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Euler equations in flat or curved space and differential geometry (DG)

Cauchy's (1815) Lagrangian invariants equations and Cauchy’s vorticity 
formula from a traditional and DG point of view arxiv.org/abs/1701.01592
Generalized Cauchy invariants, local helicities galore

Recursion relations for time-Taylor coefficients and analyticity; the 
Cauchy-Lagrange numerical method

•

http://arxiv.org/abs/1701.01592


Vladimir Arnold 1937 - 2010

Eulerian (spatial) and Lagrangian (material) coordinates

Time s = 0

a = (a, b, c)
Lagr. coord.

Time s = t
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Volume : V
Volume : V 0

The geometrization of the Lagrangian approach

Kolmogorov/Pontryagin

Lagrangian map :

a 7! x = '(a, t).

Jacobian : J ⌘ det(@xi/@aj) = V

0
/V.

Incompressible flow : J = 1
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@tv + (v ·r)v = �rp, r · v = 0

Arnold (1966) (Ann. Inst. Fourier): The solutions of the incompressible Euler

equations extremize the kinetic-energy-based action :
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(a, t) (Euclidean case: gij = �ij , µ(a) = d3a),

with the constraints '(a, 0) = a and given '(a, T ).
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From a DG point of view, vorticity is an invariant
When changing from Eulerian to Lagrangian coordinates, a scalar function, say 
a temperature     must just be compose with the Lagrangian map      :

✓ Lagrangian = ✓ Eulerian � '
✓ '

When working with differential forms one must take into account the change in 
elements of length, surface, volume, …, to obtain the pullback (Eulerian to 
Lagrangian) and the pushforward  (Lagrangian to Eulerian) transformations.

Consider the velocity 1-form                       . It satisfies     
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which can be written in more traditional (Euclidean) fluid mechanics notation

The vorticity 2-form ! := dv
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thus satisfies @t! +£v! = 0. The vorticity is Lie-advection invariant!

A first instance is Helmholtz (1858). But actually goes back to Cauchy.



The Cauchy (1815) invariants equation in DG notation
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Actually, both the Cauchy invariants equation and his vorticity formula are

instances, related by Hodge duality, of a general result on Lie-advection

invariant exact p-forms.

Apply the exterior derivative d, use dd = 0 and integrate over time from 0 to t:

The Cauchy invariants equation dẋk ^ dx

k
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In traditional fluid mechanics notation it is
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The generalized Cauchy invariants equation



Local helicities in hydrodynamics and MHD
•

•

•
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Recursion relations derived from Cauchy’s invariants
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Introduce the displacement: ⇠ := x� a

det (I + rL⇠) = 1 or

Expand (formally) in powers of t: ⇠ =

1X
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tn⇠(n), and determine coe�cients of various powers:
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In the presence of a solid impermeable boundary, these recursion relations for the

time-Taylor coe�cients ⇠(n) must be supplemented by conditions expressing

the invariance of the boundary under the Lagrangian flow.

The recursion relations can be used to obtain bounds on the time-Taylor coe�cients

and prove analyticity in time of the Lagrangian particle trajectories, but also to

derive novel semi-Lagrangian numerical integration schemes.
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The Lagrangian algorithm built on the Cauchy invariants
•

•

In 1928 Courant, Friedrichs and Lewy 
showed that numerical  solutions of 
hyperbolic PDE’s by simple finite 
difference  methods are subject to the 
constraint                         .       
In hydrodynamics, this affects Eulerian  
but not Lagrangian algorithms. The use of 
high-order Lagrangian time-Taylor 
expansions allows us to study, e.g. 
blowup, by semi-Lagrangian high-order 
numerical schemes. 
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max

Initial Eulerian vorticity

Calculate Lagrangian
time-Taylor coe�cients

at t = tn

Estimate radius
of convergence

and choose time step

Calculate Lagrangian
map tn ! tn+1

Calculate Lagrangian
vorticity at t = tn+1

Transform to Eulerian
vorticity at t = tn+1

Enough
data collected
for extrapo-
lation?

NO
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Switching from Eulerian to Lagrangian computations can 
result in speed up of several orders of magnitude

4. Testing the Cauchy–Lagrangian numerical method in two di-

mensions: Comparison with Eulerian simulations
s:testing

In Section
ss:flow-methods
4.1 we describe three Eulerian algorithms that were used for

comparison with the Cauchy–Lagrangian (CL) algorithm. Validation, with
emphasis on accuracy, is discussed in Section

ss:validation
4.2. Efficiency of the CL algo-

rithm is discussed in Section
ss:efficiency
4.3. In Section

ss:tygers
4.4 we discuss spatial truncation

artefacts. All computations presented in this section are in double precision.

4.1. Choice of flows and of numerical methodsss:flow-methods
For the reason explained in Section

ss:init
3.2, all our tests of the CL method

have been done using 2D flows with analytic initial data having non-trivial
dynamics in both Eulerian and Lagrangian coordinates. Two different flows,
called the target flows, were used as initial condition. First, there is a very
simple deterministic flow, here called the “4-mode” flow with the initial con-
dition

ω(init) = cos x+ cos y + 0.6 cos 2x+ 0.2 cos 3x (20) 4mode

Second, we have taken a particular realization of a random initial condition,
with 2π-periodicity in x1 and x2, here called “random” initial condition

takesh
[45],

used in Section II.C of
tyger
[37], where the time evolution of the latter flow is

presented in detail. The characterization of the random flow is best done in
the Fourier space consisting of couples of signed integers k ≡ (k1, k2). It is
here decomposed for convenience into shells corresponding to a K ≤ |k| <
K +1, where K is an integer. Each such shell has N(K) Fourier modes. For
k in the Kth shell, the Fourier coefficients ω̂k of the initial vorticity are taken
all with the same modulus 2K7/2 exp(−K2/4)/N(K) and with phases that
are uniformly and independently distributed in the interval [0, 2π[, except
that opposite wave vectors are given opposite phases to preserve Hermitian
symmetry.

For solving the 2D Euler equation, we have used four different programs:
the CL algorithm with the Taylor series truncated to order S, described in
Section

s:CLalgorithm
3 (denoted CLS) and three algorithms using Eulerian coordinates,

namely the Runge-Kutta algorithms of order two and four (denoted RK2
and RK4, respectively) and the Eulerian time-Taylor expansion algorithm
truncated to order S (denoted ETS). The CL algorithms used here are CL8,
CL16 and CL24 with time steps, chosen as explained in Section

ss:optimal
3.5. The

accuracy in (
estet0
18) is set to ε = 10−12. Fig.

steps
4 shows the evolution of the time

steps for the target flows. In principle they are allowed to vary in time but,

19

t = 0 t = 1 t = 2

t = 3 t = 4 t = 4.1

Figure 8: Isolines of the Laplacian of the vorticity (step 1 for t = 0; 2 for t = 1; 10 for
t = 2; 60 for t = 3; 500 for t = 4 and 4.1) at various times. CL code computations for the
4-mode initial condition. Resolution: 10242 harmonics. figisol

rough measure of the distance to complex-space singularities. So, here, we
have two competing types of singularities, with eventually the one furthest
from the real domain catching up with the one which was closer. Such a phe-
nomenon, naturally leads to interference patterns in the vorticity spectrum.
It it likely that this explains the rippling seen in Fig.

specs
6 at t = 4.

We now show that the results of the CL code agrees with those obtained
by traditional methods for both of the target flows within the time inter-
vals where spatial truncations effect are negligibly small. Table

tb5
2 shows the

vorticity discrepancies between various codes (maximum over space of the
difference of the vorticity calculated with two different codes) for the two
target flows at different spatial resolutions and different output times. We
also performed energy and enstrophy consrvation tests, which are shown in
Tables

tb3
3 and

tb4
4, respectively, to which we shall come back in Section

ss:tygers
4.4 about

spatial truncation effects. The main result is that the vorticity discrepancies
between the CL results and those obtained by the standard Eulerian RK4
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Figure 5: Radius δ(t) of the analyticity cylinder for the 4-mode initial condition (a) and
the random initial condition (b). CL method. Resolution: 81922 harmonics. fdel

Eω(K) Eω(K)

K K
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Figure 6: Spectra of the vorticity for the 4-mode initial condition at several times, as
labeled. CL method. Resolution: 81922 harmonics. specs

with the highest resolution feasible in reasonable CPU time, namely 81922

modes. (Had we used an Eulerian method, this would not have resulted
in a reasonable CPU time; see the discussion of compared efficiencies in
Section

ss:efficiency
4.3).

The measured δ(t) for the two target flows are shown in Fig.
fdel
5. Each point

on these graphs is obtained by processing the vorticity spectrum Eω(K) at
the corresponding time, using the fitting technique of

a:conver
Appendix B. Examples

of vorticity spectra are shown in Fig.
specs
6.

It is seen from Fig.
fdel
5 that, at the largest times shown for both flows, δ

is about 10−2. Since kmax = 8192/3 ≈ 2731, the resulting relative truncation
error is about e−δkmax ≈ 2−12. We also note that for the lowest resolution used
in our simulations, namely 10242, the 4-mode flow achieves comparably small
truncation errors only up to t = 2. If, however, we just request a level of
truncation error of about 10−4, which is not visually detectable on contours of
the vorticity and of its Laplacian, we can extend the computations to about
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Figure 5: Radius δ(t) of the analyticity cylinder for the 4-mode (a) and the random (b) initial condition. CL method.
Resolution: 81922 harmonics.
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Figure 6: Spectra of the vorticity for the 4-mode initial condition at several times, as labelled. CL method. Resolution:
81922 harmonics.

where ω̂k are the spatial Fourier coefficients of the vorticity ω. The large-wave-number behaviour of
the vorticity spectrum is typically

Eω(K) ≈ CKαe−2δK . (24)

Here, the distance δ tells us how far away from the real domain the nearest complex singularities
are, while the exponent α contains information about the type of singularities [35]. As a consequence
of (24), the relative spatial truncation errors are typically estimated as e−δkmax , where kmax is the
maximum wave number after dealiasing, kmax = N/3, where N is the number of grid points per spatial
period. The numerical determination of δ from the vorticity spectrum is done by the same fitting
method as for the numerical determination of radii of convergence (see Appendix B). When using
the Cauchy–Lagrangian method, at each new time step, the Lagrangian and Eulerian descriptions
coincide and, as a consequence, the Lagrangian and Eulerian δ are very close.

4.2. Validation of the CL algorithm and accuracy of agreement

For each test flow (see Section 4.1), we have to determine up to what maximum time tfin we can
integrate the 2D Euler equation without encountering excessive loss of accuracy. This will of course
depend on the resolution and on how rapidly the Fourier coefficients fall off with the wave number k.
As explained at the end of Section 4.1, this fall-off is controlled by the radius of spatial analyticity,
measuring the distance δ(t) of the nearest complex-space singularities to the real-space domain. To
monitor δ(t), we have used the Cauchy–Lagrangian method to integrate the Euler equation with
the resolution of 81922 Fourier harmonics. (Had we used a Eulerian method, this would not have
resulted in a vastly larger CPU time; see the comparison of efficiencies in Section 4.3.) The measured
δ(t) for the two test flows are shown in Fig. 5. Each point on these graphs is obtained by processing
the vorticity spectrum Eω(K) at the corresponding time by the fitting technique of Appendix B.
Examples of vorticity spectra are shown in Fig. 6.
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Figure 5: Radius δ(t) of the analyticity cylinder for the 4-mode (a) and the random (b) initial condition. CL method.
Resolution: 81922 harmonics.
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Figure 6: Spectra of the vorticity for the 4-mode initial condition at several times, as labelled. CL method. Resolution:
81922 harmonics.
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δ(t) for the two test flows are shown in Fig. 5. Each point on these graphs is obtained by processing
the vorticity spectrum Eω(K) at the corresponding time by the fitting technique of Appendix B.
Examples of vorticity spectra are shown in Fig. 6.

13

Speed up CL20/RK4 : 200
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