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PART I:
Scalar Mixing and
Spontaneous Stochasধcity



Turbulent flows are extremely effecধve at both:

a) Dissipaধng energy (e.g. “Zeroth Law”, Onsager’s Conjecture)
χ = κ|∇θ|2

Donzis, D. A., K. R. Sreenivasan, and PK Yeung. Journal of Fluid Mechanics 532 (2005): 199-216.



Turbulent flows are extremely effecধve at both:

b) Mixing (e.g. Richardson Dispersion, Spontaneous Stochasধcity)

Bitane R, Holger H, and Bec J, Journal of Turbulence 14.2 (2013): 23-45.



STOCHASTIC
LAGRANGIAN REPRESENTATION OF PASSIVE SCALAR

∂tθ + uν · ∇θ = κ∆θ, θ|t=0 = θ0

Feynman-Kac formula with backwards stochasধc trajectories:

dξ̃t,s(x) = uν(ξ̃t,s(x), s) ds +
√
2κ d̂W̃s,

θ(x, t) = E [θ0(ξ̃t,0(x)) ]

whereE is an average over Brownian
moধons.

P. Saffman (1960), Sawford et a. (2005)
K. Sreenivasan and J. Schumacher (2010).



KRAICHNAN MODEL (BROWNIAN FLOWS)

Advecধon of a scalar field θ by a rough Brownian vector field on Tn:
dθ + (ū · ∇θ − κ∆θ) dt = dUν ◦ ∇θ, θ(0) = θ0 ∈ Cb(D).

For 0 < α < 1, the velociধes udt = ūdt + dU are built to saধsfy:

E |Uν(x, t)− Uν(x′, t′)|2 = t ∧ t′ ×
{

A|x − x′|2α ℓν ≪ |x − x′| ≪ L
B|x − x′|2 |x − x′| ≪ ℓν

.

Bernard, Gawȩdzki and Kupiainen (1998) found that anomalous dissipaধon is
explained by spontaneous stochasধcity:

pν,κ(x′, t′|x, t) = E
[
δd(x′ − ξ̃

ν,κ

t,t′ (x))
]

ν,κ→0−→ p∗(x′, t′|x, t) ̸= δd(x′ − ξ0,0
t,t′(x)).

See also [E & Vanden-Eijnden 00, 01]. Later, [Le Jan & Raimond 02, 04] proved
the existence of P∗

x,t[dξ], family of Markov transiধon probabiliধes, condiধoned
u, related to the flow dξt = u(ξt◦, t)dt. The unique dissipaধve weak soluধon is:

ϑ(x, t) =
∫

P∗
x,t[dξ] ϑ0(ξ−t) = E∗

x

[
ϑ0(ξ̃−t)

]
.



NO SPONTANEOUS STOCHASTICITY

SPONTANEOUS STOCHASTICITY



BEYOND THE KRAICHNAN MODEL

QUESTION 1: Does the same picture hold for Navier-Stokes? Scalar sources?

QUESTION 2: What is the effect of walls? Different boundary condiধons?



FLUCTUATION-DISSIPATION RELATION WITH NO WALLS

1

2

⟨
Var

[
θ0(ξ̃

κ,ν

t,0 (x)) +
∫ t

0

S(ξ̃κ,ν

t,s (x), s) ds
]⟩

Ω

= κ

∫ t

0

ds
⟨
|∇θν(s)|2

⟩
Ω
.

Balance between scalar dissipaࣅon and the input of scalar fluctuaࣅons from the
iniࣅal scalar field and the scalar sources, as sampled by backwards trajectories.

THEOREM: Spontaneous stochasধcity is necessary and sufficient for
anomalous dissipaধon of passive scalars.

Idea of Proof:

lim
k→∞

⟨
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] ⟩
Ω
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∫
ddx

∫
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0)
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p∗
2(x0, 0;x′

0, 0|x, t)− p∗(x0, 0|x, t)p∗(x′
0, 0|x, t)

]
, (1)

where p∗
2(x0, 0,x′

0, 0|x, t) ≡ δd(x0 − x′
0)p∗(x0, 0|x, t).

QUESTION 1: Same picture for Navier-Stokes? Scalar sources? YES!
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THEOREM: Spontaneous stochasধcity is necessary and sufficient for
anomalous dissipaধon of passive scalars. Morally true for acধve scalars!

Idea of Proof:

lim
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⟨
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WALL BOUNDED FLOWS WITH IMPOSED SCALAR FLUX
∂tθ + u · ∇θ = κ△θ + S for x ∈ Ω,

−κ
∂θ

∂n = g for x ∈ ∂Ω.

Define stochasধc trajectories which reflect off the boundary of the domain:
d̂ξ̃t,s(x) = uν(ξ̃t,s(x), s) ds +

√
2κ d̂Ws − κn(ξ̃t,s(x), s) d̂ℓ̃t,s(x)

where the boundary local meࣅ is:

ℓ̃t,s(x) =
∫ s

t
dr δ(dist(ξ̃t,r(x), ∂Ω)) ≡ lim

ε→0

1

ε

∫ s

t
dr χ∂Ωε(ξ̃t,r(x)), s < t,



WALL BOUNDED FLOWS WITH IMPOSED SCALAR FLUX
∂tθ + u · ∇θ = κ△θ + S for x ∈ Ω,

−κ
∂θ

∂n = g for x ∈ ∂Ω.

Define stochasধc trajectories which reflect off the boundary of the domain:
d̂ξ̃t,s(x) = uν(ξ̃t,s(x), s) ds +

√
2κ d̂Ws − κn(ξ̃t,s(x), s) d̂ℓ̃t,s(x)

Feynman-Kac formula, e.g. (Freidlin, 1985):

θ(x, t) = E
[
θ0(ξ̃t,0(x)) +

∫ t

0

ds S(ξ̃t,s(x), s) +
∫ t

0

g(ξ̃t,s(x), s) d̂ℓ̃t,s

]
.

Fluctuaধon dissipaধon relaধon:
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⟨
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⟩
Ω



WALL BOUNDED FLOWS WITH IMPOSED SCALAR FLUX
∂tθ + u · ∇θ = κ△θ + S for x ∈ Ω,

−κ
∂θ

∂n = g for x ∈ ∂Ω.

Define stochasধc trajectories which reflect off the boundary of the domain:
d̂ξ̃t,s(x) = uν(ξ̃t,s(x), s) ds +

√
2κ d̂Ws − κn(ξ̃t,s(x), s) d̂ℓ̃t,s(x)

Feynman-Kac formula, e.g. (Freidlin, 1985):

θ(x, t) = E
[
θ0(ξ̃t,0(x)) +

∫ t

0

ds S(ξ̃t,s(x), s) +
∫ t

0

g(ξ̃t,s(x), s) d̂ℓ̃t,s

]
.
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1
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⟨
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∫ t

0
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REMARK: FDR also holds for Dirichlet condiধons with g = −κ ∂θ
∂n .



WALL BOUNDED FLOWS WITH ZERO FLUX

For zero flux condiধons (sধrring milk into coffee) our fluctuaধon-dissipaধon
relaধon reads

1

2

⟨
Var

[
θ0(ξ̃t,0(x)) +

∫ t

0

ds S(ξ̃t,s(x), s)
]⟩

Ω

= κ

∫ t

0

ds
⟨
|∇θ(s)|2

⟩
Ω

and we have equivalence of anomalous dissipaধon & spontaneous stochasধcity.



WALL BOUNDED FLOWS WITH IMPOSED SCALAR FLUX

For general flux condiধons the situaধon is more complicated. For example,
consider the heat equaধon on R+ with constant flux J at x = 0 and θ0,S = 0.
Local ধme densiধes may be explicitly calculated and:

θ(x, t) = −J E[ℓ̃x=0
t,0 (x)] ∼ J

√
t
κ
φ

(
x√
κt

)
for a suitable scaling funcধon φ. Scalar boundary layer of thickness ∼

√
κt near

x = 0 where the field diverges as ∼ J
√

t/κ. Dissipaধon is non-vanishing (and
divergent!) though there is clearly no spontaneous stochasধcity:⟨

κ|∇θ(x, t)|2
⟩
Ω
∼ J2

√
t
κ

κ→0−→ ∞!

Thin scalar boundary layers near walls provide another mechanism for non-vanishing
dissipaࣅon!

There is no longer an equivalence between SS and AD, nevertheless our FDR is
sধll valid and can give important informaধon.



APPLICATION: RAYLEIGH BÉNARD CONVECTION:

∂tu + u · ∇u = −∇p + ν∆u + βg Tẑ
∂tT + u · ∇T = κ∆T, ∇ · u = 0, u

∣∣
z=±H/2

= 0

with fixed flux boundary condiধons

−κ
∂T
∂z

∣∣∣
z=±H/2

= J imposed flux models poorly conducধng plates.

Enhancement of verধcal heat transport measured by the Nusselt number:

Nu =
total heat flux

flux due to thermal conducধon
. Nu = Nu(Ra,Pr)?

Figure depicts fixed temperature RB convecࣅon. Erwin P. van der Poel & Rodolfo Osধlla Mónico, Livermore Naধonal

Laboratories.



FLUCTUATION-DISSIPATION IN RAYLEIGH BÉNARD CONVECTION

Nu√
Ra Pr

=
⟨κ|∇T|2⟩V,∞

(∆T)2U/H (2)

Classical theory of Kraichnan-Spiegel predicts NuKS ∼ C · Ra1/2Pr1/2.
We derived the following steady-state fluctuaধon-dissipaধon relaধon:

⟨κ|∇T|2⟩V,∞ = lim
t→∞

1

2t
⟨

Var
[
J
(
ℓ̃top

t,0 − ℓ̃bot
t,0

)]⟩
V

(3)

lim
t→∞

J2
2t Cov

[
ℓ̃λt,0(x), ℓ̃λ

′
t,0(x)

]
=

J2
H2

∫ 0

−∞
ds

(
Hpz(λH/2, s|λ′H/2, 0)− 1

)
:=

J2
H2

τλλ′
mix .

Long-ধme average of the thermal dissipaধon is enধrely due to staধsধcal
correlaধons of the incidences of single fluid parধcles on the top and boħom
walls at disধnct ধmes. Thus there is a relaধon with to mixing ধme

⟨κ|∇T|2⟩V,∞ =
J2
H2

τmix, =⇒ τmix
τff

=

√
RaPr
Nu



What are the consequences of our exact relaধon?
τmix
τff

∼ NuKS
Nu , τmix =

∫ 0

−∞
dt (H⟨c(t)⟩bot − 1) +

∫ 0

−∞
dt (H⟨c(t)⟩top − 1)

−
∫ 0

−∞
dt (H⟨c(t)⟩bot − 1)−

∫ 0

−∞
dt (H⟨c(t)⟩top − 1)

With τff = free-fall ধme, ∂tc+u ·∇c = −κ∆c and limt→−∞⟨c(t)⟩top/bot = 1/H.

MODIFIED FROM:
Two-dimensional convecধon simulaধon with res = 7680 × 4320, Ra = 1013 , Pr = 1, Γ = 16 : 9.
J. Lülff, M. Wilczek, A. Daitche, ‘Turbulence Team Münster’ YouTube channel,
http://www.youtube.com/user/turbulenceteamms, 2012.


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}



http://www.youtube.com/user/turbulenceteamms


PART II:
Onsager singularity theorem
for compressible turbulence



ONSAGER’S CONJECTURE FOR INCOMPRESSIBLE FLUIDS

Lars Onsager in 1949 proved (essenধally, but unpublished):
1) A weak Euler soluধon saধsfying u ∈ Ch for h > 1/3 must conserve energy.

He also hypothesized:
2) There exists a weak soluধon u ∈ Ch with h ≤ 1/3 which dissipates energy.
3) Euler soluধons of (2) should appear in the limit ν → 0 of NS soluধons.

1) Energy conservaধon for smooth enough weak Euler soluধons:
Eyink (1994); Constanধn, E, Tiধ (1994); Duchon-Robert (2000);
Cheskidov-Constanধn-Friedlander-Shvydkoy (2008).
We call these results Onsager Singularity Theorems.

2) Existence and Non-uniqueness of dissipaধve Euler Soluধons:
Scheffer (1993), Shnirelman (2000); De Lellis & Szekelyhidi (2012): C1/10−ε

t,x ;
Iseħ (2012): C1/5−ε

t,x ; Buckmaster (2013), C1/5−ε
t,x with C1/3−ε

t,x a.e. ধme;
Buckmaster, De Lellis & Szekelyhidi (2014): L1

t C1/3−ε
x ;

Buckmaster-Masmoudi-Vicol (2016): C1
t H1/3−ε

x ; Iseħ (2016): C1/3−ε
t,x

3) Zero-Viscosity Limit:
DiPerna & Majda (1987); P. L. Lions (1996);
Brenier-De Lellis-Szekelyhidi Jr. (2011);
Soluধons (2) are not yet known to appear in the inviscid limit.



COMPRESSIBLE EULER SYSTEM

∂tϱ+∇x·(ϱv) = 0 (4)
∂t(ϱv) +∇x· (ϱv ⊗ v + pI) = 0 (5)

∂tE +∇x· ((p + E)v) = 0 (6)

with equaࣅon of state p := p(u, ϱ).

The viscous stress tensor T is given by:

T := −2ηS − ζdivxvI with S :=
1

2

(
∇xv + (∇xv)⊤ − 2

ddivxvI
)

q := −κ∇xT.

with η := η(u, ϱ) > 0, ζ := ζ(u, ϱ) > 0 and κ := κ(u, ϱ) > 0.



COMPRESSIBLE NAVIER-STOKES SYSTEM

∂tϱ+∇x·(ϱv) = 0 (4)
∂t(ϱv) +∇x· (ϱv ⊗ v + pI + T) = 0 (5)

∂tE +∇x· ((p + E + T · u + q)v) = 0 (6)

with equaࣅon of state p := p(u, ϱ). The viscous stress tensor T is given by:

T := −2ηS − ζdivxvI with S :=
1

2

(
∇xv + (∇xv)⊤ − 2

ddivxvI
)

q := −κ∇xT.

with η := η(u, ϱ) > 0, ζ := ζ(u, ϱ) > 0 and κ := κ(u, ϱ) > 0.



ENERGY BALANCE EQUATIONS:

∂t

(
1

2
ϱ|v|2

)
+∇x·

((
p +

1

2
ϱ|v|2

)
v + T · v

)
= p divxv − Q,

∂tu +∇x· (uv + q) = Q − p divxv,

where the rate of viscous heaধng of the fluid is:

Q := −T : ∇xv = 2η|S|2 + ζ|divxv|2.

The entropy density s := s(u, ϱ) is thermodynamically related to u and ϱ
through the first law of thermodynamics in the form:

Tds = du − µdϱ.

with the chemical potenࣅal µ := µ(u, ϱ). It follows that:

∂ts +∇x ·
(

sv +
q
T
)
=

Q
T +Σκ =: Σ ≥ 0,

where
Σκ := −q · ∇xT

T2
= κ

|∇xT|2

T2
.



ENERGY BALANCE EQUATIONS:

∂t

(
1

2
ϱ|v|2

)
+∇x·

((
p +

1

2
ϱ|v|2

)
v + T · v

)
= p divxv − Q,

∂tu +∇x· (uv + q) = Q − p divxv,

where the rate of viscous heaধng of the fluid is:

Q := −T : ∇xv = 2η|S|2 + ζ|divxv|2.

The entropy density s := s(u, ϱ) is thermodynamically related to u and ϱ
through the first law of thermodynamics in the form:

Tds = du − µdϱ.

with the chemical potenࣅal µ := µ(u, ϱ). It follows that:

∂ts +∇x ·
(

sv +
q
T
)
=

Q
T +Σκ =: Σ ≥ 0,

where
Σκ := −q · ∇xT

T2
= κ

|∇xT|2

T2
.



We consider limits of soluধons uε, ϱε,vε with ηε = εη̂, ζε = εζ̂, κε = εκ̂.

ASSUMP. 1: Given ε > 0, we assume there exists a unique smooth soluধon
uε, ϱε,vε of the NS equaধons on Td × [0,T] for a given equaধon of state.

We assume that uε, ϱε,vε ∈ L∞(Td × [0,T]) uniformly in ε > 0 and that
for some 1 ≤ p < ∞ strong limits exist

uε → u, ϱε → ϱ, vε → v in Lp(Td × [0,T]).

We also assume no vacuum states, i.e. ϱε, ϱ ≥ ϱ0 for some ϱ0 > 0.

NOTE: Assumpধon 1 permits limiধng fields with jump disconধnuiধes.

ASSUMP. 2: Thermodynamic funcধons h = p, T, s, η̂, . . . are C2 in u, ρ.

ASSUMP. 3: The dissipaধon terms have distribuধonal limits:

Qε
η := 2η

ε|Sε|2, Qε
ζ := ζ

ε
(divxvε

)
2
, Qε

:= Qε
η + Qε

ζ
D−→Q

Σ
ε
η :=

Qε
η

Tε
, Σ

ε
ζ :=

Qε
η

Tε
, Σ

ε
κ := κ

ε

∣∣∣∣∣∇xTε

Tε

∣∣∣∣∣
2

, Σ
ε

:= Σ
ε
η + Σ

ε
ζ + Σ

ε
κ

D−→Σ.



THEOREM 1: Any strong limits u, ϱ,v of NS soluধons under Assumpধon
1–3 are weak soluধons of the compressible Euler system on Td × [0,T].
Furthermore, the following balances hold distribuধonally on Td × (0,T):

∂t

(
1

2
ϱ|v|2

)
+∇x ·

((
p +

1

2
ϱ|v|2

)
v
)

= p ∗ divxv − Q

∂tu +∇x · (uv) = Q − p ∗ divxv
∂ts +∇x · (sv) = Σ

with Q ≥ 0 and Σ ≥ 0 given by Assumpধon 3 and with
p ∗ divxv := D- lim

ε→0
pε divxvε

where this distribuধonal limit necessarily exists.

REMARK: Analogous to Theorem of [Duchon & Robert, 00] in incompressible
seষng. Unlike them, we assume Q,Σ have distribuধonal limits.

REMARK: Shock soluধons [Johnson, 14] provide examples for which Q,Σ > 0.
Presumably this can occur even with conধnuous soluধons...

REMARK: Assuming Sutherland’s law, i.e. κ(u, ϱ) := κ(T(u, ϱ)), then Σε D−→ Σ
is a consequence of the assumed strong convergence.



GENERAL WEAK SOLUTIONS:

weak soluধon ⇐⇒ coarse-grained soluধon

∂tϱℓ +∇x · jℓ = 0,

∂t j ℓ +∇x ·
(
(j ⊗ v)ℓ + pℓI

)
= 0,

∂tEℓ +∇x ·
(
((E + p)v)ℓ

)
= 0.

where fℓ = Gℓ ∗ f . Following [H. Aluie (2013)], we deduce :

∂t

(
1

2
ϱℓ|ṽℓ|2

)
+∇x · Jv

ℓ = pℓ divxvℓ − Qflux
ℓ

with the Favre average ṽℓ := (ϱv)ℓ/ϱℓ and τ ℓ(f, g) = (fg)ℓ − fℓgℓ. Also:

Jv
ℓ :=

(
1

2
ϱℓ|ũℓ|2 + pℓ

)
ũℓ + ϱũℓ · τ̃ℓ(u,u)−

pℓ

ϱℓ
τ ℓ(ϱ,u), (7)

Qflux
ℓ :=

∇xpℓ

ϱℓ
· τ ℓ(ϱ,u)− ϱℓ∇xũℓ : τ̃ℓ(u,u). (8)

The term Qflux
ℓ represents a turbulent cascade of kineধc energy.



KEY IDENTITY: Modified entropy density:

s∗ℓ := s(uℓ, ϱℓ) + βℓkℓ,

whose balance equaধon is derived to be

∂ts∗ℓ +∇x · Js∗
ℓ = −Iflux

ℓ +Σflux∗
ℓ

with

Js∗
ℓ := sℓuℓ + βℓτ ℓ(u,u)− λℓτ ℓ(ϱ,u), (9)

+βℓ

(
1

2
ϱℓτ̃ℓ(vi, vi)ũℓ + τ ℓ(p,u) +

1

2
ϱℓτ̃ℓ(vi, vi,u)

)
(10)

Iflux
ℓ := βℓ(pℓ − pℓ)Θℓ, (11)

Σflux∗
ℓ := ∇xβℓ · τ ℓ(u,u)−∇xλℓ · τ ℓ(ϱ,u) (12)

+βℓQflux
ℓ + ∂tβℓ kℓ +∇xβℓ · Jk

ℓ. (13)

Inverse turbulent cascade of entropy [forward cascade of (neg)entropy].



THEOREM 2: Let u, ϱ,v be any L∞(Td × [0,T]) weak soluধon of the
compressible Euler system. Assuming the distribuধonal limit Qflux :=
D- limℓ→0 Qflux

ℓ exists, the following balances hold weakly on Td × (0,T):

∂t

(
1

2
ϱ|v|2

)
+∇x ·

((
p +

1

2
ϱ|v|2

)
v
)

= p ◦ divxv − Qflux

∂tu +∇x · (uv) = Qflux − p ◦ divxv
∂ts +∇x · (sv) = Σflux

with the definiধons

Σflux = D- lim
ℓ→0

Σflux
ℓ , p ◦ divxv := D- lim

ℓ→0
pℓ(divxv)ℓ

where these distribuধonal limits necessarily exist.

REMARK: In general, Σdiss = Σflux but p ∗ divxv ̸= p ◦ divxv. Thus

Qdiss = Qflux + τ(p,divxv),

where τ(p, divxv) = p ∗ divxv − p ◦ divxv.

REMARK: Shock soluধons [Johnson, 14] provide examples with
Qflux = 0 and Qdiss = τ(p,divxv) > 0 !



An Onsager singularity theorem in Besov spaces:

THEOREM 3: If the weak Euler soluধons in Theorem 2 saধsfy

u ∈ Bσu
p ,∞

p (Td × [0,T]), ϱ ∈ Bσϱ
p ,∞

p (Td × [0,T]), v ∈ Bσv
p,∞

p (Td × [0,T]),

with all three of the following condiধons saধsfied

2min{σϱ
p , σ

u
p}+ σv

p > 1

min{σϱ
p , σ

u
p}+ 2σv

p > 1

3σv
p > 1

for any p ≥ 3, then Qflux = Σflux exist and equal 0. Soluধons of Theorem
1 saধsfy the exponent condiধons have Qdiss = Σdiss = 0 and

p ∗ divxv = p ◦ divxv.

REMARK: This result generalizes those of [Constanধn-E-Tiধ, 94] for
incompressible NS and [Feireisl et al., 16] for the barotropic seষng.

REMARK: Our condiধons for p = 3 are sharp. Shock soluধons with
u, ϱ,v ∈ BV ∩ L∞ ⊂ B1/3,∞

3 (Td) provide a simple example of dissipaধve Euler
soluধons saturaধng our bounds. For p > 3 the quesধon remains open.



Our Theorem 3 is formulated in terms of space-ধme regularity, whereas the
original statement of Onsager and most following works have given necessary
condiধons for anomalous dissipaধon in terms of space-regularity only.

THEOREM 4: Let (u, ϱ,v) be any weak Euler soluধon saধsfying ϱ ≥ ϱ0 > 0
and u, ϱ,v ∈ L∞([0,T]× Td) together with:

u ∈ L∞([0,T];Bσu
p ,∞

p (Td)),

ϱ ∈ L∞([0,T];Bσϱ
p ,∞

p (Td)),

v ∈ L∞([0,T];Bσv
p,∞

p (Td)),

for Besov exponents 0 ≤ σu
p , σ

ϱ
q , σ

v
q ≤ 1. Then the soluধons are Besov

regular in space-ধme:

u ∈ Bmin{σϱ
p ,σv

p,σ
u
p},∞

p (Td × [0,T]),

ϱ ∈ Bmin{σϱ
p ,σu

p},∞
p (Td × [0,T]),

v ∈ Bmin{σϱ
p ,σv

p,σ
u
p},∞

p (Td × [0,T]).

REMARK: This result is very similar to that obtained in [Iseħ, 2015] for
Hölder-conধnuous weak soluধons of incompressible Euler.



[Chepurnov & Lazarian, 2010]



FUTURE WORK & OPEN QUESTIONS

FIRST HALF: SPONTANEOUS STOCHASTICITY

1) Further explore Lagrangian mechanisms of Nusselt-Rayleigh scaling by
measuring mixing ধme τmix in Rayleigh-Bénard simulaধons/experiments.

2) How does spontaneous stochasধcity relate to the dissipaধve anomalous for
incompressible Navier-Stokes? Constanধn-Iyer representaধon, Eyink
Marধngale Hypothesis for circulaধons.

SECOND HALF: COMPRESSIBLE ONSAGER

1) Weaken Assumpধon 1. There is evidence that at sufficiently high Mach
numbers the limiধng mass density ρ as ε → 0 may exist only as a measure and
not as a bounded funcধon [Kim et. al, 2005].

2) Result readily generalize to relaধvisধc Euler equaধons in Minkowski
spaceধme. General relaধvity? Gas and plasma dynamics such as the
Vlasov-Maxwell or Boltzmann?
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