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PART I
Scalar Mixing and
Spontaneous Stochasticity



Turbulent flows are extremely effective at both:

a) Dissipating energy (e.g. “Zeroth Law”, Onsager's Conjecture)
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Donzis, D. A., K. R. Sreenivasan, and PK Yeung. Journal of Fluid Mechanics 532 (2005): 199-216.



Turbulent flows are extremely effective at both:

b) Mixing (e.g. Richardson Dispersion, Spontaneous Stochasticity)
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Figure 2. Time-evolution of the mean-squared distance for Ry = 730 (a) and Ry = 460 (b) for various
initial separations ro as labeled. The horizontal and vertical solid lines represent the integral scale L and
its associated turnover time 7z, respectively. The dashed line corresponds to the explosive Richardson-
Obukhov law (3) with g = 0.52.

Bitane R, Holger H, and Bec J, Journal of Turbulence 14.2 (2013): 23-45.



STOCHASTIC
LAGRANGIAN REPRESENTATION OF PASSIVE SCALAR

00 +u” - VO = kA0, 0)t=0 = 6o
Feynman-Kac formula with backwards stochastic trajectories:

dées(x) = u” (§s(x), 8) ds+ V2r AW,
0(x, 1) = £ [00(€0(x)) | (,t).

P. Saffman (1960), Sawford et a. (2005)
K. Sreenivasan and J. Schumacher (2010).




KRAICHNAN MODEL (BROWNIAN FLOWS)

Advection of a scalar field 8 by a rough Brownian vector field on T":
df + (a- VO — kAG)dt = dU” o V6, 6(0) = 6y € C(D).

For 0 < a < 1, the velocities udt = udt + dU are built to satisfy:

A /2 éu ! L
E|U"(x,t) — U, )> = tAt x |x x/I2 < |x x/\ < '
Blx — x| x— x| < b,

Bernard, Gawedzki and Kupiainen (1998) found that anomalous dissipation is
explained by spontaneous stochasticity:
P eIk t) = B [67(x = &0 (x))] 5 b ) £ 89K - €00()).

See also [E & Vanden-Eijnden 00, O1]. Later, [Le Jan & Raimond 02, 04] proved
the existence of P% ,[d€], family of Markov transition probabilities, conditioned
u, related to the flow d€, = u(&,0, t)dt. The unique dissipative weak solution is:

00,0 = [ B dg] Do(€ ) = B [0(€ )]



NO SPONTANEOUS STOCHASTICITY
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BEYOND THE KRAICHNAN MODEL
QUESTION 1: Does the same picture hold for Navier-Stokes? Scalar sources?

QUESTION 2: What is the effect of walls? Different boundary conditions?



FLUCTUATION-DISSIPATION RELATION WITH NO WALLS

L <Var [90 &7 (%)) / SE (x ]>Q _ K/Otds<\ve”(s)|2>g.

Balance between scalar dissipation and the input of scalar fluctuations from the
initial scalar field and the scalar sources, as sampled by backwards trajectories.



FLUCTUATION-DISSIPATION RELATION WITH NO WALLS

<Var [90 &y (x / S (x ]>Q = H/Otds <\V0”(s)|2>ﬂ.

Bu((mr(’ between scalar dissipation and the input of scalar fluctuations f’om the
vitial scalar field and the scalar sources, as scmp/cd by backwards trajecto

THEOREM: Spontaneous stochasticity is necessary and sufficient for
anomalous dissipation of passive scalars.

Idea of Proof:

Jim (Var [00@5" )] ), = [ o [ b [ o 0ot on(x0)

X [p;‘ (%0, 0; X0, 0%, t) — p* (%0, 0|x, t)p* (x0, 0|x, t)},

where p3(xo, 0, x5, 0[x, t) = 6%(x0 — x4)p" (%0, 0|x, t).

QUESTION 1: Same picture for Navier-Stokes? Scalar sources? YES!




FLUCTUATION-DISSIPATION RELATION WITH NO WALLS

<Var [90 &y (x / S (x ]>Q = H/Otds <\V0”(s)|2>ﬂ.

Bu/ ance between scalar dissipation and the input of scalar fluctuations from the
nitial scalar field and the scalar sources, as sampled by backwards trajectories.

THEOREM: Spontaneous stochasticity is necessary and sufficient for
anomalous dissipation of passive scalars. Morally true for active scalars!

Idea of Proof:

lim (Var [eo(gzg”k(x))] >Q = / ' / d'xo / d'xp 0o (%0)fo (x5)

X [p;‘ (%0, 0; X0, 0%, t) — p* (%0, 0|x, t)p* (x0, 0|x, t)},

where p3(xo, 0, x5, 0[x, t) = 6%(x0 — x4)p" (%0, 0|x, t).

QUESTION 1: Same picture for Navier-Stokes? Scalar sources? YES!




WALL BOUNDED FLOWS WITH IMPOSED SCALAR FLUX
80 +u-V0=rAO+S for x e,

00
Ko =& for x € 09Q.

Define stochastic trajectories which reflect off the boundary of the domain:
€, (x) = u”(€,,(x),5) ds+ V2k AW, — kn(€, (%), ) dles(x)
where the boundary local time is:

lls(x) = /ts dr 5(dist(ét’,(x),8§2))

Wall — normal position
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= lim * / dron, (€, (),  s<t
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WALL BOUNDED FLOWS WITH IMPOSED SCALAR FLUX
O +u-VO=rA0+S for xeQ,

00
Ko =& for x € 09Q.

Define stochastic trajectories which reflect off the boundary of the domain:
d€, (x) = u’ (€, ,(x),s) ds+ V2x AW, — rn(£, (%), s) A/, (x)

Feynman-Kac formula, e.g. (Freidlin, 1985):
00, 1) = B 60(Eyo () + [ ds S0, + | a(€,.00.5) .
0 J0

Fluctuation dissipation relation:

5 (Vo 0B + [ as S+ [ ate 00900 )

0



WALL BOUNDED FLOWS WITH IMPOSED SCALAR FLUX
O +u-VO=sA0+S for xeQ,

06
Ko =& for x € 09Q.

Define stochastic trajectories which reflect off the boundary of the domain:
€, (x) = u”(€,,(x),5) ds+ V2k AW, — kn(€, (%), ) dles(x)

Feynman-Kac formula, e.g. (Freidlin, 1985):

0,0 = B [d0(Eo0) + [ a5 SEu(09+ [ 6(E.s00,9) dles]

0

Fluctuation dissipation relation:
5 (Vo 0B + [ as S0+ [ a0, 900 )
= K/o ds(|Vo(s)*),,

REMARK: FDR also holds for Dirichlet conditions with g = —x 22

on”



WALL BOUNDED FLOWS WITH ZERO FLUX

For zero flux conditions (stirring milk into coffee) our fluctuation-dissipation
relation reads

5 (Var [0 (Euo) + [ dsS(E00.9] ) = [as(vacar),

and we have equivalence of anomalous dissipation & spontaneous stochasticity.




WALL BOUNDED FLOWS WITH IMPOSED SCALAR FLUX

For general flux conditions the situation is more complicated. For example,
consider the heat equation on R™ with constant flux Jat x =0 and 6y, S = 0.
Local time densities may be explicitly calculated and:

o ==~ af o (G5

for a suitable scaling function ¢. Scalar boundary layer of thickness ~ /kt near
x = 0 where the field diverges as ~ Jy/t/k. Dissipation is non-vanishing (and
divergent!) though there is clearly no spontaneous stochasticity:

(K|VO(x, ), ~ P £ it NS

Thin scalar boundary layers near walls provide another mechanism for non-vanishing
dissipation!

There is no longer an equivalence between SS and AD, nevertheless our FDR is
still valid and can give important information.



APPLICATION: RAYLEIGH BENARD CONVECTION:
du+u-Vu=—-Vp+vAu+ g Tz

OT+u-VT=krAT, V-u=0, u|_,,, =0
with fixed flux boundary conditions
oT . .
K— =J imposed flux models poorly conducting plates.
0z lz=+H/2

Enhancement of vertical heat transport measured by the Nusselt number:

_ total heat flux
" flux due to thermal conduction”

Nu Nu = Nu(Ra, Pr)?

Figure depicts fixed temperature RB convection. Erwin P. van der Poel & Rodolfo Ostilla Monico, Livermore National



FLUCTUATION-DISSIPATION IN RAYLEIGH BENARD CONVECTION

Nu _ (KIVTI*) Voo )
VRaPr  (AT)2U/H

Classical theory of Kraichnan-Spiegel predicts Nuks ~ C- Ra*/?Prt/2.
We derived the following steady-state fluctuation-dissipation relation:

2 _ - jtop pbot
T = i o - ),
JQ . J2 0 ,
Jlim - Cov [#(x), 2()] = W/W ds (Hps(AH/2, s\ H/2,0) — 1)
_ L
H2 mix -

Long-time average of the thermal dissipation is entirely due to statistical
correlations of the incidences of single fluid particles on the top and bottom
walls at distinct times. Thus there is a relation with to mixing time

S Tmix _ V/RaPr
2 _ . mix _
(&|VT] >V.<><> = ;¢ Tmix, — - Nu



What are the consequences of our exact relation?
mix N 0 0
o B, = [ de (M)~ 1)+ [ de(Hel8) e~ 1)

¢ Nu’ —oo oo
- / dt (H(c(t))or — 1) — / dt (H(c(H))eop — 1)

With 7 = free-fall time, 0;c+u- Ve = —xkAcand limy oo (c(t)) top/por = 1/ H.

MODIFIED FROM:
Two-dimensional convection simulation with res = 7680 x 4320, Ra = 103, Pr=1,T = 16 : 9.

J. Lilff, M. Wilczek, A. Daitche, Turbulence Team Miinster’ YouTube channel,
http://www.youtube.com/user/turbulenceteamms, 2012.



var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}



http://www.youtube.com/user/turbulenceteamms

PART I
Onsager singularity theorem
for compressible turbulence



ONSAGER’S CONJECTURE FOR INCOMPRESSIBLE FLUIDS

Lars Onsager in 1949 proved (essentially, but unpublished):
1) A weak Euler solution satisfying u € C" for h > 1/3 must conserve energy.
He also hypothesized:
2) There exists a weak solution u € C" with h < 1/3 which dissipates energy.
3) Euler solutions of (2) should appear in the limit v — 0 of NS solutions.

1) Energy conservation for smooth enough weak Euler solutions:
Eyink (1994); Constantin, E, Titi (1994); Duchon-Robert (2000);
Cheskidov-Constantin-Friedlander-Shvydkoy (2008).

We call these results Onsager Singularity Theore

2) Existence and Non-uniqueness of dissipative Euler Solutions
Scheffer (1993), Shnirelman (2000); De Lellis & Szekelyhidi (2012) Lo
Isett (2012): C;%°~%; Buckmaster (2013), C14°~ with C123™% a.e. time;

Buckmaster, De Lellis & Szekelyhidi (2014): LlCl/3 €.
Buckmaster-Masmoudi-Vicol (2016): CHHL/37¢; Isett | (2016) c/?

3) Zero-Viscosity Limit:

DiPerna & Majda (1987); P. L. Lions (1996);

Brenier-De Lellis-Szekelyhidi Jr. (2011);

Solutions (2) are not yet known to appear in the inviscid limit.



COMPRESSIBLE EULER SYSTEM
00+ Vi (ov) =0
O:(ov) + Vx (ev@ v+ pl) =0
OE+ Vi ((p+E)Vv)=0

with equation of state p := p(u, ).



COMPRESSIBLE NAVIER-STOKES SYSTEM

de0 + Vi (ov) =0 (4)
Oe(ov) + Vi (ov@ v +pIl+T) =0 (5)
HE+ Vi (p+E+T-u+qv)=0 (6)
with equation of state p := p(u, ). The viscous stress tensor T is given by:

T := —2nS — (divevl with S:= % (VXV + (VXV)T — %divxv1>
q:= —kViT.

with i :=n(u, 0) > 0, ¢ :=((u, 0) > 0and & := k(u, 0) > 0.



ENERGY BALANCE EQUATIONS:
Or (%Q‘VP) + Vi ((p+ %g|v|2) v+T- v) = pdivyv — Q,
O+ Vi (uv + q) = Q — p divyv,
where the rate of viscous heating of the fluid is:

Q:=—T: Vv =2|S* + ¢|divev]>.



ENERGY BALANCE EQUATIONS:

O (%Q\V\Q) + Vi ((p+ %g|v|2) v+T- v) = pdivyv — Q,
O+ Vi (uv 4+ q) = Q — pdivyv,
where the rate of viscous heating of the fluid is:
Q:=—T : Vv = 27|S|? + ¢|div.v]*.

The entropy density s := s(u, g) is thermodynamically related to v and o
through the first law of thermodynamics in the form:

Tds = du — pdo.
with the chemical potential u := p(u, ). It follows that:
6ts—|—VX~(sv+ ): =X >0,

where




We consider limits of solutions u®, %, v® with n® =7, (¢ = sé, K = ek.

ASSUMP. 1: Given e > 0, we assume there exists a unique smooth solution
1, 05, v® of the NS equations on T¢ x [0, T] for a given equation of state.

We assume that u°, ¢°,v¢ € L>(T? x [0, T]) uniformly in € > 0 and that
for some 1 < p < oo strong limits exist

= u, o° =, v — v in LP(TYx [0, T)).

We also assume no vacuum states, i.e. ¢, o0 > oo for some go > 0.

NOTE: Assumption 1 permits limiting fields with jump discontinuities.

ASSUMP. 2: Thermodynamic functions h=p, T, s, #,... are C? in u, p.

ASSUMP. 3: The dissipation terms have distributional limits:

Q =20°IS%1%,  Qf := ¢°(divav®)?, Q=@+
A v.T*
TE

2

D
, B8 = kE R € = 2; + ZZ + = >3,

K

ni= e TS




THEOREM 1: Any strong limits u, o, v of NS solutions under Assumption
1-3 are weak solutions of the compressible Euler system on T¢ x [0, T].
Furthermore, the following balances hold distributionally on T¢ x (0, T):

1 1
O <§g|v|2> + V- (<p+ §g|v|2) v) = pxdiviv — Q
O+ Vi - (uv) = Q — pxdivyv
Ois+ V- (sv) =X
with @ > 0 and X > 0 given by Assumption 3 and with
p *x divev := D- Iim0 p° div,v©
e—

where this distributional limit necessarily exists.

REMARK: Analogous to Theorem of [Duchon & Robert, 00] in incompressible
setting. Unlike them, we assume Q, X have distributional limits.

REMARK: Shock solutions [Johnson, 14] provide examples for which @, > > 0.
Presumably this can occur even with continuous solutions...

REMARK: Assuming Sutherland’s law, i.e. k(u, ¢) := k(T(u, 0)), then DIRS y
is a consequence of the assumed strong convergence.



GENERAL WEAK SOLUTIONS:

weak solution <= coarse-grained solution
0:00 +Vx- jo =0,
e+ Ve (GOV)e+Pil) =0,
OEr+ Vi (Wz) =0.

where f, = G; * f. Following [H. Aluie (2013)], we deduce :

1 ~ v - T ux
o (§@e|ve|2> + Vi 3¢ = P divave — Qf

with the Favre average v, := (ov)¢/0¢ and 74(f, g) = (fg)e — fege. Also:

v 1 D U ou T ; T
J, = <§Qz|ue|2—|—pe> 1y + ptig - Te(u,u) — gj”(é”u)v
ux VX7 = 0 u T
flax @fz “Te(0,w) = 2o Vide : 7(u, ).

The term Q"™ represents a turbulent cascade of kinetic energy.



KEY IDENTITY: Modified entropy density:
s¢ = s(Te, 0e) + Brke,
whose balance equation is derived to be

Oisy + V- I3 = —[flux 4 pflwe

with
7 = s+ BeTe(u,a) — AeTe(o, 1),
+B¢ (%@ﬁe(vh vi)Ug + Te(p,u) + %@ﬁé(vh Vi, “))
[ = Be(pe — pe)Oe,
S = Ve Te(uyu) — Vide - Tolo,u)

B Q™ + e ke + VB - I

Inverse turbulent cascade of entropy [forward cascade of (neg)entropy].



THEOREM 2: Let u, p,v be any L>(T% x [0, T]) weak solution of the
compressible Euler system. Assuming the distributional limit Qaux :=
D- limg_,0 QI exists, the following balances hold weakly on T¢ x (0, T):

1 1
O (§9|v|2) + Vi ((p+ §9|V|2> V) = podiviv — Qfiux

Ot + Vi - (uv) = Qpux — po divev
8t5+ Vx . (SV) = Eflux

with the definitions
Soux = D- lim =8, podivev := D- lim pe(divev)e
£—0 £—0

where these distributional limits necessarily exist.

REMARK: In general, Zaiss = Siux but p * divev # p o divev. Thus
Qaiss = Qfux + T(P, diVxV)7
where 7(p, divyv) = p* divev — po divyv.

REMARK: Shock solutions [Johnson, 14] provide examples with
Qflux =0 and Qdiss = T(P7 diVxV) >0!



An Onsager singularity theorem in Besov spaces:

THEOREM 3: If the weak Euler solutions in Theorem 2 satisfy
o oo 2 00 oY, 00
ue BPP (de[(]?ﬂ)? QG Bpp (de[()?ﬂ)? v E BPP (de[()?ﬂ)v
with all three of the following conditions satisfied
2min{op,0,} +0, > 1
min{op,0p} +20, > 1
30, > 1

for any p > 3, then Quux = Zaux exist and equal 0. Solutions of Theorem
1 satisfy the exponent conditions have Quaiss = Zaiss = 0 and

p * divyv = po divyv.

REMARK: This result generalizes those of [Constantin-E-Titi, 94] for
incompressible NS and [Feireis| et al., 16] for the barotropic setting.

REMARK: Our conditions for p = 3 are sharp. Shock solutions with
u,0,v € BVN L™ C BY*°°(T9) provide a simple example of dissipative Euler
solutions saturating our bounds. For p > 3 the question remains open.



Our Theorem 3 is formulated in terms of space-time regularity, whereas the
original statement of Onsager and most following works have given necessary
conditions for anomalous dissipation in terms of space-regularity only.

THEOREM 4: Let (u, o, v) be any weak Euler solution satisfying o > 00 > 0
and u, g, v € L*=([0, T] x T9) together with:

we L=([o, TY; By (T%),
0 € L([0, T}; B3 (1),
v e L([0, T]; B (T%),
for Besov exponents 0 < o,,0¢,0y < 1. Then the solutions are Besov
regular in space-time:
ue By"B b pd 1o ),

min{o?,0,},00

0€B, (T? % [0, 7)),

min{o?,0,,0,},00

vEB, (T? x [0, T)).

REMARK: This result is very similar to that obtained in [Isett, 2015] for
Holder-continuous weak solutions of incompressible Euler.
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Figure 5. WHAM estimation for electron density overplotted on the figure of
the Big Power Law in the sky figure from Armstrong et al. (1995). The range
of statistical errors is marked with gray color.

[Chepurnov & Lazarian, 2010]



FUTURE WORK & OPEN QUESTIONS

FIRST HALF: SPONTANEOUS STOCHASTICITY

1) Further explore Lagrangian mechanisms of Nusselt-Rayleigh scaling by
measuring mixing time 7mix in Rayleigh-Bénard simulations/experiments.

2) How does spontaneous stochasticity relate to the dissipative anomalous for
incompressible Navier-Stokes? Constantin-lyer representation, Eyink
Martingale Hypothesis for circulations.

SECOND HALF: COMPRESSIBLE ONSAGER

1) Weaken Assumption 1. There is evidence that at sufficiently high Mach
numbers the limiting mass density p as e — 0 may exist only as a measure and
not as a bounded function [Kim et. al, 2005].

2) Result readily generalize to relativistic Euler equations in Minkowski
spacetime. General relativity? Gas and plasma dynamics such as the
Vlasov-Maxwell or Boltzmann?
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