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Euler equations 1n flat or curved space and differential geometry (DG)

Cauchy's (1815) Lagrangian invariants equations and Cauchy’s vorticity
formula from a traditional and DG point of view arxiv.org/abs/1701.01592

Generalized Cauchy invariants, local helicities galore

Recursion relations for time-Taylor coefficients and analyticity; the
Cauchy-Lagrange numerical method

A few words about wall-bounded flow and blow-up


http://arxiv.org/abs/1701.01592

Eulerian (spatial) and Lagrangian (material) coordinates

Volume : V Volume : V’ Lagrangian map :
a— x = p(a,t).
Jacobian : J = det(9z;/da;) = V'/V.

Incompressible flow : J =1

//

Time s =0 Time s =1t
a = (a,b,c) xr = (z,y,2) Ov + (v-V)v = —Vp, V-v=0
Lagr. coord. Eul. coord.

The geometrization of the Lagrangian approach
Vladimir Arnold 1937 - 2010

Arnold (1966) (Ann. Inst. Fourier): The solutions of the incompressible Euler
equations extremize the kinetic-energy-based action :

A= / / a)gii(p(a, 1))@ (a,t)¢’ (a,t) (Euclidean case: g;; = d;;, u(a) = d>a),

with the constraints ¢(a,0) = a and given p(a,T).



From a DG point of view, vorticity 1s an invariant

When changing from Eulerian to Lagrangian coordinates, a scalar function, say

a temperature ¢ must just be compose with the Lagrangian map ¢ :
14 Lagrangian __ 0 Eulerian o

When working with differential forms one must take into account the change in
elements of length, surface, volume, ..., to obtain the pullback (Eulerian to
Lagrangian) and the pushforward (Lagrangian to Eulerian) transformations.
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which can be written in more traditional (Euclidean) fluid mechanics notation
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Consider the velocity 1-form v

ov;  0v, - -
The vorticity 2-form  w := dv’® = Z ( Y Y ) dx' N dx’
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thus satisfies 0,w + £,w = 0. The vorticity is Lie-advection invariant!
A first instance is Helmholtz (1858). But actually goes back to Cauchy.



The Cauchy (18135) invariants equation in DG notation

Use a dot for the Lagrangian derivative 0; + vi0k, Euler eq. reads
¥ = —Okp. Multiply by dxz” and sum over k : #pdx” = —dp.
Denote the Lagrangian time derivative by D; when needed, rewrite as

Dy (ipdat) — di2 = —dp.

Apply the exterior derivative d, use dd = 0 and integrate over time from 0 to ¢:

The Cauchy invariants equation dij A dz® = d(vorda®) = wp.

In traditional fluid mechanics notation it is ?La’:k X ?ka — L?O :

By elementary manipulations of the Jacobian matrix ?L.’L‘ Cauchy obtains

his famous vorticity formula & = 0p %)L.’E.

Actually, both the Cauchy invariants equation and his vorticity formula are

instances, related by Hodge duality, of a general result on Lie-advection
invariant exact p-forms.



The generalized Cauchy invariants equation
We now work with a prescribed time-dependent velocity field vy,

along which some p-form - is Lie-advected. If v is exact, one has
a Generalized Cauchy invariants equation and (by Hodge duality)
a Generalized Cauchy formula. Specifically, let
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where x denotes the Hodge dual operator.



Local helicities in hydrodynamics and MHD

@® In 3D hydrodynamics and MHD there are known integral invariants,

such as the kinetic helicity / d°z ¥ - &, the magnetic helicity

/ d®z A - B and the cross-helicity / Pz v-B.

® All these helicities have local counterparts, material invariants, that is
Lie-advected (LA) 0-forms, Hodge duals of LA 3-forms, namely
the local helicity o = u A w, the cross helicity & =u A B and
the Elsasser local magnetic helicity h =.A A B. (All forms are LA.)

® Here, w and B denote the vorticity and magnetic 2-forms, u (resp. A)

are the LA Clebsch (resp. magnetic vector potential) 1-forms, taken
b

equal to the velocity v’ (resp. the magnetic vector potential A) 1-forms
at t = 0. Note that w = dv” = du and B = dA = dA.
® One also has the following generalized Cauchy invariants equations:
1 | |
dA; Ndx® = By = dA, and 555; dr A dzt A dz’ = oy,

where 0 = u A w = dr (if the Poincaré lemma applies).



Recursion relations derived from Cauchy’s invariants
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@® Introduce the displacement: & :=x—a
VE X €4V, x Ve, = wy
1

det T4+ V) =1 or vL.g4 : (V2 €)= tr(VE€)"| + det(V"€) = 0

det(Vix) =1

@)
@ Expand (formally) in powers of t: & = Z "¢ and determine coefficients of various powers:
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@ In the presence of a solid impermeable boundary, these recursion relations for the
time-Taylor coefficients & (") must be supplemented by conditions expressing
the invariance of the boundary under the Lagrangian flow.

@ The recursion relations can be used to obtain bounds on the time-Taylor coefficients
and prove analyticity in time of the Lagrangian particle trajectories, but also to
derive novel semi-Lagrangian numerical integration schemes.



The Lagrangian algorithm built on the Cauchy invariants

® In 1928 Courant, Friedrichs and Lewy (titial Bulerian vorticiy )
showed that numerical solutions of , \
. . . . Calculate Lagrangian
hyperbolic PDE’s by simple finite time-Taylor cocffiients
difference methods are subject to the RN S—
constraint At < Az/Viax s
e [n hydrodynamics, this attects Eulerian —
. . alculate Lagrangian
but not Lagrangian algorithms. The use of | mwwt ot
. : . ) ) \
high-order Lagrangian time-Taylor R —

. vorticity at ¢ = t,41
expansions allows us to study, e.g. :
blowup, by semi-Lagrangian high-order Diansform (0 Eulerian
numerical schemes.

Enough
data collected

for extrapo-
lation?




Switching from Eulerian to Lagrangian computations can
result in speed up of several orders of magnitude

WY — cogx + cosy + 0.6 cos 2 + 0.2cos 3z

m”of—

Isolines of the Laplacian of vorticity

400

Distance §(t) to the real domain of the
nearest complex-space singularity

O.1¢

0.07 ¢

Resolution: 81922 harmonics

Speed up CL20/RK4 : 200
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