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MOTIVATIONS:

A TALE ABOUT TRANSFER PROPERTIES OF INVISCID CONSERVED QUANTITIES, KINETIC
ENERGY, HELICITY ENSTROPHY, MAGNETIC HELICITY ETC...

Q1: HOW TO PREDICT THE DIRECTION OF THE TRANSFER (FORWARD/BACKWARD) AND ITS
ROBUSTNESS UNDER EXTERNAL PERTURBATION (FORCING/BOUNDARY CONDITIONS)?

Q2: HOW MUCH THE FLUCTUATIONS AROUND THE MEAN TRANSFER ARE INTENSE AND
SELF-SIMILAR (INTERMITTENCY AND ANOMALOUS SCALING) ?

AS A MATTER OF FACT, FOR 3D NAVIER STOKES EQUATIONS, WE DO NOT KNOW HOW TO
PREDICT NEITHER THE SIGN OF THE MEAN ENERGY TRANSFER NOR THE INTENSITY OF THE
FLUCTUATIONS AROUND IT.
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EXPLORING THE ROLE OF
MIRROR SIMMETRY

- ROLE OF KINETIC HELICITY IN THE REVERSAL OF THE MEAN ENERGY FLUX IN 3D NAVIER-STOKES
(FORWARD/BACKWARD) AND IN THE FORMATION OF REAL-SPACE INTERMITTENCY

- IMPLICATION FOR THE SMALL-SCALES REGULARITY OF THE NAVIER-STOKES SOLUTIONS
- EMPIRICAL OBSERVATION ON ROTATING TURBULENCE

- IMPLICATION FOR THE STATISTICS OF THE REYNOLDS STRESS AND FOR THE SUB-GRID ENERGY
TRANSFER IN TURBULENCE MODELING

- ROLE OF MAGENTIC HELICITY IN THE FORMATION OF LARGE AND SMALL SCALES DYNAMO IN
MAGNETOHYDRODYNAMICS



3D HOMOGENEOUS AND ISOTROPIC TURBULENCE
FLUCTUATIONS: SMALL-SCALES INTERMITTENCY
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HOMOGENEOUS AND ISOTROPIC LARGE
SCALE HELICAL FORCING
ENERGY AND HELICITY HAVE A FORWARD CASCADE

INJECTION

ks Kk

The joint cascade of energy and helicity in three-dimensional turbulence
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The role of helicity in three-dimensional turbulence is, in
our opinion, still somewhat mysterious. In particular, it is
still unclear how energy and helicity dynamics interact in
detail. The role of helicity in geophysical flows has been
considered’ —without being fully resolved—while its ap-
pearance and influence in engineering applications is still
largely unexplored. We hope that this work will be a helpful
step in the direction of better understanding the subtle mani-
festations of helicity in three-dimensional turbulence.
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Helicity cascades in fully developed Isolropic tarbulence
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CONFINEMENT 3D = 2D
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Upscale energy transfer in thick turbulent
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Dual non-Kolmogorov cascades in a von Karman flow
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Hlicity ks, s snargy. & guadratc imamriant of the Euler sguations of
ideal fluid fow, although, wnlike energy. it s not sign definite. In
physical terms, It represents the degres of linksge of the vortex Enes
of & flow, corserved when conditions are such that these vortex Bnes
arg frozen in the fluid, Some basic proparties of halicity ame reviewed,
with particular refersnce to [} its crucal role In the dynamo excita-
tion of magnertic fields in cosméc systems; () its bearing on the eds-
terice of Euler flowa of arbitrarily complex streambng topolegy; ()
the constraining rode of the analogous magnetic halidity in the de-
terrination of stable knotied minimum-enengy MapniioeLats Foruc-
tures; and (v its rode in depleting nonnearity in the Navier-Stokes
e uationd, with implicstions Tor the coherent struciunes and snergy
cascace of turbulense. In a final section, some singular phemnomena in
v Rewnokds number fows ane brieflv described. Voriex
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consared quantity had & s hitony s Nuid meckanic, bul the
ralure of this consersatssn s the presenoe of ddaegation hik
Ervwin diffiduh to febohos. Making i of feoent sdvancsi, we
create voriex ety and links in vikoous Pluich anad vmalated
superfhids and frack thelr geometry through topology-thanging
FRCOnnEctienE. e find thal the meassociayten of yvoroes lings
through 4 FeCORRBCTn srables the ransfer of helicicy drom
linky and knobi to helcal coil This proces s rerarkably elffciest,
ewing 1o the antiparallsl arenlation pontersouly sdoptnd by
the reconnecting vortxr. Uhing o nevw method for gaanttying the
spaitial halaity spepinsm, v foed chad The (e00rrChion prooess
wan be viewed a3 traradering helicty between sk, rather than
disgipating it 'We ala infer Bhe prasivsis of geometnc defdorma-
Rigeni that dorw et Faleal ceih mta even smaller wale e, whem
i mary uhimately Ba desipated. Ot meiulls dugge that heliciy
comasrvation plays an imporiasd role & Buids and related Tieids,
even in fhe preence of dinspation




Q: CAN WE DISSECT 3D NS EQUATIONS TO EXTRACT
INTERESTING INFORMATION FROM ITS ELEMENTARY
CONSTITUENTS?

Oy v + AP 4 vAv+F
d-v=20
+ Boundary Conditions
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The nature of triad interactions in homogeneous turbulence
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u(k) =u (k)R (k) +u (k)h~ (k)

hT =0 xk+iD
v =2z xk/||z x k||

1k X hi = ::k?hj:

(B =3 lut (k)| + [u (k)|
|H =Y k(lut (k)2 — [u=(K)|?).
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Eight different types of interaction between three modes
w's(Ky, u’r(p), and u'e(q) with |K|<|p|<|q| are allowed
according to the wvalue of the tiplet (s;.5,.5,)
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HELICAL TRIADIC INTERACTION IN THE NAVIER_STOKES EQS




TRIADIC INTERACTION IN DECIMATED NAVIER_STOKES EQS

{E = 3 lut (k)| + [uXeR) 12
H =Y k(lut (k)2 Z19Xk)12).




TRIADIC INTERACTION IN REWEIGTHED NAVIER_STOKES EQS




TRIADIC INTERACTION IN STOCHASTICALLY DECIMATED NAVIER_STOKES EQS
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HOMOCHIRAL 3D NAVIER STOKES EQS.
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HOMOCHIRAL 3D NAVIER STOKES EQS.
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HOMOCHIRAL 3D NAVIER STOKES EQS.

LARGE SCALES FORCING: DIRECT HELICITY CASCADE

L. B., S. Musacchio and F. Toschi
J. Fluid Mech. 730,309 (2013)
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VANISHING INTERMITTENCY
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On the Global Regularity of a Helical-Decimated
i Version of the 3D Navier-Stokes Equations

Kusthes hariheers and wfillskicns
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We study the global regularity, for all time and all initial data in H*'2, of a recently introduced
decimated version of the incompressible 3D Navier-Stokes (ANS) equations. The model is based
on a projection of the dynamical evolution of Navier-Stokes (NS) equations into the subspace
where helicity (the L*-scalar product of velocity and vorticity) is sign-definite. The presence of a
second (beside energy) sign-definite inviscid conserved quadratic quantity, which is equivalent
to the H'/?-Sobalev norm, allows us to demonstrate global existence and uniqueness, of space-
periodic solutions, together with continuity with respect to the initial conditions, for this
decimated 3D model. This is achieved thanks to the establishment of two new estimates, for
this 3D model, which show that the H'/2 and the time average of the square of the H*'2 norms
of the velocity field remain finite. Such two additional bounds are known, in the spirit of the
work of H. Fujita and T. Kato (Arch. Ration. Mech. Anal. 16:269-315, 1964 ; Rend. Semin. Mat.
Univ. Padova 32:243-260, 1962 ), to be sufficient for showing well-posedness for the 3D NS
equations. Furthermore, they are directly linked to the helicity evolution for the dNS model,
and therefore with a clear physical meaning and consequences.



HOMOCHIRAL 3D NAVIER STOKES EQS.

ESISTENCE AND UNIQUENESS OF WEAK SOLUTIONS OF THE HELICAL-DECIMATED NSE
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HILBERT-NORM COINCIDES WITH THE SIGN-DEFINITE HELICTY
2
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CONSERVATION HELICITY: NEW APRIORI BOUND ON THE VELOCITY
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In this section, we are going to use the fact that for the inviscid and unforced
dNS @J system the helicity is formally conserved, and that it is pﬂsltw&

definite quadratic quantity, which is equivalent to the square of the HY?2_

Sobolev norm. Therefore, obtaining uniform (in time) bounds on the helic-
ity enables us to prove the existence of solutions with a higher degree of
regularity, provided the initial data is in H /2 Furthermore, this additional
regularity will allow us to prove, in the next section, the uniqueness of these
regular solutions within the class of weak solutions. Let us observe that all the
estimates that follow are formal, but can be rigorously justified by obtaining
them first for the corresponding solutions of the Galerkin approximating sys-
tem @l, and then passing to the limit, modulo subsequences, with N — oo.
Furthermore, it is worth mentioning that similar ideas and estimates can be
found in [19,22] in the study of short time existence and uniqueness of the
three-dimensional NS equations with initial data in H'/2, The advantage of
system @ over the NS equations is that the H'/? remains finite, which al-
lows to extend the short time existence argument to prove global regularity
for all time and all initial data in H'/ ?. Indeed, the fact that helicity is a
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Inverse cascade at €2 =50

Inverse flux is brought mainly by +++ and --- triads.
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i Inverse cascade at €2 =50

Inverse flux is brought mainly by +++ and --- triads.
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TRIADIC INTERACTION IN STOCHASTICALLY DECIMATED NAVIER_STOKES EQS

u®(x) = D%u(x) = Z Dy, (4)

where Dy = ( 1—’}*}5:)—#’}-&?’; and ~y = 1 with probability
a or v, = 0 with probability 1 — a. The a-decimated
Navier-Stokes equations («-NSE) are

diu® = D¥[—u® - Vu® — Vp®| + vAu“, (5)
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TRIADIC INTERACTION IN STOCHASTICALLY DECIMATED NAVIER_STOKES EQS

E(k) = E*(k) + E~ (k)
H(k) = k(E™ (k) — E~(k))
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RECOVERY OF MIRROR SYMMETRY
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TRIADIC INTERACTION IN STOCHASTICALLY DECIMATED NAVIER_STOKES EQS

K(r) =

((6:0)%)

3

((0-v)%)*

FULL NS
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TRIADIC INTERACTION IN REWEIGHTED NAVIER_STOKES EQS
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BACKWARD ENERGY FLUX
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Large-scale magnetic fields in MHD
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Helical Fourier decomposition
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Generic two-triads system
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Stability analysis
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Large-scale dynamo: DNS - laminar flow (Rey = 15)
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Large-scale dynamo: DNS - turbulent flow (Re), = 140)

Magnetic field Velocity field
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Inverse cascade of magnetic helicity: DNS
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CONCLUSIONS

ROLE OF HELICITY IN THE FORWARD/BACWARD 3D ENERGY TRANSFER (FOURIER)
ROLE OF HOMO-CHIRAL TRIADS VISIBLE ALSO IN ROTATING TURBULENCE

EXISTENCE OF A SHARP PHASE-TRANSITION BAKWARD/FORWARD IF SOME
NON-LINEAR INTERACTION ARE REWEIGHTED

HETERO-CHIRAL TRIADS PLAY A SINGULAR ROLE FOR INTERMITTENCY IF PARTICIPATING WITH THE CORRECT PREFACTOR
IMPLICATION FOR REGULARITY OF SOLUTIONS
IMPLICATION FOR SMALL AND LARGE SCALE DYNAMO

IMPLICATION FOR REAL-SPACE INTERMITTENCY AND ENERGY
BACKSCATTER?



