Weak vorticity formulation for incompressible 2D Euler in domains with boundary

Helena J. Nussenzveig Lopes
Instituto de Matemática
Univ. Fed. Rio de Janeiro (UFRJ)
BRASIL

IPAM Workshop on Turbulent Dissipation, Mixing and Predictability
Los Angeles, CA 2017

Collaborators:

Collaborators:

Dragoş Iftimie (U. Lyon I)

Collaborators:

Dragoş Iftimie (U. Lyon I)

Milton C. Lopes Filho (UFRJ)

Collaborators:

Dragoş Iftimie (U. Lyon I)

Milton C. Lopes Filho (UFRJ)

Franck Sueur (U. Bordeaux)

Vanishing viscosity

Vanishing viscosity

Theme: vanishing viscosity in presence of a rigid boundary,

Vanishing viscosity

Theme: vanishing viscosity in presence of a rigid boundary, no slip ∂ condition

Vanishing viscosity

Theme: vanishing viscosity in presence of a rigid boundary, no slip ∂ condition

From basic energy estimate get $\left\{u^{\nu}\right\}$ bounded in $L^{\infty}\left(L^{2}\right)$

Vanishing viscosity

Theme: vanishing viscosity in presence of a rigid boundary, no slip ∂ condition

From basic energy estimate get $\left\{u^{\nu}\right\}$ bounded in $L^{\infty}\left(L^{2}\right)$
\Longrightarrow there exists a weak limit v

Vanishing viscosity

Theme: vanishing viscosity in presence of a rigid boundary, no slip ∂ condition

From basic energy estimate get $\left\{u^{\nu}\right\}$ bounded in $L^{\infty}\left(L^{2}\right)$
\Longrightarrow there exists a weak limit v

Main questions: is v a weak solution of Euler? Do new phenomena arise??

Vanishing viscosity

Theme: vanishing viscosity in presence of a rigid boundary, no slip ∂ condition

From basic energy estimate get $\left\{u^{\nu}\right\}$ bounded in $L^{\infty}\left(L^{2}\right)$
\Longrightarrow there exists a weak limit v

Main questions: is v a weak solution of Euler? Do new phenomena arise??

Key issue: sharp transition layer near ∂

Vanishing viscosity

Theme: vanishing viscosity in presence of a rigid boundary, no slip ∂ condition

From basic energy estimate get $\left\{u^{\nu}\right\}$ bounded in $L^{\infty}\left(L^{2}\right)$
\Longrightarrow there exists a weak limit v

Main questions: is v a weak solution of Euler? Do new phenomena arise??

Key issue: sharp transition layer near ∂
vortex sheet structure near ∂

More precisely...

More precisely...

Theorem
 (J Kelliher, CMS 2008)

More precisely...

Theorem

(J Kelliher, CMS 2008) If $u^{\nu} \rightharpoonup v$ weakly in L^{2}, uniformly in time,

More precisely...

Theorem

(J Kelliher, CMS 2008) If $u^{\nu} \rightharpoonup v$ weakly in L^{2}, uniformly in time, and if v is a weak solution to incompressible Euler

More precisely...

Theorem

(J Kelliher, CMS 2008) If $u^{\nu} \rightharpoonup v$ weakly in L^{2}, uniformly in time, and if v is a weak solution to incompressible Euler then

$$
\begin{aligned}
& \omega^{\nu} \rightharpoonup \text { curl } v-(v \cdot \tau) \mu, \text { in } 2 D, \\
& \omega^{\nu} \rightharpoonup \text { curl } v-(v \times \mathbf{n}) \mu, \text { in } 3 D .
\end{aligned}
$$

More precisely...

Theorem

(J Kelliher, CMS 2008) If $u^{\nu} \rightharpoonup v$ weakly in L^{2}, uniformly in time, and if v is a weak solution to incompressible Euler then

$$
\begin{aligned}
& \omega^{\nu} \rightharpoonup \text { curl } v-(v \cdot \tau) \mu, \text { in } 2 D, \\
& \omega^{\nu} \rightharpoonup \text { curl } v-(v \times \mathbf{n}) \mu, \text { in } 3 D .
\end{aligned}
$$

Here μ is a measure supported on ∂ : arclength in 2D, surface area in $3 D$; the convergence of vorticity is weak-* $\left(H^{1}(\Omega)\right)^{\prime}$, uniform in time.

More precisely...

Theorem

(J Kelliher, CMS 2008) If $u^{\nu} \rightharpoonup v$ weakly in L^{2}, uniformly in time, and if v is a weak solution to incompressible Euler then

$$
\begin{aligned}
& \omega^{\nu} \rightharpoonup \text { curl } v-(v \cdot \tau) \mu, \text { in } 2 D, \\
& \omega^{\nu} \rightharpoonup \text { curl } v-(v \times \mathbf{n}) \mu, \text { in } 3 D .
\end{aligned}
$$

Here μ is a measure supported on ∂ : arclength in 2D, surface area in $3 D$; the convergence of vorticity is weak-* $\left(H^{1}(\Omega)\right)^{\prime}$, uniform in time.

OBS. Actually, iff.

Vanishing viscosity, in domains with ∂, no slip, established for flows with special symmetry:

Vanishing viscosity, in domains with ∂, no slip, established for flows with special symmetry:

- (2D) Circularly symmetric flow in a disk - let (r, θ) be polar coordinates. Then $\mathbf{u}=u_{\theta}(r, t) \mathbf{e}_{\theta}$, on the domain

$$
\Omega=\left\{(x, y) \mid x^{2}+y^{2}<R\right\} .
$$

Vanishing viscosity, in domains with ∂, no slip, established for flows with special symmetry:

- (2D) Circularly symmetric flow in a disk - let (r, θ) be polar coordinates. Then $\mathbf{u}=u_{\theta}(r, t) \mathbf{e}_{\theta}$, on the domain $\Omega=\left\{(x, y) \mid x^{2}+y^{2}<R\right\}$. Matsui 1994,

Vanishing viscosity, in domains with ∂, no slip, established for flows with special symmetry:

- (2D) Circularly symmetric flow in a disk - let (r, θ) be polar coordinates. Then $\mathbf{u}=u_{\theta}(r, t) \mathbf{e}_{\theta}$, on the domain $\Omega=\left\{(x, y) \mid x^{2}+y^{2}<R\right\}$. Matsui 1994, Bona-Wu 2002,

Vanishing viscosity, in domains with ∂, no slip, established for flows with special symmetry:

- (2D) Circularly symmetric flow in a disk - let (r, θ) be polar coordinates. Then $\mathbf{u}=u_{\theta}(r, t) \mathbf{e}_{\theta}$, on the domain $\Omega=\left\{(x, y) \mid x^{2}+y^{2}<R\right\}$. Matsui 1994, Bona-Wu 2002, Lopes Filho-Mazzucato-NL 2008,

Vanishing viscosity, in domains with ∂, no slip, established for flows with special symmetry:

- (2D) Circularly symmetric flow in a disk - let (r, θ) be polar coordinates. Then $\mathbf{u}=u_{\theta}(r, t) \mathbf{e}_{\theta}$, on the domain $\Omega=\left\{(x, y) \mid x^{2}+y^{2}<R\right\}$. Matsui 1994, Bona-Wu 2002, Lopes Filho-Mazzucato-NL 2008, Lopes Filho-Mazzucato-NL-Taylor 2008

Vanishing viscosity, in domains with ∂, no slip, established for flows with special symmetry:

- (2D) Circularly symmetric flow in a disk - let (r, θ) be polar coordinates. Then $\mathbf{u}=u_{\theta}(r, t) \mathbf{e}_{\theta}$, on the domain $\Omega=\left\{(x, y) \mid x^{2}+y^{2}<R\right\}$. Matsui 1994, Bona-Wu 2002, Lopes Filho-Mazzucato-NL 2008, Lopes Filho-Mazzucato-NL-Taylor 2008
- Plane-parallel flow in a (periodic) channel, i.e. $\mathbf{u}=\left(u^{1}(z, t), u^{2}(x, z, t), 0\right)$, on the domain $\Omega=(0, L)^{2} \times(0, h)$.

Vanishing viscosity, in domains with ∂, no slip, established for flows with special symmetry:

- (2D) Circularly symmetric flow in a disk - let (r, θ) be polar coordinates. Then $\mathbf{u}=u_{\theta}(r, t) \mathbf{e}_{\theta}$, on the domain $\Omega=\left\{(x, y) \mid x^{2}+y^{2}<R\right\}$. Matsui 1994, Bona-Wu 2002, Lopes Filho-Mazzucato-NL 2008, Lopes Filho-Mazzucato-NL-Taylor 2008
- Plane-parallel flow in a (periodic) channel, i.e. $\mathbf{u}=\left(u^{1}(z, t), u^{2}(x, z, t), 0\right)$, on the domain $\Omega=(0, L)^{2} \times(0, h)$. Mazzucato-Taylor 2008
- Parallel pipe flow in a (periodic) pipe - let (x, r, ϕ) be cylindrical coordinates. Then $\mathbf{u}=u_{\phi}(r, t) \mathbf{e}_{\phi}+u_{x}(\phi, r, t) \mathbf{e}_{\mathbf{x}}$, on the domain $\Omega=\left\{(x, y, z) \mid y^{2}+z^{2}<R, 0<x<L\right\}$.
- Parallel pipe flow in a (periodic) pipe - let (x, r, ϕ) be cylindrical coordinates. Then $\mathbf{u}=u_{\phi}(r, t) \mathbf{e}_{\phi}+u_{x}(\phi, r, t) \mathbf{e}_{\mathbf{x}}$, on the domain $\Omega=\left\{(x, y, z) \mid y^{2}+z^{2}<R, 0<x<L\right\}$. Mazzucato-Taylor 2011
- Parallel pipe flow in a (periodic) pipe - let (x, r, ϕ) be cylindrical coordinates. Then $\mathbf{u}=u_{\phi}(r, t) \mathbf{e}_{\phi}+u_{x}(\phi, r, t) \mathbf{e}_{\mathbf{x}}$, on the domain $\Omega=\left\{(x, y, z) \mid y^{2}+z^{2}<R, 0<x<L\right\}$. Mazzucato-Taylor 2011
- Optimal convergence rates, in higher Sobolev norms, wrt ν, and quantification of vorticity production at ∂, in all these scenarios, for well and ill-prepared data.
- Parallel pipe flow in a (periodic) pipe - let (x, r, ϕ) be cylindrical coordinates. Then $\mathbf{u}=u_{\phi}(r, t) \mathbf{e}_{\phi}+u_{x}(\phi, r, t) \mathbf{e}_{\mathbf{x}}$, on the domain $\Omega=\left\{(x, y, z) \mid y^{2}+z^{2}<R, 0<x<L\right\}$. Mazzucato-Taylor 2011
- Optimal convergence rates, in higher Sobolev norms, wrt ν, and quantification of vorticity production at ∂, in all these scenarios, for well and ill-prepared data. Mazzucato-Niu-Wang 2011,
- Parallel pipe flow in a (periodic) pipe - let (x, r, ϕ) be cylindrical coordinates. Then $\mathbf{u}=u_{\phi}(r, t) \mathbf{e}_{\phi}+u_{x}(\phi, r, t) \mathbf{e}_{\mathbf{x}}$, on the domain $\Omega=\left\{(x, y, z) \mid y^{2}+z^{2}<R, 0<x<L\right\}$. Mazzucato-Taylor 2011
- Optimal convergence rates, in higher Sobolev norms, wrt ν, and quantification of vorticity production at ∂, in all these scenarios, for well and ill-prepared data. Mazzucato-Niu-Wang 2011, Han-Mazzucato-Niu-Wang 2012,
- Parallel pipe flow in a (periodic) pipe - let (x, r, ϕ) be cylindrical coordinates. Then $\mathbf{u}=u_{\phi}(r, t) \mathbf{e}_{\phi}+u_{x}(\phi, r, t) \mathbf{e}_{\mathbf{x}}$, on the domain $\Omega=\left\{(x, y, z) \mid y^{2}+z^{2}<R, 0<x<L\right\}$. Mazzucato-Taylor 2011
- Optimal convergence rates, in higher Sobolev norms, wrt ν, and quantification of vorticity production at ∂, in all these scenarios, for well and ill-prepared data. Mazzucato-Niu-Wang 2011, Han-Mazzucato-Niu-Wang 2012, Gie-Kelliher-Lopes Filho-Mazzucato-NL 2017
- Parallel pipe flow in a (periodic) pipe - let (x, r, ϕ) be cylindrical coordinates. Then $\mathbf{u}=u_{\phi}(r, t) \mathbf{e}_{\phi}+u_{x}(\phi, r, t) \mathbf{e}_{\mathbf{x}}$, on the domain $\Omega=\left\{(x, y, z) \mid y^{2}+z^{2}<R, 0<x<L\right\}$. Mazzucato-Taylor 2011
- Optimal convergence rates, in higher Sobolev norms, wrt ν, and quantification of vorticity production at ∂, in all these scenarios, for well and ill-prepared data. Mazzucato-Niu-Wang 2011, Han-Mazzucato-Niu-Wang 2012, Gie-Kelliher-Lopes Filho-Mazzucato-NL 2017

Focus on 2D flows -

Focus on 2D flows - simpler and possible to do rigorous analysis

Focus on 2D flows - simpler and possible to do rigorous analysis

Vanishing viscosity + rigid ∂

Focus on 2D flows - simpler and possible to do rigorous analysis

Vanishing viscosity + rigid $\partial \rightarrow$ vortex sheets

Focus on 2D flows - simpler and possible to do rigorous analysis

Vanishing viscosity + rigid $\partial \rightarrow$ vortex sheets \rightarrow Kelvin-Helmholtz instability

Focus on 2D flows - simpler and possible to do rigorous analysis

Vanishing viscosity + rigid $\partial \rightarrow$ vortex sheets \rightarrow Kelvin-Helmholtz instability \rightarrow small scale generation

Focus on 2D flows - simpler and possible to do rigorous analysis

Vanishing viscosity + rigid $\partial \rightarrow$ vortex sheets \rightarrow Kelvin-Helmholtz instability \rightarrow small scale generation \rightarrow passage to turbulence

Focus on 2D flows - simpler and possible to do rigorous analysis

Vanishing viscosity + rigid $\partial \rightarrow$ vortex sheets \rightarrow Kelvin-Helmholtz instability \rightarrow small scale generation \rightarrow passage to turbulence

Mechanism to generate small scales: ∂ layer + Kelvin-Helmholtz instability

Focus on 2D flows - simpler and possible to do rigorous analysis

Vanishing viscosity + rigid $\partial \rightarrow$ vortex sheets \rightarrow Kelvin-Helmholtz instability \rightarrow small scale generation \rightarrow passage to turbulence

Mechanism to generate small scales: ∂ layer + Kelvin-Helmholtz instability

Seek framework for weak solutions of 2D Euler, in domains with (rigid) boundary, vortex sheet regularity, which allow tracking vorticity dynamics.

Delort's theorem, Schochet's weak vorticity formulation in \mathbb{R}^{2}

Delort's theorem, Schochet's weak vorticity formulation in \mathbb{R}^{2}

Fluid domain $\Omega \subset \mathbb{R}^{2}$.

Delort's theorem, Schochet's weak vorticity formulation in \mathbb{R}^{2}

Fluid domain $\Omega \subset \mathbb{R}^{2}$. We assume:

Delort's theorem, Schochet's weak vorticity formulation in \mathbb{R}^{2}

Fluid domain $\Omega \subset \mathbb{R}^{2}$. We assume: bounded open set,

Delort's theorem, Schochet's weak vorticity formulation in \mathbb{R}^{2}

Fluid domain $\Omega \subset \mathbb{R}^{2}$. We assume: bounded open set, smooth boundary,

Delort's theorem, Schochet's weak vorticity formulation in \mathbb{R}^{2}

Fluid domain $\Omega \subset \mathbb{R}^{2}$. We assume: bounded open set, smooth boundary, simply connected.

Delort's theorem, Schochet's weak vorticity formulation in \mathbb{R}^{2}

Fluid domain $\Omega \subset \mathbb{R}^{2}$. We assume: bounded open set, smooth boundary, simply connected.

Euler equations for incompressible (ideal) fluid flow:

Delort's theorem, Schochet's weak vorticity formulation in \mathbb{R}^{2}

Fluid domain $\Omega \subset \mathbb{R}^{2}$. We assume: bounded open set, smooth boundary, simply connected.

Euler equations for incompressible (ideal) fluid flow:

$$
\begin{cases}\partial_{t} u+(u \cdot \nabla) u=-\nabla p, & \text { in } \Omega \times(0, \infty) \tag{1}\\ \operatorname{div} u=0, & \text { in } \Omega \times[0, \infty) \\ u(x, t) \cdot \hat{n}(x)=0, & \text { on } \partial \Omega \times[0, \infty) \\ u(x, 0)=u_{0}(x), & \text { on } \Omega \times\{t=0\}\end{cases}
$$

Delort's theorem, Schochet's weak vorticity formulation in \mathbb{R}^{2}

Fluid domain $\Omega \subset \mathbb{R}^{2}$. We assume: bounded open set, smooth boundary, simply connected.

Euler equations for incompressible (ideal) fluid flow:

$$
\begin{cases}\partial_{t} u+(u \cdot \nabla) u=-\nabla p, & \text { in } \Omega \times(0, \infty) \tag{1}\\ \operatorname{div} u=0, & \text { in } \Omega \times[0, \infty) \\ u(x, t) \cdot \hat{n}(x)=0, & \text { on } \partial \Omega \times[0, \infty) \\ u(x, 0)=u_{0}(x), & \text { on } \Omega \times\{t=0\}\end{cases}
$$

Vorticity: $\omega=$ curl u.

Vorticity equation (curl of Euler):

Vorticity equation (curl of Euler):

$$
\begin{cases}\partial_{t} \omega+u \cdot \nabla \omega=0, & \text { in } \Omega \times(0, \infty) \tag{2}\\ \operatorname{div} u=0, & \text { in } \Omega \times[0, \infty) \\ \text { curl } u=\omega, & \text { in } \Omega \times[0, \infty) \\ u(x, t) \cdot \hat{n}(x)=0, & \text { on } \partial \Omega \times[0, \infty) \\ \omega(x, 0)=\omega_{0}(x)=\text { curl } u_{0}, & \text { on } \Omega \times\{t=0\}\end{cases}
$$

Vorticity equation (curl of Euler):

$$
\begin{cases}\partial_{t} \omega+u \cdot \nabla \omega=0, & \text { in } \Omega \times(0, \infty) \tag{2}\\ \operatorname{div} u=0, & \text { in } \Omega \times[0, \infty) \\ \text { curl } u=\omega, & \text { in } \Omega \times[0, \infty) \\ u(x, t) \cdot \hat{n}(x)=0, & \text { on } \partial \Omega \times[0, \infty) \\ \omega(x, 0)=\omega_{0}(x)=\text { curl } u_{0}, & \text { on } \Omega \times\{t=0\}\end{cases}
$$

"Vortex sheet data"

$$
\omega \in \mathcal{B M}(\Omega) \cap H^{-1}(\Omega)
$$

Vorticity equation (curl of Euler):

$$
\begin{cases}\partial_{t} \omega+u \cdot \nabla \omega=0, & \text { in } \Omega \times(0, \infty) \tag{2}\\ \operatorname{div} u=0, & \text { in } \Omega \times[0, \infty) \\ \text { curl } u=\omega, & \text { in } \Omega \times[0, \infty) \\ u(x, t) \cdot \hat{n}(x)=0, & \text { on } \partial \Omega \times[0, \infty) \\ \omega(x, 0)=\omega_{0}(x)=\operatorname{curl} u_{0}, & \text { on } \Omega \times\{t=0\}\end{cases}
$$

"Vortex sheet data"

$$
\omega \in \mathcal{B M}(\Omega) \cap H^{-1}(\Omega)
$$

$\mathcal{B M}(\Omega)$ are bounded Radon measures on Ω.

Discuss weak solutions for vortex sheet initial data: $\omega_{0} \in \mathcal{B M}(\Omega) \cap H^{-1}(\Omega)$.

Discuss weak solutions for vortex sheet initial data: $\omega_{0} \in \mathcal{B M}(\Omega) \cap H^{-1}(\Omega)$.
$L_{\sigma}^{2}: L^{2}$, divergence-free vector fields.

Discuss weak solutions for vortex sheet initial data:
$\omega_{0} \in \mathcal{B M}(\Omega) \cap H^{-1}(\Omega)$.
$L_{\sigma}^{2}: L^{2}$, divergence-free vector fields. Weak velocity formulation:

Definition

Say $u \in L_{\text {loc }}^{\infty}\left((0, \infty) ; L_{\sigma}^{2}(\Omega)\right) \cap C_{\text {loc }}^{0}\left([0, \infty) ; H^{-L}(\Omega)\right), L>0$, is a weak solution of (1) if,

Discuss weak solutions for vortex sheet initial data:
$\omega_{0} \in \mathcal{B M}(\Omega) \cap H^{-1}(\Omega)$.
$L_{\sigma}^{2}: L^{2}$, divergence-free vector fields. Weak velocity formulation:

Definition

Say $u \in L_{\text {loc }}^{\infty}\left((0, \infty) ; L_{\sigma}^{2}(\Omega)\right) \cap C_{\text {loc }}^{0}\left([0, \infty) ; H^{-L}(\Omega)\right), L>0$, is a weak solution of (1) if, for all div-free $\phi \in C_{c}^{\infty}\left(\mathbb{R}_{+} \times \Omega\right)$:

Discuss weak solutions for vortex sheet initial data:
$\omega_{0} \in \mathcal{B M}(\Omega) \cap H^{-1}(\Omega)$.
$L_{\sigma}^{2}: L^{2}$, divergence-free vector fields. Weak velocity formulation:

Definition

Say $u \in L_{\text {loc }}^{\infty}\left((0, \infty) ; L_{\sigma}^{2}(\Omega)\right) \cap C_{\text {loc }}^{0}\left([0, \infty) ; H^{-L}(\Omega)\right), L>0$, is a weak solution of (1) if, for all div-free $\phi \in C_{c}^{\infty}\left(\mathbb{R}_{+} \times \Omega\right)$:

$$
\int_{0}^{\infty} \int_{\Omega} \partial_{t} \Phi \cdot u+[(u \cdot \nabla) \Phi] \cdot u+\int_{\Omega} \Phi(x, 0) \cdot u_{0}(x)=0
$$

Discuss weak solutions for vortex sheet initial data:
$\omega_{0} \in \mathcal{B M}(\Omega) \cap H^{-1}(\Omega)$.
$L_{\sigma}^{2}: L^{2}$, divergence-free vector fields. Weak velocity formulation:

Definition

Say $u \in L_{\text {loc }}^{\infty}\left((0, \infty) ; L_{\sigma}^{2}(\Omega)\right) \cap C_{\text {loc }}^{0}\left([0, \infty) ; H^{-L}(\Omega)\right), L>0$, is a weak solution of (1) if, for all div-free $\phi \in C_{c}^{\infty}\left(\mathbb{R}_{+} \times \Omega\right)$:

$$
\int_{0}^{\infty} \int_{\Omega} \partial_{t} \Phi \cdot u+[(u \cdot \nabla) \Phi] \cdot u+\int_{\Omega} \Phi(x, 0) \cdot u_{0}(x)=0
$$

if

$$
\operatorname{div} u=0 \text { in } \mathcal{D}^{\prime}(\Omega),
$$

Discuss weak solutions for vortex sheet initial data:
$\omega_{0} \in \mathcal{B M}(\Omega) \cap H^{-1}(\Omega)$.
$L_{\sigma}^{2}: L^{2}$, divergence-free vector fields. Weak velocity formulation:

Definition

Say $u \in L_{\text {loc }}^{\infty}\left((0, \infty) ; L_{\sigma}^{2}(\Omega)\right) \cap C_{\text {loc }}^{0}\left([0, \infty) ; H^{-L}(\Omega)\right), L>0$, is a weak solution of (1) if, for all div-free $\phi \in C_{c}^{\infty}\left(\mathbb{R}_{+} \times \Omega\right)$:

$$
\int_{0}^{\infty} \int_{\Omega} \partial_{t} \Phi \cdot u+[(u \cdot \nabla) \Phi] \cdot u+\int_{\Omega} \Phi(x, 0) \cdot u_{0}(x)=0
$$

if

$$
\operatorname{div} u=0 \text { in } \mathcal{D}^{\prime}(\Omega),
$$

and if ∂ condition $u \cdot \hat{n}=0$ is satisfied in the trace sense for each $t \geq 0$.

Discuss weak solutions for vortex sheet initial data:
$\omega_{0} \in \mathcal{B M}(\Omega) \cap H^{-1}(\Omega)$.
$L_{\sigma}^{2}: L^{2}$, divergence-free vector fields. Weak velocity formulation:

Definition

Say $u \in L_{\text {loc }}^{\infty}\left((0, \infty) ; L_{\sigma}^{2}(\Omega)\right) \cap C_{\text {loc }}^{0}\left([0, \infty) ; H^{-L}(\Omega)\right), L>0$, is a weak solution of (1) if, for all div-free $\Phi \in C_{c}^{\infty}\left(\mathbb{R}_{+} \times \Omega\right)$:

$$
\int_{0}^{\infty} \int_{\Omega} \partial_{t} \Phi \cdot u+[(u \cdot \nabla) \Phi] \cdot u+\int_{\Omega} \Phi(x, 0) \cdot u_{0}(x)=0
$$

if

$$
\operatorname{div} u=0 \text { in } \mathcal{D}^{\prime}(\Omega),
$$

and if ∂ condition $u \cdot \hat{n}=0$ is satisfied in the trace sense for each $t \geq 0$.
If u is a weak solution then possible to recover pressure $p \in L_{\text {loc }}^{\infty}\left((0,+\infty) ; \mathcal{D}^{\prime}(\Omega)\right)$.

Theorem (J.-M. Delort, JAMS, 1991)

Let $u_{0} \in L_{\sigma}^{2}(\Omega)$ be such that $\omega_{0}=$ curl $u_{0} \in \mathcal{B} \mathcal{M}_{+}(\Omega)$. Then there exists (at least one!) weak solution $u \in L_{\text {loc }}^{\infty}\left((0, \infty) ; L_{\sigma}^{2}(\Omega)\right) \cap C_{\text {loc }}^{0}\left([0, \infty) ; H^{-L}(\Omega)\right)$ of (1) with initial velocity u_{0}.

Theorem (J.-M. Delort, JAMS, 1991)
 Let $u_{0} \in L_{\sigma}^{2}(\Omega)$ be such that $\omega_{0}=$ curl $u_{0} \in \mathcal{B} \mathcal{M}_{+}(\Omega)$. Then there exists (at least one!) weak solution $u \in L_{\text {loc }}^{\infty}\left((0, \infty) ; L_{\sigma}^{2}(\Omega)\right) \cap C_{\text {loc }}^{0}\left([0, \infty) ; H^{-L}(\Omega)\right)$ of (1) with initial velocity u_{0}.

Delort proved this for a general bounded, smooth domain Ω,

Theorem (J.-M. Delort, JAMS, 1991)

Let $u_{0} \in L_{\sigma}^{2}(\Omega)$ be such that $\omega_{0}=$ curl $u_{0} \in \mathcal{B} \mathcal{M}_{+}(\Omega)$. Then there exists (at least one!) weak solution $u \in L_{\text {loc }}^{\infty}\left((0, \infty) ; L_{\sigma}^{2}(\Omega)\right) \cap C_{\text {loc }}^{0}\left([0, \infty) ; H^{-L}(\Omega)\right)$ of (1) with initial velocity u_{0}.

Delort proved this for a general bounded, smooth domain Ω, also, versions for the fluid domain

Theorem (J.-M. Delort, JAMS, 1991)

Let $u_{0} \in L_{\sigma}^{2}(\Omega)$ be such that $\omega_{0}=$ curl $u_{0} \in \mathcal{B} \mathcal{M}_{+}(\Omega)$. Then there exists (at least one!) weak solution $u \in L_{\text {loc }}^{\infty}\left((0, \infty) ; L_{\sigma}^{2}(\Omega)\right) \cap C_{\text {loc }}^{0}\left([0, \infty) ; H^{-L}(\Omega)\right)$ of (1) with initial velocity u_{0}.

Delort proved this for a general bounded, smooth domain Ω, also, versions for the fluid domain all of \mathbb{R}^{2}

Theorem (J.-M. Delort, JAMS, 1991)

Let $u_{0} \in L_{\sigma}^{2}(\Omega)$ be such that $\omega_{0}=$ curl $u_{0} \in \mathcal{B} \mathcal{M}_{+}(\Omega)$. Then there exists (at least one!) weak solution $u \in L_{\text {loc }}^{\infty}\left((0, \infty) ; L_{\sigma}^{2}(\Omega)\right) \cap C_{\text {loc }}^{0}\left([0, \infty) ; H^{-L}(\Omega)\right)$ of (1) with initial velocity u_{0}.

Delort proved this for a general bounded, smooth domain Ω, also, versions for the fluid domain all of \mathbb{R}^{2} or a compact manifold.

Theorem (J.-M. Delort, JAMS, 1991)

Let $u_{0} \in L_{\sigma}^{2}(\Omega)$ be such that $\omega_{0}=$ curl $u_{0} \in \mathcal{B} \mathcal{M}_{+}(\Omega)$. Then there exists (at least one!) weak solution
$u \in L_{\text {loc }}^{\infty}\left((0, \infty) ; L_{\sigma}^{2}(\Omega)\right) \cap C_{\text {loc }}^{0}\left([0, \infty) ; H^{-L}(\Omega)\right)$ of (1) with initial velocity u_{0}.

Delort proved this for a general bounded, smooth domain Ω, also, versions for the fluid domain all of \mathbb{R}^{2} or a compact manifold.

Boundary condition dealt with by linearity of trace, hence decoupled from flow.

Theorem (J.-M. Delort, JAMS, 1991)

Let $u_{0} \in L_{\sigma}^{2}(\Omega)$ be such that $\omega_{0}=$ curl $u_{0} \in \mathcal{B} \mathcal{M}_{+}(\Omega)$. Then there exists (at least one!) weak solution
$u \in L_{\text {loc }}^{\infty}\left((0, \infty) ; L_{\sigma}^{2}(\Omega)\right) \cap C_{\text {loc }}^{0}\left([0, \infty) ; H^{-L}(\Omega)\right)$ of (1) with initial velocity u_{0}.

Delort proved this for a general bounded, smooth domain Ω, also, versions for the fluid domain all of \mathbb{R}^{2} or a compact manifold.

Boundary condition dealt with by linearity of trace, hence decoupled from flow.

No qualitative information on solution!

Theorem (J.-M. Delort, JAMS, 1991)

Let $u_{0} \in L_{\sigma}^{2}(\Omega)$ be such that $\omega_{0}=$ curl $u_{0} \in \mathcal{B} \mathcal{M}_{+}(\Omega)$. Then there exists (at least one!) weak solution
$u \in L_{\text {loc }}^{\infty}\left((0, \infty) ; L_{\sigma}^{2}(\Omega)\right) \cap C_{\text {loc }}^{0}\left([0, \infty) ; H^{-L}(\Omega)\right)$ of (1) with initial velocity u_{0}.

Delort proved this for a general bounded, smooth domain Ω, also, versions for the fluid domain all of \mathbb{R}^{2} or a compact manifold.

Boundary condition dealt with by linearity of trace, hence decoupled from flow.

No qualitative information on solution!
No tracking vortex dynamics or "conserved quantities".

Revisit Schochet's proof (S. Schochet, CPDE, 1995) of the Delort theorem (in \mathbb{R}^{2});

Revisit Schochet's proof (S. Schochet, CPDE, 1995) of the Delort

 theorem (in \mathbb{R}^{2}); based on the vorticity equation.Revisit Schochet's proof (S. Schochet, CPDE, 1995) of the Delort theorem (in \mathbb{R}^{2}); based on the vorticity equation.
First, introduce Schochet's weak vorticity formulation -

Revisit Schochet's proof (S. Schochet, CPDE, 1995) of the Delort theorem (in \mathbb{R}^{2}); based on the vorticity equation.
First, introduce Schochet's weak vorticity formulation - for every $\varphi \in C_{c}^{\infty}\left([0,+\infty) \times \mathbb{R}^{2}\right)$ the identity below holds true:

Revisit Schochet's proof (S. Schochet, CPDE, 1995) of the Delort theorem (in \mathbb{R}^{2}); based on the vorticity equation.
First, introduce Schochet's weak vorticity formulation - for every $\varphi \in C_{c}^{\infty}\left([0,+\infty) \times \mathbb{R}^{2}\right)$ the identity below holds true:

$$
\begin{aligned}
\int_{0}^{\infty} \int_{\mathbb{R}^{2}} \partial_{t} \varphi \omega+ & \int_{0}^{\infty} \int_{\mathbb{R}^{2}} \int_{\mathbb{R}^{2}} H_{\varphi}(x, y, t) \omega(x, t) \omega(y, t) d x d y d t \\
& +\int_{\mathbb{R}^{2}} \varphi(0, x) \omega_{0}(x) d x=0
\end{aligned}
$$

Revisit Schochet's proof (S. Schochet, CPDE, 1995) of the Delort theorem (in \mathbb{R}^{2}); based on the vorticity equation.
First, introduce Schochet's weak vorticity formulation - for every $\varphi \in C_{c}^{\infty}\left([0,+\infty) \times \mathbb{R}^{2}\right)$ the identity below holds true:

$$
\begin{aligned}
\int_{0}^{\infty} \int_{\mathbb{R}^{2}} \partial_{t} \varphi \omega+ & \int_{0}^{\infty} \int_{\mathbb{R}^{2}} \int_{\mathbb{R}^{2}} H_{\varphi}(x, y, t) \omega(x, t) \omega(y, t) d x d y d t \\
& +\int_{\mathbb{R}^{2}} \varphi(0, x) \omega_{0}(x) d x=0
\end{aligned}
$$

where

$$
H_{\varphi}(x, y, t)=(\nabla \varphi(x, t)-\nabla \varphi(y, t)) \cdot \frac{(x-y)^{\perp}}{4 \pi|x-y|^{2}} .
$$

Revisit Schochet's proof (S. Schochet, CPDE, 1995) of the Delort theorem (in \mathbb{R}^{2}); based on the vorticity equation.
First, introduce Schochet's weak vorticity formulation - for every $\varphi \in C_{c}^{\infty}\left([0,+\infty) \times \mathbb{R}^{2}\right)$ the identity below holds true:

$$
\begin{aligned}
\int_{0}^{\infty} \int_{\mathbb{R}^{2}} \partial_{t} \varphi \omega+ & \int_{0}^{\infty} \int_{\mathbb{R}^{2}} \int_{\mathbb{R}^{2}} H_{\varphi}(x, y, t) \omega(x, t) \omega(y, t) d x d y d t \\
& +\int_{\mathbb{R}^{2}} \varphi(0, x) \omega_{0}(x) d x=0
\end{aligned}
$$

where

$$
H_{\varphi}(x, y, t)=(\nabla \varphi(x, t)-\nabla \varphi(y, t)) \cdot \frac{(x-y)^{\perp}}{4 \pi|x-y|^{2}}
$$

Term with $\int_{0}^{\infty} \int_{\mathbb{R}^{2}} \int_{\mathbb{R}^{2}}$ comes from substituting $u=\nabla^{\perp} \Delta^{-1} \omega$ in nonlinear term and symmetrizing the kernel.

Key observation:

```
Key observation: smooth, compact support }\varphi=>\mp@subsup{H}{\varphi}{}\mathrm{ bounded in
\mp@subsup{\mathbb{R}}{+}{}\times\mp@subsup{\mathbb{R}}{}{4}\mathrm{ ,}
```

Key observation: smooth, compact support $\varphi \Rightarrow H_{\varphi}$ bounded in $\mathbb{R}_{+} \times \mathbb{R}^{4}$, discontinuous only on the diagonal $x=y$,

Key observation: smooth, compact support $\varphi \Rightarrow H_{\varphi}$ bounded in

 $\mathbb{R}_{+} \times \mathbb{R}^{4}$, discontinuous only on the diagonal $x=y$, vanishes at ∞.Key observation: smooth, compact support $\varphi \Rightarrow H_{\varphi}$ bounded in $\mathbb{R}_{+} \times \mathbb{R}^{4}$, discontinuous only on the diagonal $x=y$, vanishes at ∞. Hence:

Key observation: smooth, compact support $\varphi \Rightarrow H_{\varphi}$ bounded in $\mathbb{R}_{+} \times \mathbb{R}^{4}$, discontinuous only on the diagonal $x=y$, vanishes at ∞. Hence: if ω does not attach mass to points

Key observation: smooth, compact support $\varphi \Rightarrow H_{\varphi}$ bounded in $\mathbb{R}_{+} \times \mathbb{R}^{4}$, discontinuous only on the diagonal $x=y$, vanishes at ∞. Hence: if ω does not attach mass to points (diffuse or continuous measure)

Key observation: smooth, compact support $\varphi \Rightarrow H_{\varphi}$ bounded in $\mathbb{R}_{+} \times \mathbb{R}^{4}$, discontinuous only on the diagonal $x=y$, vanishes at ∞. Hence: if ω does not attach mass to points (diffuse or continuous measure) then $\omega \mapsto\left\langle H_{\varphi}, \omega \otimes \omega\right\rangle$ is weak-* continuous (wrt diffuse measures).

Key observation: smooth, compact support $\varphi \Rightarrow H_{\varphi}$ bounded in $\mathbb{R}_{+} \times \mathbb{R}^{4}$, discontinuous only on the diagonal $x=y$, vanishes at ∞. Hence: if ω does not attach mass to points (diffuse or continuous measure) then $\omega \mapsto\left\langle H_{\varphi}, \omega \otimes \omega\right\rangle$ is weak-* continuous (wrt diffuse measures).

It happens that $\mathcal{B} \mathcal{M}_{+} \cap H^{-1}$ consists of diffuse measures.

Key observation: smooth, compact support $\varphi \Rightarrow H_{\varphi}$ bounded in $\mathbb{R}_{+} \times \mathbb{R}^{4}$, discontinuous only on the diagonal $x=y$, vanishes at ∞. Hence: if ω does not attach mass to points (diffuse or continuous measure) then $\omega \mapsto\left\langle H_{\varphi}, \omega \otimes \omega\right\rangle$ is weak-* continuous (wrt diffuse measures).

It happens that $\mathcal{B} \mathcal{M}_{+} \cap H^{-1}$ consists of diffuse measures.
What about domains with boundaries?

Key observation: smooth, compact support $\varphi \Rightarrow H_{\varphi}$ bounded in $\mathbb{R}_{+} \times \mathbb{R}^{4}$, discontinuous only on the diagonal $x=y$, vanishes at ∞. Hence: if ω does not attach mass to points (diffuse or continuous measure) then $\omega \mapsto\left\langle H_{\varphi}, \omega \otimes \omega\right\rangle$ is weak-* continuous (wrt diffuse measures).

It happens that $\mathcal{B} \mathcal{M}_{+} \cap H^{-1}$ consists of diffuse measures.
What about domains with boundaries?
Delort's theorem is local

Key observation: smooth, compact support $\varphi \Rightarrow H_{\varphi}$ bounded in $\mathbb{R}_{+} \times \mathbb{R}^{4}$, discontinuous only on the diagonal $x=y$, vanishes at ∞. Hence: if ω does not attach mass to points (diffuse or continuous measure) then $\omega \mapsto\left\langle H_{\varphi}, \omega \otimes \omega\right\rangle$ is weak-* continuous (wrt diffuse measures).

It happens that $\mathcal{B} \mathcal{M}_{+} \cap H^{-1}$ consists of diffuse measures.
What about domains with boundaries?
Delort's theorem is local so \exists in domains with boundaries OK.

Key observation: smooth, compact support $\varphi \Rightarrow H_{\varphi}$ bounded in $\mathbb{R}_{+} \times \mathbb{R}^{4}$, discontinuous only on the diagonal $x=y$, vanishes at ∞. Hence: if ω does not attach mass to points (diffuse or continuous measure) then $\omega \mapsto\left\langle H_{\varphi}, \omega \otimes \omega\right\rangle$ is weak-* continuous (wrt diffuse measures).

It happens that $\mathcal{B} \mathcal{M}_{+} \cap H^{-1}$ consists of diffuse measures.
What about domains with boundaries?
Delort's theorem is local so \exists in domains with boundaries OK.
Boundary condition:

Key observation: smooth, compact support $\varphi \Rightarrow H_{\varphi}$ bounded in $\mathbb{R}_{+} \times \mathbb{R}^{4}$, discontinuous only on the diagonal $x=y$, vanishes at ∞. Hence: if ω does not attach mass to points (diffuse or continuous measure) then $\omega \mapsto\left\langle H_{\varphi}, \omega \otimes \omega\right\rangle$ is weak-* continuous (wrt diffuse measures).

It happens that $\mathcal{B} \mathcal{M}_{+} \cap H^{-1}$ consists of diffuse measures.
What about domains with boundaries?
Delort's theorem is local so \exists in domains with boundaries OK.
Boundary condition: satisfied in trace sense

Key observation: smooth, compact support $\varphi \Rightarrow H_{\varphi}$ bounded in $\mathbb{R}_{+} \times \mathbb{R}^{4}$, discontinuous only on the diagonal $x=y$, vanishes at ∞. Hence: if ω does not attach mass to points (diffuse or continuous measure) then $\omega \mapsto\left\langle H_{\varphi}, \omega \otimes \omega\right\rangle$ is weak-* continuous (wrt diffuse measures).

It happens that $\mathcal{B} \mathcal{M}_{+} \cap H^{-1}$ consists of diffuse measures.
What about domains with boundaries?
Delort's theorem is local so \exists in domains with boundaries OK.
Boundary condition: satisfied in trace sense - decoupled from flow.

Key observation: smooth, compact support $\varphi \Rightarrow H_{\varphi}$ bounded in $\mathbb{R}_{+} \times \mathbb{R}^{4}$, discontinuous only on the diagonal $x=y$, vanishes at ∞. Hence: if ω does not attach mass to points (diffuse or continuous measure) then $\omega \mapsto\left\langle H_{\varphi}, \omega \otimes \omega\right\rangle$ is weak-* continuous (wrt diffuse measures).

It happens that $\mathcal{B} \mathcal{M}_{+} \cap H^{-1}$ consists of diffuse measures.
What about domains with boundaries?
Delort's theorem is local so \exists in domains with boundaries OK.
Boundary condition: satisfied in trace sense - decoupled from flow.
Explore vortex dynamics in domains with boundary.

Key observation: smooth, compact support $\varphi \Rightarrow H_{\varphi}$ bounded in $\mathbb{R}_{+} \times \mathbb{R}^{4}$, discontinuous only on the diagonal $x=y$, vanishes at ∞. Hence: if ω does not attach mass to points (diffuse or continuous measure) then $\omega \mapsto\left\langle H_{\varphi}, \omega \otimes \omega\right\rangle$ is weak-* continuous (wrt diffuse measures).

It happens that $\mathcal{B} \mathcal{M}_{+} \cap H^{-1}$ consists of diffuse measures.
What about domains with boundaries?
Delort's theorem is local so \exists in domains with boundaries OK.
Boundary condition: satisfied in trace sense - decoupled from flow.
Explore vortex dynamics in domains with boundary.
Seek weak vorticity formulation in domains with boundary.

Weak vorticity formulation

Weak vorticity formulation

Start from definition of weak solution.

Weak vorticity formulation

Start from definition of weak solution. Naïve calculations, irrespective of (ir)regularity.

Weak vorticity formulation

Start from definition of weak solution. Naïve calculations, irrespective of (ir)regularity.

Recall $u \cdot \hat{n}=0$ on $\partial \Omega$.

Weak vorticity formulation

Start from definition of weak solution. Naïve calculations, irrespective of (ir)regularity.

Recall $u \cdot \hat{n}=0$ on $\partial \Omega$. Recall circulation:

$$
\gamma=
$$

Weak vorticity formulation

Start from definition of weak solution. Naïve calculations, irrespective of (ir)regularity.

Recall $u \cdot \hat{n}=0$ on $\partial \Omega$. Recall circulation:

$$
\gamma=\gamma(t)=
$$

Weak vorticity formulation

Start from definition of weak solution. Naïve calculations, irrespective of (ir)regularity.

Recall $u \cdot \hat{n}=0$ on $\partial \Omega$. Recall circulation:

$$
\gamma=\gamma(t)=\int_{\partial \Omega} u \cdot \hat{n}^{\perp}
$$

Weak vorticity formulation

Start from definition of weak solution. Naïve calculations, irrespective of (ir)regularity.

Recall $u \cdot \hat{n}=0$ on $\partial \Omega$. Recall circulation:

$$
\gamma=\gamma(t)=\int_{\partial \Omega} u \cdot \hat{n}^{\perp}
$$

Take div-free $\Phi \in C_{c}^{\infty}\left(\mathbb{R}_{+} \times \Omega\right)$. Then:

Weak vorticity formulation

Start from definition of weak solution. Naïve calculations, irrespective of (ir)regularity.

Recall $u \cdot \hat{n}=0$ on $\partial \Omega$. Recall circulation:

$$
\gamma=\gamma(t)=\int_{\partial \Omega} u \cdot \hat{n}^{\perp}
$$

Take div-free $\Phi \in C_{c}^{\infty}\left(\mathbb{R}_{+} \times \Omega\right)$. Then:

$$
\int_{0}^{\infty} \int_{\Omega} \partial_{t} \Phi \cdot u+\int_{0}^{\infty} \int_{\Omega}[(u \cdot \nabla) \Phi] \cdot u+\int_{\Omega} \Phi(x, 0) \cdot u_{0}=0
$$

Weak vorticity formulation

Start from definition of weak solution. Naïve calculations, irrespective of (ir)regularity.

Recall $u \cdot \hat{n}=0$ on $\partial \Omega$. Recall circulation:

$$
\gamma=\gamma(t)=\int_{\partial \Omega} u \cdot \hat{n}^{\perp}
$$

Take div-free $\Phi \in C_{c}^{\infty}\left(\mathbb{R}_{+} \times \Omega\right)$. Then:

$$
\int_{0}^{\infty} \int_{\Omega} \partial_{t} \Phi \cdot u+\int_{0}^{\infty} \int_{\Omega}[(u \cdot \nabla) \Phi] \cdot u+\int_{\Omega} \Phi(x, 0) \cdot u_{0}=0
$$

$$
\operatorname{div} u=0 \operatorname{in} \mathcal{D}^{\prime}(\Omega)
$$

Weak vorticity formulation

Start from definition of weak solution. Naïve calculations, irrespective of (ir)regularity.

Recall $u \cdot \hat{n}=0$ on $\partial \Omega$. Recall circulation:

$$
\gamma=\gamma(t)=\int_{\partial \Omega} u \cdot \hat{n}^{\perp}
$$

Take div-free $\Phi \in C_{c}^{\infty}\left(\mathbb{R}_{+} \times \Omega\right)$. Then:

$$
\int_{0}^{\infty} \int_{\Omega} \partial_{t} \Phi \cdot u+\int_{0}^{\infty} \int_{\Omega}[(u \cdot \nabla) \Phi] \cdot u+\int_{\Omega} \Phi(x, 0) \cdot u_{0}=0
$$

$$
\operatorname{div} u=0 \operatorname{in} \mathcal{D}^{\prime}(\Omega)
$$

Have:

Have:

 div-free Φ,
Have:

 div-free $\Phi, \Phi \in C_{c}^{\infty}\left(\mathbb{R}_{+} \times \Omega\right)$
Have:

div-free $\Phi, \Phi \in C_{C}^{\infty}\left(\mathbb{R}_{+} \times \Omega\right)$

plus

Have:

```
div-free }\Phi,\Phi\in\mp@subsup{C}{c}{\infty}(\mp@subsup{\mathbb{R}}{+}{}\times\Omega
```


plus

Ω bdd and simply connected

Have:

div-free $\Phi, \Phi \in C_{c}^{\infty}\left(\mathbb{R}_{+} \times \Omega\right)$
plus
Ω bdd and simply connected
$\Longrightarrow \Phi=\nabla^{\perp} \varphi$, some $\varphi \in C_{c}^{\infty}\left(\mathbb{R}_{+} ; C^{\infty}(\Omega)\right)$,

Have:

div-free $\Phi, \Phi \in C_{c}^{\infty}\left(\mathbb{R}_{+} \times \Omega\right)$
plus
Ω bdd and simply connected
$\Longrightarrow \Phi=\nabla^{\perp} \varphi$, some $\varphi \in C_{c}^{\infty}\left(\mathbb{R}_{+} ; C^{\infty}(\Omega)\right)$, with $\varphi \equiv c(t)$ on $\partial \Omega$.

Have:

div-free $\Phi, \Phi \in C_{c}^{\infty}\left(\mathbb{R}_{+} \times \Omega\right)$
plus
Ω bdd and simply connected
$\Longrightarrow \Phi=\nabla^{\perp} \varphi$, some $\varphi \in C_{c}^{\infty}\left(\mathbb{R}_{+} ; C^{\infty}(\Omega)\right)$, with $\varphi \equiv c(t)$ on $\partial \Omega$.
Hence, we have:

Have:

div-free $\Phi, \Phi \in C_{c}^{\infty}\left(\mathbb{R}_{+} \times \Omega\right)$

plus

Ω bdd and simply connected
$\Longrightarrow \Phi=\nabla^{\perp} \varphi$, some $\varphi \in C_{c}^{\infty}\left(\mathbb{R}_{+} ; C^{\infty}(\Omega)\right)$, with $\varphi \equiv c(t)$ on $\partial \Omega$.
Hence, we have:

$$
\int_{0}^{\infty} \int_{\Omega} \partial_{t} \Phi \cdot u=\int_{0}^{\infty} \int_{\Omega} \partial_{t} \nabla^{\perp} \varphi \cdot u
$$

Have:

div-free $\Phi, \Phi \in C_{c}^{\infty}\left(\mathbb{R}_{+} \times \Omega\right)$

plus

Ω bdd and simply connected
$\Longrightarrow \Phi=\nabla^{\perp} \varphi$, some $\varphi \in C_{c}^{\infty}\left(\mathbb{R}_{+} ; C^{\infty}(\Omega)\right)$, with $\varphi \equiv c(t)$ on $\partial \Omega$.
Hence, we have:

$$
\begin{align*}
\int_{0}^{\infty} \int_{\Omega} \partial_{t} \phi \cdot u & =\int_{0}^{\infty} \int_{\Omega} \partial_{t} \nabla^{\perp} \varphi \cdot u \tag{3}\\
& =-\int_{0}^{\infty} \int_{\Omega} \partial_{t} \varphi \cdot \omega+\int_{0}^{\infty} c^{\prime}(t) \gamma(t)
\end{align*}
$$

Next, we have

$$
\int_{0}^{\infty} \int_{\Omega}[(u \cdot \nabla) \Phi] \cdot u \quad=\int_{0}^{\infty} \int_{\Omega}\left[(u \cdot \nabla) \nabla^{\perp} \varphi\right] \cdot u
$$

Next, we have

$$
\begin{aligned}
\int_{0}^{\infty} \int_{\Omega}[(u \cdot \nabla) \Phi] \cdot u & =\int_{0}^{\infty} \int_{\Omega}\left[(u \cdot \nabla) \nabla^{\perp} \varphi\right] \cdot u \\
& =-\int_{0}^{\infty} \int_{\Omega}(u \cdot \nabla \varphi) \omega \\
+\int_{0}^{\infty} \int_{\partial \Omega}\left(\nabla^{\perp} \varphi \cdot u\right)(u \cdot \hat{n}) & -\int_{0}^{\infty} \int_{\partial \Omega} \varphi[(u \cdot \nabla) u] \cdot \hat{n}^{\perp}
\end{aligned}
$$

Next, we have

$$
\begin{align*}
\int_{0}^{\infty} \int_{\Omega}[(u \cdot \nabla) \Phi] \cdot u & =\int_{0}^{\infty} \int_{\Omega}\left[(u \cdot \nabla) \nabla^{\perp} \varphi\right] \cdot u \\
& =-\int_{0}^{\infty} \int_{\Omega}(u \cdot \nabla \varphi) \omega \\
+\int_{0}^{\infty} \int_{\partial \Omega}\left(\nabla^{\perp} \varphi \cdot u\right)(u \cdot \hat{n}) & -\int_{0}^{\infty} \int_{\partial \Omega} \varphi[(u \cdot \nabla) u] \cdot \hat{n}^{\perp} \tag{4}\\
& =-\int_{0}^{\infty} \int_{\Omega}(u \cdot \nabla \varphi) \omega
\end{align*}
$$

Next, we have

$$
\begin{aligned}
\int_{0}^{\infty} \int_{\Omega}[(u \cdot \nabla) \Phi] \cdot u & =\int_{0}^{\infty} \int_{\Omega}\left[(u \cdot \nabla) \nabla^{\perp} \varphi\right] \cdot u \\
& =-\int_{0}^{\infty} \int_{\Omega}(u \cdot \nabla \varphi) \omega \\
+\int_{0}^{\infty} \int_{\partial \Omega}\left(\nabla^{\perp} \varphi \cdot u\right)(u \cdot \hat{n}) & -\int_{0}^{\infty} \int_{\partial \Omega} \varphi[(u \cdot \nabla) u] \cdot \hat{n}^{\perp} \\
& =-\int_{0}^{\infty} \int_{\Omega}(u \cdot \nabla \varphi) \omega
\end{aligned}
$$

The yellow boundary term vanishes as $u \cdot \hat{n}=0$.

Next, we have

$$
\begin{align*}
\int_{0}^{\infty} \int_{\Omega}[(u \cdot \nabla) \Phi] \cdot u & =\int_{0}^{\infty} \int_{\Omega}\left[(u \cdot \nabla) \nabla^{\perp} \varphi\right] \cdot u \\
& =-\int_{0}^{\infty} \int_{\Omega}(u \cdot \nabla \varphi) \omega \\
+\int_{0}^{\infty} \int_{\partial \Omega}\left(\nabla^{\perp} \varphi \cdot u\right)(u \cdot \hat{n}) & -\int_{0}^{\infty} \int_{\partial \Omega} \varphi[(u \cdot \nabla) u] \cdot \hat{n}^{\perp} \tag{4}\\
& =-\int_{0}^{\infty} \int_{\Omega}(u \cdot \nabla \varphi) \omega
\end{align*}
$$

The yellow boundary term vanishes as $u \cdot \hat{n}=0$. The green boundary term vanishes as $\partial \Omega$ is a closed curve and $\varphi[(u \cdot \nabla) u] \cdot \hat{n}^{\perp}$ is a tangential derivative.

Finally, note that

$$
\int_{\Omega} \Phi(x, 0) \cdot u_{0}=\int_{\Omega} \nabla^{\perp} \varphi(x, 0) \cdot u_{0}
$$

Finally, note that

$$
\begin{aligned}
\int_{\Omega} \Phi(x, 0) \cdot u_{0} & =\int_{\Omega} \nabla^{\perp} \varphi(x, 0) \cdot u_{0} \\
& =-\int_{\Omega} \varphi(x, 0) \cdot \omega_{0}+\int_{\partial \Omega} \varphi(x, 0) u_{0} \cdot \hat{n}^{\perp}
\end{aligned}
$$

Finally, note that

$$
\begin{align*}
\int_{\Omega} \Phi(x, 0) \cdot u_{0} & =\int_{\Omega} \nabla^{\perp} \varphi(x, 0) \cdot u_{0} \\
& =-\int_{\Omega} \varphi(x, 0) \cdot \omega_{0}+\int_{\partial \Omega} \varphi(x, 0) u_{0} \cdot \hat{n}^{\perp} \tag{5}\\
& =-\int_{\Omega} \varphi(x, 0) \cdot \omega_{0}+c(0) \gamma(0)
\end{align*}
$$

Putting together the red terms in (3),(4), (5) we obtain

Putting together the red terms in (3),(4), (5) we obtain

$$
\begin{align*}
& \int_{0}^{\infty} \int_{\Omega}\left[\partial_{t} \varphi \cdot \omega+(u \cdot \nabla \varphi) \omega\right]-\int_{0}^{\infty} c^{\prime}(t) \gamma(t) \tag{6}\\
& +\int_{\Omega} \varphi(x, 0) \cdot \omega_{0}-c(0) \gamma(0)=0
\end{align*}
$$

Putting together the red terms in (3),(4), (5) we obtain

$$
\begin{align*}
& \int_{0}^{\infty} \int_{\Omega}\left[\partial_{t} \varphi \cdot \omega+(u \cdot \nabla \varphi) \omega\right]-\int_{0}^{\infty} c^{\prime}(t) \gamma(t) \tag{6}\\
& +\int_{\Omega} \varphi(x, 0) \cdot \omega_{0}-c(0) \gamma(0)=0
\end{align*}
$$

In addition, have Biot-Savart law:

Putting together the red terms in (3),(4), (5) we obtain

$$
\begin{align*}
& \int_{0}^{\infty} \int_{\Omega}\left[\partial_{t} \varphi \cdot \omega+(u \cdot \nabla \varphi) \omega\right]-\int_{0}^{\infty} c^{\prime}(t) \gamma(t) \tag{6}\\
& +\int_{\Omega} \varphi(x, 0) \cdot \omega_{0}-c(0) \gamma(0)=0
\end{align*}
$$

In addition, have Biot-Savart law:

$$
u=\nabla^{\perp} \Delta^{-1} \omega \equiv K[\omega]=\int_{\Omega} K(x, y) \omega(y, t) d y
$$

Putting together the red terms in (3),(4), (5) we obtain

$$
\begin{align*}
& \int_{0}^{\infty} \int_{\Omega}\left[\partial_{t} \varphi \cdot \omega+(u \cdot \nabla \varphi) \omega\right]-\int_{0}^{\infty} c^{\prime}(t) \gamma(t) \tag{6}\\
& +\int_{\Omega} \varphi(x, 0) \cdot \omega_{0}-c(0) \gamma(0)=0
\end{align*}
$$

In addition, have Biot-Savart law:

$$
u=\nabla^{\perp} \Delta^{-1} \omega \equiv K[\omega]=\int_{\Omega} K(x, y) \omega(y, t) d y
$$

Question:

Putting together the red terms in (3),(4), (5) we obtain

$$
\begin{align*}
& \int_{0}^{\infty} \int_{\Omega}\left[\partial_{t} \varphi \cdot \omega+(u \cdot \nabla \varphi) \omega\right]-\int_{0}^{\infty} c^{\prime}(t) \gamma(t) \\
& +\int_{\Omega} \varphi(x, 0) \cdot \omega_{0}-c(0) \gamma(0)=0 \tag{6}
\end{align*}
$$

In addition, have Biot-Savart law:

$$
u=\nabla^{\perp} \Delta^{-1} \omega \equiv K[\omega]=\int_{\Omega} K(x, y) \omega(y, t) d y
$$

Question: what survives in (6) for flows with vortex sheet regularity?

Vortex sheet regularity flows -

Vortex sheet regularity flows -

What is circulation at vortex sheet regularity?

Vortex sheet regularity flows -

What is circulation at vortex sheet regularity?

Lemma

Let $u \in L_{\text {loc }}^{1}(\Omega)$ such that $\omega=$ curl $u \in \mathcal{B M}(\Omega)$, bounded measure. Then the circulation of u around $\partial \Omega$ is well-defined through the formula:

$$
\int \varphi \omega+\int u \cdot \nabla^{\perp} \varphi=\left.\gamma \varphi\right|_{\partial \Omega}
$$

for all $\varphi \in C^{\infty}(\Omega)$ such that $\nabla \varphi$ is compactly supported in Ω.

Vortex sheet regularity flows -

What is circulation at vortex sheet regularity?

Lemma

Let $u \in L_{\text {loc }}^{1}(\Omega)$ such that $\omega=$ curl $u \in \mathcal{B M}(\Omega)$, bounded measure. Then the circulation of u around $\partial \Omega$ is well-defined through the formula:

$$
\int \varphi \omega+\int u \cdot \nabla^{\perp} \varphi=\left.\gamma \varphi\right|_{\partial \Omega}
$$

for all $\varphi \in C^{\infty}(\Omega)$ such that $\nabla \varphi$ is compactly supported in Ω.

Hence, the linear terms in (6),

Vortex sheet regularity flows -

What is circulation at vortex sheet regularity?

Lemma

Let $u \in L_{\text {loc }}^{1}(\Omega)$ such that $\omega=$ curl $u \in \mathcal{B M}(\Omega)$, bounded measure. Then the circulation of u around $\partial \Omega$ is well-defined through the formula:

$$
\int \varphi \omega+\int u \cdot \nabla^{\perp} \varphi=\left.\gamma \varphi\right|_{\partial \Omega}
$$

for all $\varphi \in C^{\infty}(\Omega)$ such that $\nabla \varphi$ is compactly supported in Ω.

Hence, the linear terms in (6), namely (3) and (5),

Vortex sheet regularity flows -

What is circulation at vortex sheet regularity?

Lemma

Let $u \in L_{\text {loc }}^{1}(\Omega)$ such that $\omega=$ curl $u \in \mathcal{B M}(\Omega)$, bounded measure. Then the circulation of u around $\partial \Omega$ is well-defined through the formula:

$$
\int \varphi \omega+\int u \cdot \nabla^{\perp} \varphi=\left.\gamma \varphi\right|_{\partial \Omega}
$$

for all $\varphi \in C^{\infty}(\Omega)$ such that $\nabla \varphi$ is compactly supported in Ω.

Hence, the linear terms in (6), namely (3) and (5), hold true at vortex sheet regularity.

Nonlinear term (4):

$$
\int(u \cdot \nabla \varphi) \omega=
$$

Nonlinear term (4):

$$
\begin{gathered}
\int(u \cdot \nabla \varphi) \omega= \\
\int \nabla \varphi \cdot\left[\int K(x, y) \omega(y)\right] \omega(x)
\end{gathered}
$$

Nonlinear term (4):

$$
\begin{gathered}
\int(u \cdot \nabla \varphi) \omega= \\
\int \nabla \varphi \cdot\left[\int K(x, y) \omega(y)\right] \omega(x)
\end{gathered}
$$

Symmetrize:

Nonlinear term (4):

$$
\begin{gathered}
\int(u \cdot \nabla \varphi) \omega= \\
\int \nabla \varphi \cdot\left[\int K(x, y) \omega(y)\right] \omega(x)
\end{gathered}
$$

Symmetrize:

$$
=\iint H_{\varphi}(x, y) \omega(x) \omega(y)
$$

Nonlinear term (4):

$$
\begin{gathered}
\int(u \cdot \nabla \varphi) \omega= \\
\int \nabla \varphi \cdot\left[\int K(x, y) \omega(y)\right] \omega(x)
\end{gathered}
$$

Symmetrize:

$$
=\iint H_{\varphi}(x, y) \omega(x) \omega(y)
$$

Auxiliary function

Nonlinear term (4):

$$
\begin{gathered}
\int(u \cdot \nabla \varphi) \omega= \\
\int \nabla \varphi \cdot\left[\int K(x, y) \omega(y)\right] \omega(x)
\end{gathered}
$$

Symmetrize:

$$
=\iint H_{\varphi}(x, y) \omega(x) \omega(y)
$$

Auxiliary function

$$
H_{\varphi}(x, y)=\frac{\nabla \varphi(x) \cdot K(x, y)+\nabla \varphi(y) \cdot K(y, x)}{2}
$$

Nonlinear term (4):

$$
\begin{gathered}
\int(u \cdot \nabla \varphi) \omega= \\
\int \nabla \varphi \cdot\left[\int K(x, y) \omega(y)\right] \omega(x)
\end{gathered}
$$

Symmetrize:

$$
=\iint H_{\varphi}(x, y) \omega(x) \omega(y)
$$

Auxiliary function

$$
H_{\varphi}(x, y)=\frac{\nabla \varphi(x) \cdot K(x, y)+\nabla \varphi(y) \cdot K(y, x)}{2}
$$

Proposition

If $\nabla \varphi$ is Lipschitz and normal to $\partial \Omega$ then this H_{φ} is bounded on the closure of Ω; continuous off of the diagonal $x=y$.

Nonlinear term (4):

$$
\begin{gathered}
\int(u \cdot \nabla \varphi) \omega= \\
\int \nabla \varphi \cdot\left[\int K(x, y) \omega(y)\right] \omega(x)
\end{gathered}
$$

Symmetrize:

$$
=\iint H_{\varphi}(x, y) \omega(x) \omega(y)
$$

Auxiliary function

$$
H_{\varphi}(x, y)=\frac{\nabla \varphi(x) \cdot K(x, y)+\nabla \varphi(y) \cdot K(y, x)}{2}
$$

Proposition

If $\nabla \varphi$ is Lipschitz and normal to $\partial \Omega$ then this H_{φ} is bounded on the closure of Ω; continuous off of the diagonal $x=y$.

Compare with nonlinear term for weak velocity,

Compare with nonlinear term for weak velocity, at vortex sheet regularity.

Compare with nonlinear term for weak velocity, at vortex sheet regularity.

Proposition

Let $u \in L_{\sigma}^{2}(\Omega)$ be such that curl $u=\omega \in \mathcal{B M}(\Omega)$ and let γ be circulation of u around $\partial \Omega$. Then, if $\Phi=\nabla^{\perp} \varphi$ with $\varphi \in C^{\infty}(\Omega)$ and $\Phi \in C_{c}^{\infty}(\Omega)$, then

$$
\int[(u \cdot \nabla) \Phi] \cdot u=-\iint H_{\varphi}(x, y) \omega(x) \omega(y)
$$

Compare with nonlinear term for weak velocity, at vortex sheet regularity.

Proposition

Let $u \in L_{\sigma}^{2}(\Omega)$ be such that curl $u=\omega \in \mathcal{B M}(\Omega)$ and let γ be circulation of u around $\partial \Omega$. Then, if $\Phi=\nabla^{\perp} \varphi$ with $\varphi \in C^{\infty}(\Omega)$ and $\Phi \in C_{c}^{\infty}(\Omega)$, then

$$
\int[(u \cdot \nabla) \Phi] \cdot u=-\iint H_{\varphi}(x, y) \omega(x) \omega(y)
$$

The proof of this proposition is not trivial.

Compare with nonlinear term for weak velocity, at vortex sheet regularity.

Proposition

Let $u \in L_{\sigma}^{2}(\Omega)$ be such that curl $u=\omega \in \mathcal{B M}(\Omega)$ and let γ be circulation of u around $\partial \Omega$. Then, if $\Phi=\nabla^{\perp} \varphi$ with $\varphi \in C^{\infty}(\Omega)$ and $\Phi \in C_{c}^{\infty}(\Omega)$, then

$$
\int[(u \cdot \nabla) \Phi] \cdot u=-\iint H_{\varphi}(x, y) \omega(x) \omega(y)
$$

The proof of this proposition is not trivial.
Use Delort's argument with insight from "Schochet-proof". Ingredients:

- H_{φ} continuous off diagonal and bounded everywhere;

Compare with nonlinear term for weak velocity, at vortex sheet regularity.

Proposition

Let $u \in L_{\sigma}^{2}(\Omega)$ be such that curl $u=\omega \in \mathcal{B M}(\Omega)$ and let γ be circulation of u around $\partial \Omega$. Then, if $\Phi=\nabla^{\perp} \varphi$ with $\varphi \in C^{\infty}(\Omega)$ and $\Phi \in C_{c}^{\infty}(\Omega)$, then

$$
\int[(u \cdot \nabla) \Phi] \cdot u=-\iint H_{\varphi}(x, y) \omega(x) \omega(y)
$$

The proof of this proposition is not trivial.
Use Delort's argument with insight from "Schochet-proof". Ingredients:

- H_{φ} continuous off diagonal and bounded everywhere;
- If ω is curl of L^{2} velocity then there are no point masses;

Compare with nonlinear term for weak velocity, at vortex sheet regularity.

Proposition

Let $u \in L_{\sigma}^{2}(\Omega)$ be such that curl $u=\omega \in \mathcal{B M}(\Omega)$ and let γ be circulation of u around $\partial \Omega$. Then, if $\Phi=\nabla^{\perp} \varphi$ with $\varphi \in C^{\infty}(\Omega)$ and $\Phi \in C_{c}^{\infty}(\Omega)$, then

$$
\int[(u \cdot \nabla) \Phi] \cdot u=-\iint H_{\varphi}(x, y) \omega(x) \omega(y)
$$

The proof of this proposition is not trivial.
Use Delort's argument with insight from "Schochet-proof". Ingredients:

- H_{φ} continuous off diagonal and bounded everywhere;
- If ω is curl of L^{2} velocity then there are no point masses;
- ω is the curl in the sense of distributions, hence no mass at boundary.

Put together to obtain that vorticity of "Delort" solution u verifies the weak vorticity formulation

Put together to obtain that vorticity of "Delort" solution u verifies the

 weak vorticity formulation$$
\int_{0}^{\infty} \int_{\Omega} \partial_{t} \varphi \omega(x, t) d x d t-\left.\int_{0}^{\infty} \gamma(t) \partial_{t} \varphi\right|_{\partial \Omega}(t) d t
$$

Put together to obtain that vorticity of "Delort" solution u verifies the

 weak vorticity formulation$$
\begin{aligned}
& \int_{0}^{\infty} \int_{\Omega} \partial_{t} \varphi \omega(x, t) d x d t-\left.\int_{0}^{\infty} \gamma(t) \partial_{t} \varphi\right|_{\partial \Omega}(t) d t \\
& +\int_{0}^{\infty} \int_{\Omega} \int_{\Omega} H_{\varphi}(x, y, t) \omega(x, t) \omega(y, t) d x d y d t
\end{aligned}
$$

Put together to obtain that vorticity of "Delort" solution u verifies the

 weak vorticity formulation$$
\begin{aligned}
& \int_{0}^{\infty} \int_{\Omega} \partial_{t} \varphi \omega(x, t) d x d t-\left.\int_{0}^{\infty} \gamma(t) \partial_{t} \varphi\right|_{\partial \Omega}(t) d t \\
& +\int_{0}^{\infty} \int_{\Omega} \int_{\Omega} H_{\varphi}(x, y, t) \omega(x, t) \omega(y, t) d x d y d t \\
& \quad+\int_{\Omega} \varphi(x, 0) \omega_{0}(x) d x-\left.\gamma(0) \varphi\right|_{\partial \Omega}(0)
\end{aligned}
$$

Put together to obtain that vorticity of "Delort" solution u verifies the

 weak vorticity formulation$$
\begin{aligned}
& \int_{0}^{\infty} \int_{\Omega} \partial_{t} \varphi \omega(x, t) d x d t-\left.\int_{0}^{\infty} \gamma(t) \partial_{t} \varphi\right|_{\partial \Omega}(t) d t \\
& +\int_{0}^{\infty} \int_{\Omega} \int_{\Omega} H_{\varphi}(x, y, t) \omega(x, t) \omega(y, t) d x d y d t \\
& \quad+\int_{\Omega} \varphi(x, 0) \omega_{0}(x) d x-\left.\gamma(0) \varphi\right|_{\partial \Omega}(0)=0
\end{aligned}
$$

Put together to obtain that vorticity of "Delort" solution u verifies the weak vorticity formulation

$$
\begin{aligned}
& \int_{0}^{\infty} \int_{\Omega} \partial_{t} \varphi \omega(x, t) d x d t-\left.\int_{0}^{\infty} \gamma(t) \partial_{t} \varphi\right|_{\partial \Omega}(t) d t \\
& +\int_{0}^{\infty} \int_{\Omega} \int_{\Omega} H_{\varphi}(x, y, t) \omega(x, t) \omega(y, t) d x d y d t \\
& \quad+\int_{\Omega} \varphi(x, 0) \omega_{0}(x) d x-\left.\gamma(0) \varphi\right|_{\partial \Omega}(0)=0
\end{aligned}
$$

Theorem The weak (velocity) formulation and the weak vorticity formulation are equivalent.

Put together to obtain that vorticity of "Delort" solution u verifies the weak vorticity formulation

$$
\begin{aligned}
& \int_{0}^{\infty} \int_{\Omega} \partial_{t} \varphi \omega(x, t) d x d t-\left.\int_{0}^{\infty} \gamma(t) \partial_{t} \varphi\right|_{\partial \Omega}(t) d t \\
& +\int_{0}^{\infty} \int_{\Omega} \int_{\Omega} H_{\varphi}(x, y, t) \omega(x, t) \omega(y, t) d x d y d t \\
& \quad+\int_{\Omega} \varphi(x, 0) \omega_{0}(x) d x-\left.\gamma(0) \varphi\right|_{\partial \Omega}(0)=0
\end{aligned}
$$

Theorem The weak (velocity) formulation and the weak vorticity formulation are equivalent.

Test functions for weak vorticity: φ such that $\nabla \varphi$ is compactly supported in space and time. I.e., φ constant in neighborhood of $\partial \Omega$.

Qualitative features

Qualitative features

Weak vorticity formulation allows exchange of vorticity (circulation) between bulk of fluid and ∂.

Qualitative features

Weak vorticity formulation allows exchange of vorticity (circulation) between bulk of fluid and ∂.

Present in weak velocity formulation,

Qualitative features

Weak vorticity formulation allows exchange of vorticity (circulation) between bulk of fluid and ∂.

Present in weak velocity formulation, explicitly incorporated in weak vorticity formulation,

Qualitative features

Weak vorticity formulation allows exchange of vorticity (circulation) between bulk of fluid and ∂.

Present in weak velocity formulation, explicitly incorporated in weak vorticity formulation, equivalence true but not trivial

Qualitative features

Weak vorticity formulation allows exchange of vorticity (circulation) between bulk of fluid and ∂.

Present in weak velocity formulation, explicitly incorporated in weak vorticity formulation, equivalence true but not trivial

Strengthen notion of weak solution - take test function φ such that

Qualitative features

Weak vorticity formulation allows exchange of vorticity (circulation) between bulk of fluid and ∂.

Present in weak velocity formulation, explicitly incorporated in weak vorticity formulation, equivalence true but not trivial

Strengthen notion of weak solution - take test function φ such that φ constant on ∂,

Qualitative features

Weak vorticity formulation allows exchange of vorticity (circulation) between bulk of fluid and ∂.

Present in weak velocity formulation, explicitly incorporated in weak vorticity formulation, equivalence true but not trivial

Strengthen notion of weak solution - take test function φ such that φ constant on ∂, maybe not on neighborhood of ∂.

Qualitative features

Weak vorticity formulation allows exchange of vorticity (circulation) between bulk of fluid and ∂.

Present in weak velocity formulation, explicitly incorporated in weak vorticity formulation, equivalence true but not trivial

Strengthen notion of weak solution - take test function φ such that φ constant on ∂, maybe not on neighborhood of $\partial . \nabla \varphi$ might not vanish on neighborhood of ∂;

Qualitative features

Weak vorticity formulation allows exchange of vorticity (circulation) between bulk of fluid and ∂.

Present in weak velocity formulation, explicitly incorporated in weak vorticity formulation, equivalence true but not trivial

Strengthen notion of weak solution - take test function φ such that φ constant on ∂, maybe not on neighborhood of $\partial . \nabla \varphi$ might not vanish on neighborhood of $\partial ; \nabla \varphi$ normal to boundary, though. Called boundary-coupled weak soluton.

Qualitative features

Weak vorticity formulation allows exchange of vorticity (circulation) between bulk of fluid and ∂.

Present in weak velocity formulation, explicitly incorporated in weak vorticity formulation, equivalence true but not trivial

Strengthen notion of weak solution - take test function φ such that φ constant on ∂, maybe not on neighborhood of $\partial . \nabla \varphi$ might not vanish on neighborhood of $\partial ; \nabla \varphi$ normal to boundary, though. Called boundary-coupled weak soluton.

Introduced in Lopes Filho-NL-Xin 2001 - existence of vortex sheets with reflection symmetry. Why? For half-plane, method of images works if and only if boundary coupled weak solution exists.

Qualitative features

Weak vorticity formulation allows exchange of vorticity (circulation) between bulk of fluid and ∂.

Present in weak velocity formulation, explicitly incorporated in weak vorticity formulation, equivalence true but not trivial

Strengthen notion of weak solution - take test function φ such that φ constant on ∂, maybe not on neighborhood of $\partial . \nabla \varphi$ might not vanish on neighborhood of $\partial ; \nabla \varphi$ normal to boundary, though. Called boundary-coupled weak soluton.

Introduced in Lopes Filho-NL-Xin 2001 - existence of vortex sheets with reflection symmetry. Why? For half-plane, method of images works if and only if boundary coupled weak solution exists.

In Lopes-Filho-NL-Xin established existence of boundary coupled weak solution for half-plane. How? No mass going towards boundary (needed new a priori estimate).

Solutions obtained as limits of exact solutions with smooth ID

Solutions obtained as limits of exact solutions with smooth ID

Let ω_{0}^{n} be smooth approximations of initial data ω_{0}. Consider smooth solutions $u^{n}, \omega^{n}=\operatorname{curl} u^{n}$ with ID ω_{0}^{n}.

Solutions obtained as limits of exact solutions with smooth ID

Let ω_{0}^{n} be smooth approximations of initial data ω_{0}. Consider smooth solutions $u^{n}, \omega^{n}=\operatorname{curl} u^{n}$ with ID ω_{0}^{n}.

Go back to passage to limit in Delort argument: $u^{n} \rightharpoonup u$.

Solutions obtained as limits of exact solutions with smooth ID

Let ω_{0}^{n} be smooth approximations of initial data ω_{0}. Consider smooth solutions $u^{n}, \omega^{n}=\operatorname{curl} u^{n}$ with ID ω_{0}^{n}.

Go back to passage to limit in Delort argument: $u^{n} \rightharpoonup u$.
Pass to subsequence if necessary to get also

Solutions obtained as limits of exact solutions with smooth ID

Let ω_{0}^{n} be smooth approximations of initial data ω_{0}. Consider smooth solutions $u^{n}, \omega^{n}=\operatorname{curl} u^{n}$ with ID ω_{0}^{n}.

Go back to passage to limit in Delort argument: $u^{n} \rightharpoonup u$.
Pass to subsequence if necessary to get also

$$
\omega^{n} \rightharpoonup \bar{\omega}=\omega+\mu
$$

Solutions obtained as limits of exact solutions with smooth ID

Let ω_{0}^{n} be smooth approximations of initial data ω_{0}. Consider smooth solutions $u^{n}, \omega^{n}=\operatorname{curl} u^{n}$ with ID ω_{0}^{n}.

Go back to passage to limit in Delort argument: $u^{n} \rightharpoonup u$.
Pass to subsequence if necessary to get also

$$
\omega^{n} \rightharpoonup \bar{\omega}=\omega+\mu
$$

where limit holds weak-* $\mathcal{B M}(\bar{\Omega})$.

Solutions obtained as limits of exact solutions with smooth ID

Let ω_{0}^{n} be smooth approximations of initial data ω_{0}. Consider smooth solutions $u^{n}, \omega^{n}=\operatorname{curl} u^{n}$ with ID ω_{0}^{n}.

Go back to passage to limit in Delort argument: $u^{n} \rightharpoonup u$.
Pass to subsequence if necessary to get also

$$
\omega^{n} \rightharpoonup \bar{\omega}=\omega+\mu
$$

where limit holds weak-* $\mathcal{B M}(\bar{\Omega})$. μ is measure supported on $\partial \Omega$.

Solutions obtained as limits of exact solutions with smooth ID

Let ω_{0}^{n} be smooth approximations of initial data ω_{0}. Consider smooth solutions $u^{n}, \omega^{n}=\operatorname{curl} u^{n}$ with ID ω_{0}^{n}.

Go back to passage to limit in Delort argument: $u^{n} \rightharpoonup u$.
Pass to subsequence if necessary to get also

$$
\omega^{n} \rightharpoonup \bar{\omega}=\omega+\mu
$$

where limit holds weak $-* \mathcal{B M}(\bar{\Omega})$. μ is measure supported on $\partial \Omega$.
Set $m=m(t)=\mu(\partial \Omega)$.

Theorem

Let $\omega_{0} \in\left(\mathcal{B} \mathcal{M}_{+}+L^{1}\right)(\Omega) \cap H^{-1}(\Omega)$. Let ω be solution of weak vorticity formulation, obtained as a limit of smooth solutions. Then:

Theorem

Let $\omega_{0} \in\left(\mathcal{B} \mathcal{M}_{+}+L^{1}\right)(\Omega) \cap H^{-1}(\Omega)$. Let ω be solution of weak vorticity formulation, obtained as a limit of smooth solutions. Then:
(1) $\gamma(t) \leq \gamma(0)$, and

Theorem

Let $\omega_{0} \in\left(\mathcal{B} \mathcal{M}_{+}+L^{1}\right)(\Omega) \cap H^{-1}(\Omega)$. Let ω be solution of weak vorticity formulation, obtained as a limit of smooth solutions. Then:
(1) $\gamma(t) \leq \gamma(0)$, and
(2) If $\gamma(t) \equiv \gamma(0)$, all $t>0$, then solution is boundary-coupled.

Theorem

Let $\omega_{0} \in\left(\mathcal{B} \mathcal{M}_{+}+L^{1}\right)(\Omega) \cap H^{-1}(\Omega)$. Let ω be solution of weak vorticity formulation, obtained as a limit of smooth solutions. Then:
(1) $\gamma(t) \leq \gamma(0)$, and
(2) If $\gamma(t) \equiv \gamma(0)$, all $t>0$, then solution is boundary-coupled.

Proof involves showing

Theorem

Let $\omega_{0} \in\left(\mathcal{B} \mathcal{M}_{+}+L^{1}\right)(\Omega) \cap H^{-1}(\Omega)$. Let ω be solution of weak vorticity formulation, obtained as a limit of smooth solutions. Then:
(1) $\gamma(t) \leq \gamma(0)$, and
(2) If $\gamma(t) \equiv \gamma(0)$, all $t>0$, then solution is boundary-coupled.

Proof involves showing

$$
\gamma(0)=\gamma(t)+m(t)
$$

Theorem

Let $\omega_{0} \in\left(\mathcal{B} \mathcal{M}_{+}+L^{1}\right)(\Omega) \cap H^{-1}(\Omega)$. Let ω be solution of weak vorticity formulation, obtained as a limit of smooth solutions. Then:
(1) $\gamma(t) \leq \gamma(0)$, and
(2) If $\gamma(t) \equiv \gamma(0)$, all $t>0$, then solution is boundary-coupled.

Proof involves showing

$$
\gamma(0)=\gamma(t)+m(t) .
$$

l.e.

Theorem

Let $\omega_{0} \in\left(\mathcal{B} \mathcal{M}_{+}+L^{1}\right)(\Omega) \cap H^{-1}(\Omega)$. Let ω be solution of weak vorticity formulation, obtained as a limit of smooth solutions. Then:
(1) $\gamma(t) \leq \gamma(0)$, and
(2) If $\gamma(t) \equiv \gamma(0)$, all $t>0$, then solution is boundary-coupled.

Proof involves showing

$$
\gamma(0)=\gamma(t)+m(t)
$$

I.e. mass of vorticity leaving bulk of fluid, going to the boundary component $\partial \Omega$ is balanced by decrease in circulation.

Theorem

Let $\omega_{0} \in\left(\mathcal{B} \mathcal{M}_{+}+L^{1}\right)(\Omega) \cap H^{-1}(\Omega)$. Let ω be solution of weak vorticity formulation, obtained as a limit of smooth solutions. Then:
(1) $\gamma(t) \leq \gamma(0)$, and
(2) If $\gamma(t) \equiv \gamma(0)$, all $t>0$, then solution is boundary-coupled.

Proof involves showing

$$
\gamma(0)=\gamma(t)+m(t)
$$

I.e. mass of vorticity leaving bulk of fluid, going to the boundary component $\partial \Omega$ is balanced by decrease in circulation.

This cannot be controlled/excluded by a priori estimates!

Vortex sheets are at the edge of "bad behavior".

Vortex sheets are at the edge of "bad behavior". If $\omega_{0} \in L^{1}$ then there is no strange circulation defect.

Vortex sheets are at the edge of "bad behavior". If $\omega_{0} \in L^{1}$ then there is no strange circulation defect.

Theorem

If $\omega_{0} \in L^{1} \cap H^{-1}(\Omega)$

Vortex sheets are at the edge of "bad behavior". If $\omega_{0} \in L^{1}$ then there is no strange circulation defect.

Theorem
 If $\omega_{0} \in L^{1} \cap H^{-1}(\Omega)$ then \exists boundary coupled (weak vorticity) solution

Vortex sheets are at the edge of "bad behavior". If $\omega_{0} \in L^{1}$ then there is no strange circulation defect.

Theorem
If $\omega_{0} \in L^{1} \cap H^{-1}(\Omega)$ then \exists boundary coupled (weak vorticity) solution for which circulation is conserved around boundary.

Net force and torque on boundary
 The net force on boundary is given by

Net force and torque on boundary

The net force on boundary is given by

$$
\int_{\Gamma_{j}} p \hat{n} d S
$$

Net force and torque on boundary

The net force on boundary is given by

$$
\int_{\Gamma_{j}} p \hat{n} d S
$$

where p is the pressure.

Net force and torque on boundary

The net force on boundary is given by

$$
\int_{\Gamma_{j}} p \hat{n} d S
$$

where p is the pressure.
Vortex sheet flow too irregular to define net force.

Net force and torque on boundary

The net force on boundary is given by

$$
\int_{\Gamma_{j}} p \hat{n} d S
$$

where p is the pressure.
Vortex sheet flow too irregular to define net force. However...

Net force and torque on boundary

The net force on boundary is given by

$$
\int_{\Gamma_{j}} p \hat{n} d S
$$

where p is the pressure.
Vortex sheet flow too irregular to define net force. However...

Proposition

Net force on boundary well-defined

Net force and torque on boundary

The net force on boundary is given by

$$
\int_{\Gamma_{j}} p \hat{n} d S
$$

where p is the pressure.
Vortex sheet flow too irregular to define net force. However...

Proposition

Net force on boundary well-defined iff weak solution is boundary-coupled.

Net force and torque on boundary

The net force on boundary is given by

$$
\int_{\Gamma_{j}} p \hat{n} d S
$$

where p is the pressure.
Vortex sheet flow too irregular to define net force. However...

Proposition

Net force on boundary well-defined iff weak solution is boundary-coupled.

Why?

Why? First obtain equivalent definition of boundary-coupled for velocity formulation:

Why? First obtain equivalent definition of boundary-coupled for velocity formulation: take div-free test vector fields which are only tangent to the boundary.

Why? First obtain equivalent definition of boundary-coupled for velocity formulation: take div-free test vector fields which are only tangent to the boundary. Next note that,

Why? First obtain equivalent definition of boundary-coupled for velocity formulation: take div-free test vector fields which are only tangent to the boundary. Next note that, for smooth flows,

Why? First obtain equivalent definition of boundary-coupled for velocity formulation: take div-free test vector fields which are only tangent to the boundary. Next note that, for smooth flows, net force can be re-written integrating ∇p against test function with convenient normal component.

Why? First obtain equivalent definition of boundary-coupled for velocity formulation: take div-free test vector fields which are only tangent to the boundary. Next note that, for smooth flows, net force can be re-written integrating ∇p against test function with convenient normal component.
If normal component of said test function vanishes then PDE should imply $\int \nabla p \cdot \Phi=0$.

Why? First obtain equivalent definition of boundary-coupled for velocity formulation: take div-free test vector fields which are only tangent to the boundary. Next note that, for smooth flows, net force can be re-written integrating ∇p against test function with convenient normal component.
If normal component of said test function vanishes then PDE should imply $\int \nabla p \cdot \Phi=0$. Thus, net force well-defined iff $\int_{\Omega} \nabla p \cdot \Phi=0$ for any Φ div-free and tangent to boundary,

Why? First obtain equivalent definition of boundary-coupled for velocity formulation: take div-free test vector fields which are only tangent to the boundary. Next note that, for smooth flows, net force can be re-written integrating ∇p against test function with convenient normal component.
If normal component of said test function vanishes then PDE should imply $\int \nabla p \cdot \Phi=0$. Thus, net force well-defined iff $\int_{\Omega} \nabla p \cdot \Phi=0$ for any Φ div-free and tangent to boundary, iff boundary-coupled weak solution.

Why? First obtain equivalent definition of boundary-coupled for velocity formulation: take div-free test vector fields which are only tangent to the boundary. Next note that, for smooth flows, net force can be re-written integrating ∇p against test function with convenient normal component.
If normal component of said test function vanishes then PDE should imply $\int \nabla p \cdot \Phi=0$. Thus, net force well-defined iff $\int_{\Omega} \nabla p \cdot \Phi=0$ for any Φ div-free and tangent to boundary, iff boundary-coupled weak solution.

Similarly for torque:

$$
\int_{\Gamma_{j}} p\left(x-\bar{x}_{j}\right)^{\perp} \cdot \hat{n} d S
$$

where \bar{x}_{j} is the center of mass.

Summary and concluding remarks

Summary and concluding remarks

(1) Weak velocity and weak vorticity formulations equivalent; exchange of circulation with ∂ explicitly incorporated in weak vorticity form.

Summary and concluding remarks

(1) Weak velocity and weak vorticity formulations equivalent; exchange of circulation with ∂ explicitly incorporated in weak vorticity form.
(2) $m(t)=\gamma(0)-\gamma(t)$.

Summary and concluding remarks

(1) Weak velocity and weak vorticity formulations equivalent; exchange of circulation with ∂ explicitly incorporated in weak vorticity form.
(2) $m(t)=\gamma(0)-\gamma(t)$.
(3) Circulation conserved implies existence of a boundary coupled weak solution. Net force and torque on ∂ well-defined iff boundary-coupled.

Summary and concluding remarks

(1) Weak velocity and weak vorticity formulations equivalent; exchange of circulation with ∂ explicitly incorporated in weak vorticity form.
(2) $m(t)=\gamma(0)-\gamma(t)$.
(3) Circulation conserved implies existence of a boundary coupled weak solution. Net force and torque on ∂ well-defined iff boundary-coupled.
(4) Vortex sheet critical regularity: if $\omega_{0} \in L^{1}$ then (exists) boundary-coupled with conservation of circulation.

Summary and concluding remarks

(1) Weak velocity and weak vorticity formulations equivalent; exchange of circulation with ∂ explicitly incorporated in weak vorticity form.
(2) $m(t)=\gamma(0)-\gamma(t)$.
(3) Circulation conserved implies existence of a boundary coupled weak solution. Net force and torque on ∂ well-defined iff boundary-coupled.
(4) Vortex sheet critical regularity: if $\omega_{0} \in L^{1}$ then (exists) boundary-coupled with conservation of circulation.
(5) Cannot avoid vortex sheet regularity in vanishing viscosity problem.

Thank you very much!

Thank you very much!

