ∞
0

∫
Ω

∫
Ω

Hϕ(x , y , t)ω(x , t)ω(y , t) dxdydt

+

∫
Ω
ϕ(x ,0)ω0(x) dx − γ(0)ϕ|∂Ω(0) = 0.

Theorem The weak (velocity) formulation and the weak vorticity
formulation are equivalent.

Test functions for weak vorticity: ϕ such that ∇ϕ is compactly
supported in space and time. I.e., ϕ constant in neighborhood of ∂Ω.
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Qualitative features

Weak vorticity formulation allows exchange of vorticity (circulation)
between bulk of fluid and ∂.

Present in weak velocity formulation, explicitly incorporated in weak
vorticity formulation, equivalence true but not trivial

Strengthen notion of weak solution – take test function ϕ such that ϕ
constant on ∂, maybe not on neighborhood of ∂. ∇ϕ might not vanish
on neighborhood of ∂; ∇ϕ normal to boundary, though. Called
boundary-coupled weak soluton.

Introduced in Lopes Filho-NL-Xin 2001 – existence of vortex sheets
with reflection symmetry. Why? For half-plane, method of images
works if and only if boundary coupled weak solution exists.

In Lopes-Filho-NL-Xin established existence of boundary coupled
weak solution for half-plane. How? No mass going towards boundary
(needed new a priori estimate).
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Solutions obtained as limits of exact solutions with smooth ID

Let ωn
0 be smooth approximations of initial data ω0. Consider smooth

solutions un, ωn = curl un with ID ωn
0 .

Go back to passage to limit in Delort argument: un ⇀ u.

Pass to subsequence if necessary to get also

ωn ⇀ ω̄ = ω + µ,

where limit holds weak-∗ BM(Ω). µ is measure supported on ∂Ω.

Set m = m(t) = µ(∂Ω).
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Theorem
Let ω0 ∈ (BM+ + L1)(Ω) ∩ H−1(Ω). Let ω be solution of weak vorticity
formulation, obtained as a limit of smooth solutions. Then:

1 γ(t) ≤ γ(0), and
2 If γ(t) ≡ γ(0), all t > 0, then solution is boundary-coupled.

Proof involves showing

γ(0) = γ(t) + m(t).

I.e. mass of vorticity leaving bulk of fluid, going to the boundary
component ∂Ω is balanced by decrease in circulation.

This cannot be controlled/excluded by a priori estimates!
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component ∂Ω is balanced by decrease in circulation.

This cannot be controlled/excluded by a priori estimates!
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Vortex sheets are at the edge of “bad behavior".

If ω0 ∈ L1 then there
is no strange circulation defect.

Theorem
If ω0 ∈ L1 ∩ H−1(Ω) then ∃ boundary coupled (weak vorticity) solution
for which circulation is conserved around boundary.
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Net force and torque on boundary
The net force on boundary is given by

∫
Γj

pn̂ dS,

where p is the pressure.

Vortex sheet flow too irregular to define net force. However...

Proposition
Net force on boundary well-defined iff weak solution is
boundary-coupled.
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Why? First obtain equivalent definition of boundary-coupled for velocity
formulation: take div-free test vector fields which are only tangent to
the boundary. Next note that, for smooth flows, net force can be
re-written integrating ∇p against test function with convenient normal
component.

If normal component of said test function vanishes then PDE should
imply

∫
∇p · Φ = 0. Thus, net force well-defined iff

∫
Ω∇p · Φ = 0 for

any Φ div-free and tangent to boundary, iff boundary-coupled weak
solution.

Similarly for torque: ∫
Γj

p(x − x̄j)
⊥ · n̂ dS;

where x̄j is the center of mass.

Helena J. Nussenzveig Lopes (IM-UFRJ) Weak vorticity formulation January 13, 2017 28 / 30



Why?

First obtain equivalent definition of boundary-coupled for velocity
formulation: take div-free test vector fields which are only tangent to
the boundary. Next note that, for smooth flows, net force can be
re-written integrating ∇p against test function with convenient normal
component.

If normal component of said test function vanishes then PDE should
imply

∫
∇p · Φ = 0. Thus, net force well-defined iff

∫
Ω∇p · Φ = 0 for

any Φ div-free and tangent to boundary, iff boundary-coupled weak
solution.

Similarly for torque: ∫
Γj

p(x − x̄j)
⊥ · n̂ dS;

where x̄j is the center of mass.

Helena J. Nussenzveig Lopes (IM-UFRJ) Weak vorticity formulation January 13, 2017 28 / 30



Why? First obtain equivalent definition of boundary-coupled for velocity
formulation:

take div-free test vector fields which are only tangent to
the boundary. Next note that, for smooth flows, net force can be
re-written integrating ∇p against test function with convenient normal
component.

If normal component of said test function vanishes then PDE should
imply

∫
∇p · Φ = 0. Thus, net force well-defined iff

∫
Ω∇p · Φ = 0 for

any Φ div-free and tangent to boundary, iff boundary-coupled weak
solution.

Similarly for torque: ∫
Γj

p(x − x̄j)
⊥ · n̂ dS;

where x̄j is the center of mass.

Helena J. Nussenzveig Lopes (IM-UFRJ) Weak vorticity formulation January 13, 2017 28 / 30



Why? First obtain equivalent definition of boundary-coupled for velocity
formulation: take div-free test vector fields which are only tangent to
the boundary.

Next note that, for smooth flows, net force can be
re-written integrating ∇p against test function with convenient normal
component.

If normal component of said test function vanishes then PDE should
imply

∫
∇p · Φ = 0. Thus, net force well-defined iff

∫
Ω∇p · Φ = 0 for

any Φ div-free and tangent to boundary, iff boundary-coupled weak
solution.

Similarly for torque: ∫
Γj

p(x − x̄j)
⊥ · n̂ dS;

where x̄j is the center of mass.

Helena J. Nussenzveig Lopes (IM-UFRJ) Weak vorticity formulation January 13, 2017 28 / 30



Why? First obtain equivalent definition of boundary-coupled for velocity
formulation: take div-free test vector fields which are only tangent to
the boundary. Next note that,

for smooth flows, net force can be
re-written integrating ∇p against test function with convenient normal
component.

If normal component of said test function vanishes then PDE should
imply

∫
∇p · Φ = 0. Thus, net force well-defined iff

∫
Ω∇p · Φ = 0 for

any Φ div-free and tangent to boundary, iff boundary-coupled weak
solution.

Similarly for torque: ∫
Γj

p(x − x̄j)
⊥ · n̂ dS;

where x̄j is the center of mass.

Helena J. Nussenzveig Lopes (IM-UFRJ) Weak vorticity formulation January 13, 2017 28 / 30



Why? First obtain equivalent definition of boundary-coupled for velocity
formulation: take div-free test vector fields which are only tangent to
the boundary. Next note that, for smooth flows,

net force can be
re-written integrating ∇p against test function with convenient normal
component.

If normal component of said test function vanishes then PDE should
imply

∫
∇p · Φ = 0. Thus, net force well-defined iff

∫
Ω∇p · Φ = 0 for

any Φ div-free and tangent to boundary, iff boundary-coupled weak
solution.

Similarly for torque: ∫
Γj

p(x − x̄j)
⊥ · n̂ dS;

where x̄j is the center of mass.

Helena J. Nussenzveig Lopes (IM-UFRJ) Weak vorticity formulation January 13, 2017 28 / 30



Why? First obtain equivalent definition of boundary-coupled for velocity
formulation: take div-free test vector fields which are only tangent to
the boundary. Next note that, for smooth flows, net force can be
re-written integrating ∇p against test function with convenient normal
component.

If normal component of said test function vanishes then PDE should
imply

∫
∇p · Φ = 0. Thus, net force well-defined iff

∫
Ω∇p · Φ = 0 for

any Φ div-free and tangent to boundary, iff boundary-coupled weak
solution.

Similarly for torque: ∫
Γj

p(x − x̄j)
⊥ · n̂ dS;

where x̄j is the center of mass.

Helena J. Nussenzveig Lopes (IM-UFRJ) Weak vorticity formulation January 13, 2017 28 / 30



Why? First obtain equivalent definition of boundary-coupled for velocity
formulation: take div-free test vector fields which are only tangent to
the boundary. Next note that, for smooth flows, net force can be
re-written integrating ∇p against test function with convenient normal
component.

If normal component of said test function vanishes then PDE should
imply

∫
∇p · Φ = 0.

Thus, net force well-defined iff
∫

Ω∇p · Φ = 0 for
any Φ div-free and tangent to boundary, iff boundary-coupled weak
solution.

Similarly for torque: ∫
Γj

p(x − x̄j)
⊥ · n̂ dS;

where x̄j is the center of mass.

Helena J. Nussenzveig Lopes (IM-UFRJ) Weak vorticity formulation January 13, 2017 28 / 30



Why? First obtain equivalent definition of boundary-coupled for velocity
formulation: take div-free test vector fields which are only tangent to
the boundary. Next note that, for smooth flows, net force can be
re-written integrating ∇p against test function with convenient normal
component.

If normal component of said test function vanishes then PDE should
imply

∫
∇p · Φ = 0. Thus, net force well-defined iff

∫
Ω∇p · Φ = 0 for

any Φ div-free and tangent to boundary,

iff boundary-coupled weak
solution.

Similarly for torque: ∫
Γj

p(x − x̄j)
⊥ · n̂ dS;

where x̄j is the center of mass.

Helena J. Nussenzveig Lopes (IM-UFRJ) Weak vorticity formulation January 13, 2017 28 / 30



Why? First obtain equivalent definition of boundary-coupled for velocity
formulation: take div-free test vector fields which are only tangent to
the boundary. Next note that, for smooth flows, net force can be
re-written integrating ∇p against test function with convenient normal
component.

If normal component of said test function vanishes then PDE should
imply

∫
∇p · Φ = 0. Thus, net force well-defined iff

∫
Ω∇p · Φ = 0 for

any Φ div-free and tangent to boundary, iff boundary-coupled weak
solution.

Similarly for torque: ∫
Γj

p(x − x̄j)
⊥ · n̂ dS;

where x̄j is the center of mass.

Helena J. Nussenzveig Lopes (IM-UFRJ) Weak vorticity formulation January 13, 2017 28 / 30



Why? First obtain equivalent definition of boundary-coupled for velocity
formulation: take div-free test vector fields which are only tangent to
the boundary. Next note that, for smooth flows, net force can be
re-written integrating ∇p against test function with convenient normal
component.

If normal component of said test function vanishes then PDE should
imply

∫
∇p · Φ = 0. Thus, net force well-defined iff

∫
Ω∇p · Φ = 0 for

any Φ div-free and tangent to boundary, iff boundary-coupled weak
solution.

Similarly for torque: ∫
Γj

p(x − x̄j)
⊥ · n̂ dS;

where x̄j is the center of mass.

Helena J. Nussenzveig Lopes (IM-UFRJ) Weak vorticity formulation January 13, 2017 28 / 30



Summary and concluding remarks

(1) Weak velocity and weak vorticity formulations equivalent; exchange
of circulation with ∂ explicitly incorporated in weak vorticity form.

(2) m(t) = γ(0)− γ(t).

(3) Circulation conserved implies existence of a boundary coupled
weak solution. Net force and torque on ∂ well-defined iff
boundary-coupled.

(4) Vortex sheet critical regularity: if ω0 ∈ L1 then (exists)
boundary-coupled with conservation of circulation.

(5) Cannot avoid vortex sheet regularity in vanishing viscosity problem.
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Thank you very much!
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