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What is the effect of dimensionality on turbulent convection ? 
 
3D-2D: statistics of small-scale fluctuations & the appearance of the Bolgiano scale 
 
3D-1D: subdiffusive growth of large scale quantities 



Small scale statistics of turbulent convection 

Kolmogorov-Obukhov-Corrsin (1949-51) 
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Bolgiano (1959) 

   

δu(r )  (βg)2/5εθ
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Crossover at Bolgiano scale: 

   LB  ε
5/4εθ

−3/4(βg)−3/2

temperature is passive 
at small scales 

temperature is active 
at all scales  

see: D. Lohse, K.Q. Xia, 
Ann. Rev. Fluid Mech. 42 (2010) 
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Which scaling is realized in turbulent convection ? 



Rayleigh-Taylor turbulence 
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0 (β: thermal expansion coef.) 

For small A the Boussinesq approximation for an 
incompressible fluid holds: 
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Atwood: 

with initial condition: 
   

u(x,0) = 0

T (x,0) = −(1/ 2)θ0 sgn(z)
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T1 
Instability at the interface of two fluids of different densities 
with relative acceleration. 
Single fluid at two temperatures (densities) : θ0=T2-T1 

Simple setup for turbulent convection 
(no boundaries, no large scale circulation) 



Phenomenology of RT turbulence 

Large scale velocity fluctuations 
 
Turbulent mixing layer of width 
 
Kinetic energy pumped at a rate 

Energy balance:  
 
 
 
turbulent kinetic energy produced from potential energy 
and dissipated at a rate  

Dimensional balance:  implies 

time evolving turbulence 
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Small scale theory of RT turbulence 
M. Chertkov, Phys. Rev. Lett. 91 (2003) 

Ansatz: buoyancy negligible at small scales 

(small Richardson number) 
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Small scale velocity/temperature fluctuations follow Kolmogorov-Obukhov scaling 

consistency: 

Inconsistent in 2D where the energy flows to large scale (buoyancy dominated) 

passive temperature in turbulent flow with time dependent flux 
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Numerical simulation of RT turbulence 

t=1.4 
t=2.0 
t=2.6 
t=3.2 

h(t) = ↵Agt2



Self-similar evolution of spectra 

Collapse of kinetic energy and temperature 
variance spectra at different times. 
 
Insets: time evolution of kinetic energy 
dissipation ε ≈ t and temperature variance 
dissipation εT ≈ t-1 

Spatial-temporal scaling in agreement 
with dimensional theory 

k-5/3 

k-5/3 + intermittency corrections for higher 
   order statistics 
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G.Boffetta, A.Mazzino, S.Musacchio, L.Vozella, PRE 79 (2009) 
G.Boffetta, F.De Lillo, S.Musacchio, PRL 104 (2010) 
G.Boffetta, A.Mazzino, S.Musacchio, L.Vozella, Phys. Fluids 22 (2010) 



+ intermittency corrections 



Inverse cascade of velocity fluctuations 
follows (time evolving) Bolgiano scaling 
(+ intermittency correction for temperature 
fluctuations) 

RT turbulence in 2D 

A.Celani, A.Mazzino, L.Vozella, Phys. Rev. Lett. 96 (2006) 

M. Chertkov, Phys. Rev. Lett. 91 (2003) 
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Buoyancy balances inertia at all scales: (Ri=O(1)) 

Direct cascade of temperature fluctuations 

M. Chertkov, Phys. Rev. Lett. 91 (2003) 
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Where is the Bolgiano scale LB ? 

3D direct cascade  LB ≈ L  (integral scale) 

2D inverse cascade  LB ≈ 0 

Idea: LB is determined by the smallest size of the box 

Setup with large aspect ratio Ly << Lx , Lz 

* scales r << Ly : 3D Kolmogorov-Obukhov 

* scales r >> Ly : 2D Bolgiano 

Lx 

Lz 

Ly 

transverse geometrical scale 
becomes the Bolgiano scale 

g 

kx, kz 1/Ly 

E(k) 

βgθ0 ε 



Quasi-2D Rayleigh-Taylor turbulence 

x 

y 

z 

RT system confined in a thin convective cell  
 
Aspect ratio  Ly / Lx  = 1 / 32 , Lz / Lx  = 2 
Periodic b.c.: no material walls 

G.Boffetta, F.De Lillo, A.Mazzino, S.Musacchio, JFM 690, 426 (2012) 
temperature field from simulations 
at 4096x128x8192 - HPC grant 

* h(t) < Ly: 3D phenomenology 
  - Kolmogorov scaling 
  - passive temperature 
 
* h(t) > Ly: 2D phenomenology 
  - Bolgiano scaling 
  - active temperature 



In quasi-2d there is a residual direct energy flux (given by matching the velocity at r=Ly) 

t8/5 

transition from direct to inverse 
flux when h(t) reaches Ly 

A first signature of 3D – 2D transition: energy balance 

h(t) < Ly    3D h(t) > Ly   2D 
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Simultaneous presence of a direct and an inverse cascade of energy 

r < Ly 
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Inset: contributions to energy flux in Fourier space 
by the nonlinear term and by the buoyancy term 

Third-order velocity SF at late times 

The sign of S3(r) indicates a change  
in the direction of the turbulent cascade 
 
3D turbulent cascade at small scales 
2D inverse cascade at large scales 



Velocity and temperature structure functions 

Kolmogorov-Obukhov scaling 
at small scales (passive temperature) 
 
Bolgiano scaling  
at large scales (active temperature) 

Ly is the Bolgiano scale 

First evidence of a Bolgiano scale 
(i.e. two scalings) in turbulent convection 
 
 
 
 
 
(see D. Lohse, K.Q. Xia, 
Ann. Rev. Fluid Mech. 42 (2010)) 
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Quasi-1D Rayleigh-Taylor turbulence 

Physical motivation: mixing efficiency in stratified fluids 

Two-regimes: 
 
* h(t) < Lx : 3D RT turbulence 
 
* h(t) > Lx : ? 

Lx , Ly << Lz 

Lx 
Ly 

Lz 



Experiments in quasi-1D mixing 

salt water + fresh water  
A = 0.01 

S.B. Dalziel, M.D. Patterson, 
C.P. Caulfield, I.A. Coomaraswamy, 
POF 20 (2008) 



numerical simulations of 1D mixing 
t 



Evolution of the mixing layer 
t2 

* short times (h << Lx) 
 
    h(t) ≈ t2 
 
* long times (h ≈ Lx) 
 
    h(t) ≈ ? 

(Lz/Lx = 32) 

? 



A model for the growth of the mixing layer 

Velocity fluctuations on scales r > Lx are uncorrelated 
 
Evolution of mean temperature profile 

and θL is the temperature jump at scale Lu 

can be modeled in terms of an eddy diffusivity 

where urms is obtained dimensionally from the balance 

Eddy diffusivity: 
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Eddy diffusivity at late times 

Self-similar solution in the form                               with                                   

for |z|≤z1 

subdiffusive growth of the mixing layer 

eddy diffusivity 
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Saturation of kinetic energy 

Total kinetic energy 

Since  
E becomes constant for h(t)>Lx:  

Energy balance: 
all potential energy is dissipated 
by viscosity 
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Self-similar evolution of the mixing layer 

Fitting with gives z1(t) 

for different t 

Simulations at 
256x256x8192 
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Time evolution of h(t) 

h/t2/5 

h/t1/2 

the nonlinear model allows for a precise determination 
of the temporal scaling exponent h(t) = �L4/5
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Experiments: Lawrie & Dalziel (2011) 



Thank you 

G. Boffetta and A. Mazzino, Incompressible Rayleigh-Taylor Turbulence, 
Annual Review of Fluid Mechanics 49, 119 (2017).  


