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Turbulent convection

What is the effect of dimensionality on turbulent convection ?
3D-2D: statistics of small-scale fluctuations & the appearance of the Bolgiano scale

3D-1D: subdiffusive growth of large scale quantities



Small scale statistics of turbulent convection see: D. Lohse, K.Q. Xia,
Ann. Rev. Fluid Mech. 42 (2010)
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g Which scaling is realized in turbulent convection ?



Rayleigh-Taylor turbulence

Instability at the interface of two fluids of different densities
with relative acceleration.

Single fluid at two temperatures (densities) : 6,=T,-T,

P, =P
Atwood: A=-1 2~ lﬂQO (B: thermal expansion coef.)

Pyt
For small A the Boussinesq approximation for an
incompressible fluid holds:

du+u-Vu=-Vp+vAu-pgT
{atTnLu-VT: KAT

u(x,0)=0
with initial condition: {T(x,O) = —(1/2)8, sgn(z)

Simple setup for turbulent convection
(no boundaries, no large scale circulation)




Phenomenology of RT turbulence

Energy balance:

dE dP

T T s — T —

yy - — &= PBg(uT) —¢
turbulent kinetic energy produced from potential energy

and dissipated at a rate ¢ = v{((Vu)?)

2
rms

Dimensional balance: = Bgbotms iImplies

Large scale velocity fluctuations ;s >~ Agt

Turbulent mixing layer of width ~ h(t) ~ Agt”

Kinetic energy pumped at a rate e ~ —2% ~ (Ag)*t

time evolving turbulence



M. Chertkov, Phys. Rev. Lett. 91 (2003)

Small scale theory of RT turbulence
Ansatz: buoyancy negligible at small scales Jdutu-Vu=-Vp+viu-fgT
0.T+u-VT =xAT

2
Bgé, T < 97" (small Richardson number)
r

passive temperature in turbulent flow with time dependent flux

e(t) ~ (Ag)™t
Small scale velocity/temperature fluctuations follow Kolmogorov-Obukhov scaling

r
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Inconsistent in 2D where the energy flows to large scale (buoyancy dominated)



Numerical simulation of RT turbulence
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Self-similar evolution of spectra

Collapse of kinetic energy and temperature
variance spectra at different times.

Insets: time evolution of kinetic energy
dissipation € = t and temperature variance
dissipation ¢, =t

Spatial-temporal scaling in agreement
with dimensional theory

E(k,t) ~ (Bgho)*/>t2/3k=5/3
Er(k,t) ~ 02(Bgby)~2/3t=4/3k=5/3

+ intermittency corrections for higher
order statistics

G.Boffetta, A.Mazzino, S.Musacchio, L.Vozella, PRE 79 (2009)
G.Boffetta, F.De Lillo, S.Musacchio, PRL 104 (2010)
G.Boffetta, A.Mazzino, S.Musacchio, L.Vozella, Phys. Fluids 22 (2010)



+ intermittency corrections

FIG. 4. Scaling exponents of isotropic longitudinal velocity
structure functions S,(r)=((8,v-F)”)(f=r/r) for the late stage of RT
turbulence (open circle). Exponents are computed by compensation
of §,(r) with S5(r), according to the extended self-similarity proce-
dure [21] averaging inside the mixing layer and on all directions.
Filled circles: scaling exponents from simulations of homogeneous
isotropic turbulence at R, =381 [22]. Line represents dimensional
prediction {,=p/3. Inset: third-order isotropic longitudinal structure
function S;3(r). The line represents Kolmogorov’s four-fifth law
Sa(r)=-4/5er.



RT turbulence in 2D M. Chertkov, Phys. Rev. Lett. 91 (2003)
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A.Celani, A.Mazzino, L.Vozella, Phys. Rev. Lett. 96 (2006)



Where is the Bolgiano scale Lg ?

3D direct cascade J E—) L = L (integral scale)

2D inverse cascade ﬂ I I n_) Lg=0

|dea: Lg is determined by the smallest size of the box

Setup with large aspectratio L, <<L, , L,
* scales r << L, : 3D Kolmogorov-Obukhov

*scalesr>> L, : 2D Bolgiano

=0 N

transverse geometrical scale
becomes the Bolgiano scale




Quasi-2D Rayleigh-Taylor turbulence [

RT system confined in a thin convective cell

Aspectratio L, /L, =1/32,L,/L, =2
Periodic b.c.: no material walls

*h(t) < L,: 3D phenomenology
- Kolmogorov scaling
- passive temperature

*h(t) > L,: 2D phenomenology
- Bolgiano scaling
- active temperature

temperature field from simulations C/NECA

G.Boffetta, F.De Lillo, A.Mazzino, S.Musacchio, JFM 690, 426 (2012) at 4096x128x8192 - HPC grant



A first signature of 3D — 2D transition: energy balance C;—]tz = —C;—]; —€
dE dE
ht)<L, 3D - 4 ~ ' ht)>L, 2D 7 =t
e~t e~0

In quasi-2d there is a residual direct energy flux (given by matching the velocity at r=L,)

Sru(t) ~ e(t)/3rt/3 (r < Ly)
Srult) = (gbo /ot /o300 (P> Ly) 10 —
] |
e(t) = (Bgho)®/PLy/ot=3/5 > \
thus ’S 0.1 '
L] o 0.1 1
2 © th
(@) /gNtS/5 o
dt oo
O\)\'*&fg_ﬂf'@-gc’w k1) L R R R
transition from direct to inverse 0.5 1 2 4

flux when h(t) reaches L, the



Simultaneous presence of a direct and an inverse cascade of energy

r<iL,
Third-order velocity SF at late times
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The sign of S;(r) indicates a change Ly

in the direction of the turbulent cascade

3D turbulent cascade at small scales

2D inverse cascade at large scales
Inset: contributions to energy flux in Fourier space
by the nonlinear term and by the buoyancy term



Velocity and temperature structure functions
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Kolmogorov-Obukhov scaling "\8; 107 ¢
at small scales (passive temperature) I
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First evidence of a Bolgiano scale
(i.e. two scalings) in turbulent convection

(see D. Lohse, K.Q. Xia,
Ann. Rev. Fluid Mech. 42 (2010))



Quasi-1D Rayleigh-Taylor turbulence

Two-regimes:

L,
*h(t) <L, :3D RT turbulence
*h(t)>L, :?
L, Ly
L, ., L, <<L,

Physical motivation: mixing efficiency in stratified fluids



Experiments in quasi-1D mixing

S.B. Dalziel, M.D. Patterson,
C.P. Caulfield, I.A. Coomaraswamy,
POF 20 (2008)

salt water + fresh water
A=0.01
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numerical simulations of 1D mixing



Evolution of the mixing layer 1

* short times (h << L,) 0.1 ¢
o i
h(t) = 2 i<
*long times (h=L,) 0.01 |
h(t) = ?

0.1

10

(L,/L, = 32)



A model for the growth of the mixing layer

Velocity fluctuations on scales r > L, are uncorrelated

Evolution of mean temperature profile T(z,t)
OT + 8,wT = kT

can be modeled in terms of an eddy diffusivity

Eddy dlﬁUSlVlty K(Z, t) s urmsLu

where u_ . is obtained dimensionally from the balance

rms

u2

Tms ~ 9
L, Bgor,

and 0, is the temperature jump at scale L,



Eddy diffusivity at late times

L, oT
L,=1L, HL—QOT— * 5,
eddy diffusivity K = (8g)'/2L%(0.T)'/? h

0,T = a(Bg)/2L20. (3.T)"*

Self-similar solution in the form T'(z,t) = f(2/t*) with T(£z;) = £0.50,
T(z t):_Eg 1z 5_2 s 3+i for |z|<z, a=2/5
’ 16 ° |5 \ 2 3 \ 21 21

h(t) = 221 (t) = vLY5(Bgby)*/°#2/5  subdiffusive growth of the mixing layer



Saturation of kinetic energy

Total kinetic energy F = %/d%]u\z ~

Since Uy, < 0 o< h™!
E becomes constant for h(t)>L,:

E ~ gﬁgeoLi
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Energy balance:
all potential energy is dissipated

by viscosity

14



Self-similar evolution of the mixing layer

1 I I 1 1

T(z/z1,t)

for different t

- _ _ 15 (1/2\> 2/2\° = : {
Fitting with ~ T(z.t)=—1:0 |2 | =) —3( =) +— gives z,(t)

Simulations at
256x256x8192



Time evolution of h(t)
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the nonlinear model allows for a precise determination
of the temporal scaling exponent () = ~L*/°(3¢6,)*/°t*/°

Experiments: Lawrie & Dalziel (2011)



Thank you

G. Boffetta and A. Mazzino, Incompressible Rayleigh-Taylor Turbulence,
Annual Review of Fluid Mechanics 49, 119 (2017).



