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FIG. 2. (a) Mean values and (b) standard deviations for real parts of the large-scale shell speeds

u1, u2 and u3 as functions of time. The speeds become stochastic after the blowup at t = 0.42.

Solid black curves correspond to Re = 1010, and dashed red curves to Re = 107.

In order to see how this is possible, let us consider a simple ordinary di↵erential equation

ṙ = r1/3, (7)

which mimics a particle position r at time t with the initial condition r(0) = 0. Here the

velocity v = r1/3 is chosen such that it satisfies the Kolmogorov scaling. There is a family

of solutions

r(t) =

8
><

>:

0 t  t
s

;

⇣
2(t�ts)

3

⌘3/2

, t > t
s

;
(8)

where t
s

is an arbitrary parameter denoting a spontaneous time, when the particle starts

moving, see Fig. 3. This example shows the non-uniqueness of the trajectories, inherent in

Kolmogorov scaling laws. For Eq. (7), this non-uniqueness is the well-known fact in dif-

ferential equations, because the right-hand side if not Lipschitz continuous. For turbulent

flows, these ideas appeared and were further elaborated for fluid particle trajectories assum-

ing given (fixed or stochastic) rough velocity fields, see e.g. [7–10]. As one can see from

Eq. (8), a separation between two solutions with close initial conditions grows as power-law,

not exponentially. Moreover, if one of the initial conditions is at the origin, di↵erent sepa-

rations can be achieved at a given time t by choosing di↵erent parameters t
s

. This shows

how the stochasticity emerges instantaneously due to the non-uniqueness, as opposed to
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FIG. 3. Non-unique solutions of Eq. (7) with the initial condition r(0) = 0 (solid lines) span a

gray region, which grows as a power-law with time. The dashed line shows a solution with a small

non-zero initial condition.

the exponential path separation in the deterministic chaos. Note also that the spontaneous

stochasticity does not require the system to be chaotic, as follows from the above example

and can be observed in the Gledzer shell model of turbulence [22].

Both in Eq. (7) and in the theory describing non-unique particle trajectories [7–10], a

singularity is introduced explicitly in the governing equations. A more sophisticated process

drives the stochastic anomaly as described in Section IV. Here, equations (6) do not feature

any singularity in the right-hand side. Instead, a singularity leading to the non-uniqueness

appears in the solution itself at the finite-time blowup.

Though the unpredictability of spontaneously stochastic turbulent flow is qualitatively

di↵erent from the unpredictability in deterministic chaos, both lead to similar practical

conclusions on essential limitations for finite-time predictions. The stochastic anomaly,

however, comes along with a solution to this problem: it suggests that the regular probability

distribution exists in the limit Re ! 1. In this sense, the spontaneous stochasticity is

a property already inherent in the inviscid flow equations, i.e., inviscid Sabra model or

incompressible Euler equations. This makes the limiting probability distribution a true

physical solution of a “deterministic” inviscid problem that can be computed as a function

of time and, thus, accurately predicted. In the following sections we suggest how this can

be done in the framework of the Sabra shell model.
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with the order is then due to the dependence of the
integrals of motion on the number of particles. The ex-
istence of statistical conservation laws signals that the
Lagrangian dynamics keeps trace of the particle initial
configuration throughout the evolution. This memory is
what makes the correlation functions at any small scale
sensitive to the presence of a finite injection length L .
We believe that, more generally, the notion of statistical
integrals of motion is a key to understand the universal
part of the steady-state statistics for systems far from
equilibrium.

The aim of this review is a description of fluid turbu-
lence from the Lagrangian viewpoint. Classical literature
on Lagrangian dynamics mostly concentrated on turbu-
lent diffusion and pair dispersion, i.e., the distance trav-
eled by one particle or the separation between two par-
ticles as a function of time. By contrast, in that general
picture that has emerged recently, the evolution of the
multiparticle-configuration geometry takes center stage.
The main body of the review will present these novel
aspects of Lagrangian dynamics and their consequences
for the advected fields. We shall adhere to the following
plan. The knowledge accumulated on one- and two-
particle dynamics has been extensively covered in litera-
ture (Pope, 1994; Majda and Kramer, 1999). The objec-
tive of the first three parts of Sec. II is to point out a few
fundamental issues, with particular attention to the basic
differences between the cases of spatially smooth and
nonsmooth velocity fields. We then proceed to the mul-
tiparticle statistics and the analysis of hidden statistical
conservation laws that cause the breakdown of scale in-
variance. Most of this analysis is carried out under the
assumption of a prescribed statistics of the velocity field.
In Sec. III we shall analyze passive scalar and vector
fields transported by turbulent flow and what can be in-
ferred about their statistics from the motion of fluid par-
ticles. In Sec. IV, we briefly discuss the Lagrangian dy-
namics in the Burgers and the Navier-Stokes equations.
The statistics of the advecting velocity is not prescribed
anymore, but it results from nonlinear dynamics. Con-
clusions focus on the impact of the results presented in
this review on major directions of future research. Read-
ers from other fields of physics interested mainly in the
breakdown of scale invariance and statistical conserva-
tion laws may restrict themselves to Secs. II.C, II.E,
III.C, and V.

II. PARTICLES IN FLUID TURBULENCE

As explained in the Introduction, understanding the
properties of transported fields involves the analysis of
the behavior of fluid particles. We have therefore de-
cided to first present results on the time-dependent sta-
tistics of the Lagrangian trajectories Rn(t) and to devote
the subsequent Sec. III to the description of transported
fields. In the present section we sequentially increase the
number of particles involved in the problem. We start
from a single trajectory whose effective motion is a
simple diffusion at times longer than the velocity corre-
lation time in the Lagrangian frame (Sec. II.A). We then

move to two particles. The separation law of two close
trajectories depends on the scaling properties of the ve-
locity field v(r,t). If the velocity is smooth, that is
!v(Rn)!v(Rm)!!!Rn!Rm!, then the initial separation
grows exponentially in time (Sec. II.B). The smooth case
can be analyzed in much detail using the large deviation
arguments presented in Sec. II.B.1. The reader mainly
interested in applications to transported fields might
wish to take the final results (21) and (27) for granted,
skipping their derivation and the analysis of the few
solvable cases where the large deviations may be calcu-
lated exactly. If the velocity is nonsmooth, that is,
!v(Rn)!v(Rm)!!!Rn!Rm!" with ""1, then the separa-
tion distance between two trajectories grows as a power
of time (Sec. II.C), as first observed by Richardson
(1926). We discuss important implications of such a be-
havior on the nature of the Lagrangian dynamics. The
difference between the incompressible flows, where the
trajectories generally separate, and compressible ones,
where they may cluster, is discussed in Sec. II.D. Finally,
in the consideration of three or more trajectories, the
new issue of geometry appears. Statistical conservation
laws come to light in two-particle problem and then fea-
ture prominently in the consideration of multiparticle
configurations. Geometry and statistical conservation
laws are the main subject of Sec. II.E. Although we try
to keep the discussion as general as possible, much of
the insight into the trajectory dynamics is obtained by
studying simple random ensembles of synthetic veloci-
ties where exact calculations are possible. The latter
serve to illustrate the general features of the particle
dynamics.

A. Single-particle diffusion

The Lagrangian trajectory R(t) of a fluid particle
advected by a prescribed incompressible velocity field
v(r,t) in d space dimensions and undergoing molecular
diffusion with diffusivity # is governed by the stochastic
equation (Taylor, 1921), customarily written for
differentials:

dR#v$R,t %dt$!2#d!$ t %. (5)

Here, !(t) is the d-dimensional standard Brownian mo-
tion with zero average and covariance function
&' i(t)' j(t!)(#) ij min(t,t!). The solution of Eq. (5) is
fixed by prescribing the particle position at a fixed time,
e.g., the initial position R(0).

The simplest instance of Eq. (5) is the Brownian mo-
tion, where the advection is absent. The probability den-
sity P(*R;t) of the displacement *R(t)#R(t)!R(0)
satisfies the heat equation (+ t!#“2)P#0 whose
solution is the Gaussian distribution P(*R;t)
#(4,#t)!d/2 exp-!(*R)2/(4#t). . The other limiting
case is pure advection without noise. The properties of
the displacement depend then on the specific trajectory
under consideration. We shall always work in the frame
of reference with no mean flow. We assume statistical
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viscous range with the power-law growth (39) in the in-
ertial range. In the viscous regime the closer two trajec-
tories are initially, the longer time is needed to reach a
given separation. As a result, infinitesimally close trajec-
tories never separate and trajectories in a fixed realiza-
tion of the velocity field are continuously labeled by the
initial conditions. Small deviations of the initial point are
magnified exponentially, though. This sensitive depen-
dence is usually considered as the defining feature of the
chaotic behavior. Conversely, in the inertial interval the
trajectories separate in a finite time independently of
their initial distance R(0), provided the latter was also
in the inertial interval. The speed of this separation may
depend on the detailed structure of the turbulent veloci-
ties, including their fine geometry (Fung and Vassilicos,
1998), but the very fact of the explosive separation is
related to the scaling behavior !rv"r# with #!1. For
high Reynolds numbers the viscous scale $ is negligibly
small, a fraction of a millimeter in the turbulent atmo-
sphere. Setting it to zero (or equivalently the Reynolds
number to infinity) is an appropriate abstraction if we
want to concentrate on the behavior of the trajectories
in the inertial range. In such a limit, the power-law sepa-
ration between the trajectories extends down to arbi-
trarily small distances: infinitesimally close trajectories
still separate in a finite time. This makes a marked dif-
ference in comparison to the smooth chaotic regime,
clearly showing that developed turbulence and chaos are
fundamentally different phenomena. As stressed in Ber-
nard et al. (1998), the explosive separation of the trajec-
tories results in a breakdown of the deterministic La-
grangian flow in the limit Re→%, see also Frisch et al.
(1998) and Gawȩdzki (1998, 1999). The effect is dra-
matic since the trajectories cannot be labeled anymore
by the initial conditions. Note that the sheer existence of
the Lagrangian trajectories R(t ;r) depending continu-
ously on the initial position r would imply that
lim

r1→r2
&!R(t ;r1)"R(t ;r2)!'(#0. That would contradict

the persistence of a power-law separation of the Rich-
ardson type for infinitesimally close trajectories. Remark
also that the breakdown of the deterministic Lagrangian
flow does not violate the theorem about the uniqueness
of solutions of the ordinary differential equation Ṙ
#v(R,t). Indeed, the theorem requires the velocity to
be Lipschitz in r, i.e., that !rv)O(r). As first noticed by
Onsager (1949), the velocities for Re#% are actually
only Hölder continuous: !rv"O(r#) with the exponent
#!1 (in Kolmogorov’s phenomenology ##1/3). The
simple equation ẋ#!x!# provides a classical example
with two solutions x#*(1"#)t+1/(1"#) and x#0, both
starting from zero, for the non-Lipschitz case #!1. It is
then natural to expect the existence of multiple La-
grangian trajectories starting or ending at the same
point. Such a possibility was first noticed and exploited
in a somewhat different context in the study of weak
solutions of the Euler equations (Brenier, 1989; Shnirel-
man, 1999). Does then the Lagrangian description of the
fluid break down completely at Re#%?

Even though the deterministic Lagrangian description
is inapplicable, the statistical description of the trajecto-
ries is still possible. As we have seen above, probabilistic
questions like those about the averaged powers of the
distance between initially close trajectories still have
well-defined answers. We expect that for a typical veloc-
ity realization, one may maintain at Re#% a probabilis-
tic description of the Lagrangian trajectories. In particu-
lar, objects such as the PDF p(r,s ;R,t!v) of the time t
particle position R, given its time s position r, should
continue to make sense. For a regular velocity with de-
terministic trajectories,

p,r,s ;R,t!v-#! *R"R, t ;r,s -+ , (43)

where R(t ;r,s) denotes the unique Lagrangian trajec-
tory passing at time s through r. In the presence of a
small molecular diffusion, Eq. (5) for the Lagrangian
trajectories has always a Markov process solution in
each fixed velocity realization, irrespective of whether
the latter be Lipschitz or Hölder continuous (Stroock
and Varadhan, 1979). The resulting Markov process is
characterized by the transition probabilities p(r,s ;R,t!v)
satisfying the advection-diffusion equation3

*. t"“R•v,R,t -"/“R
2 +p,r,s ;R,t!v-#0 (44)

for t$s . The mathematical difference between smooth
and rough velocities is that in the latter case the transi-
tion probabilities are weak rather than strong solutions.
What happens if we turn off the molecular diffusion? If
the velocity is Lipschitz in r, then the Markov process
describing the noisy trajectories concentrates on the de-
terministic Lagrangian trajectories and the transition
probabilities converge to Eq. (43). It has been conjec-
tured in Gawȩdzki (1999) that, for a generic Re#% tur-
bulent flow, the Markov process describing the noisy tra-
jectories still tends to a limit when /→0, but the limit
stays diffused; see Fig. 1. In other words, the transition
probability converges to a weak solution of the advec-
tion equation

*. t"“R•v,R,t -+p,r,s ;R,t!v-#0, (45)

which does not concentrate on a single trajectory, as it
was the case in Eq. (43). We shall then say that the lim-
iting Markov process defines a stochastic Lagrangian
flow. This way the roughness of the velocity would result
in the stochasticity of the particle trajectories persisting
even in the limit /→0. To avoid misunderstanding, let us
stress again that, according to this claim, the Lagrangian
trajectories behave stochastically already in a fixed real-
ization of the velocity field and for negligible molecular
diffusivities, i.e., the effect is not due to the molecular
noise or to random fluctuations of the velocities. This
spontaneous stochasticity of fluid particles seems to con-
stitute an important aspect of developed turbulence. It is
an unescapable consequence of the Richardson disper-

3For /$0 and smooth velocities, the equation results from
the Itô formula generalizing Eq. (A5) applied to Eq. (43) and
averaged over the noise.
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sion law and of the Kolmogorov-like scaling of velocity
differences in the limit Re→! and it provides for a natu-
ral mechanism assuring the persistence of dissipation in
the inviscid limit: lim "→0"#!“v!2$%0.

3. The example of the Kraichnan ensemble

The general conjecture about the existence of stochas-
tic Lagrangian flows for generic turbulent velocities, e.g.,
for weak solutions of the incompressible Euler equa-
tions locally dissipating energy, as discussed by Duchon
and Robert (2000), has not been mathematically proven.
The conjecture is known, however, to be true for the
Kraichnan ensemble (10), as we are going to discuss in
this subsection.

We should model the spatial part Dij of the two-point
function (10) so that it has proper scalings in the viscous
and inertial intervals. This can be conveniently achieved
by taking its Fourier transform

D̂ij&k'(" ) ij!
kikj

k2 # e!(*k)2

&k2"L!2'(d"+)/2 , (46)

with 0,+,2. In physical space,

Dij&r'#D0) ij!
1
2

dij&r', (47)

where dij(r) scales as r+ in the inertial interval *$r
$L , as r2 in the viscous range r$* and tends to 2D0) ij

at very large scales r%L . As we discussed in Sec. II.A,
D0 gives the single-particle effective diffusivity. Notice
that D0#O(L+) indicating that turbulent diffusion is
controlled by the velocity fluctuations at large scales of
order L . On the other hand, dij(r) describes the statis-

tics of the velocity differences and it picks up contribu-
tions of all scales. In the limits *→0 and L→! , it takes
the scaling form

lim
*→0
L→!

dij&r'#D1r+" &d!1"+') ij!+
rirj

r2 # , (48)

where the normalization constant D1 has the dimension-
ality of (length2!+)&(time!1).

For 0'+'2 and *(0, the typical velocities are
smooth in space with the scaling behavior r+ visible only
for scales much larger than the viscous cutoff *. When
the cutoff is set to zero, however, the velocity becomes
nonsmooth. The Kraichnan ensemble is then supported
on velocities that are Hölder-continuous with the expo-
nent +/2!0. That mimics the major property of turbu-
lent velocities at the infinite Reynolds number. The lim-
iting case +#2 describes the Batchelor regime of the
Kraichnan model: the velocity gradients are constant
and the velocity differences are linear in space. This is
the regime that the analysis of Sec. II.B.2.a pertains to.
In the other limiting case +#0, the typical velocities are
very rough in space (distributional). For any +, the
Kraichnan velocities have even rougher behavior in
time. We may expect that the temporal roughness does
not modify largely the qualitative picture of the trajec-
tory behavior as it is the regularity of velocities in space,
and not in time, that is crucial for the uniqueness of the
trajectories (see, however, below).

For time-decorrelated velocities, both terms on the
right-hand side of the Lagrangian Eq. (5) should be
treated according to the rules of stochastic differential
calculus. The choice of the regularization is irrelevant
here even for compressible velocities, see the Appendix.
The existence and the properties of solutions of such
stochastic differential equations were extensively stud-
ied in the mathematical literature for velocities smooth
in space, see, e.g., Kunita (1990). Those results apply to
our case as long as *(0 both for positive or vanishing
diffusivity. The advection-diffusion Eq. (44) for the tran-
sition probabilities also becomes a stochastic equation
for white-in-time velocities. The choice of the conven-
tion, however, is important here even for incompressible
velocities: the equation should be interpreted with the
Stratonovich convention, see the Appendix. The equiva-
lent Itô form contains an extra second-order term that
amounts to the replacement of the molecular diffusivity
by the effective diffusivity (D0"-) in Eq. (44). The Itô
form of the equation explicitly exhibits the contribution
of the eddy diffusivity, hidden in the convention for
the Stratonovich form. As pointed out by Le Jan and
Raimond (1998, 1999), the regularizing effect of D0 per-
mits us to solve the equation by iteration also for the
nonsmooth case giving rise to transition probabilities
p(r,s ;R,t!v) defined for almost all velocities of the
Kraichnan ensemble. Moreover, the vanishing diffusivity
limit of the transition probabilities exist, defining a sto-
chastic Lagrangian flow.

The velocity averages over the Kraichnan ensemble of
the transition probabilities p(r,s ;R,t!v) are exactly cal-

FIG. 1. An illustration of the breakdown of the Lagrangian
flow in spatially nonsmooth flows: infinitesimally close particles
reach a finite separation in a finite time. The consequence is
the cloud observed in the figure. The particles evolve in a fixed
realization of the velocity field and in the absence of any mo-
lecular noise.
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2. One-dimensional hydrodynamic models

We consider one-dimensional models for a scalar variable u(x, t) in the form

∂u

∂t
+

∂g

∂x
= ν

∂2u

∂x2
+ f, x, t ∈ R, (2.1)

where ν is a viscous coefficient, f (x, t) is the forcing term and

g(x, t) = 1
2π

∫ ∫
K(y − x, z − x)u(y, t)u(z, t)dydz (2.2)

is the nonlocal quadratic flux term. For hydrodynamic models, where the quadratic term
originates from the convective acceleration (and pressure for inviscid flows), it is natural to
assume that K(y, z) is a real homogeneous function of degree −2. Therefore, it can be
considered in the form

K(y, z) =
∫ ∫

ϕ

(
p

p + q

)
e−i(py+qz)dpdq, (2.3)

with a real function ϕ(ξ). For example, the product of Dirac delta functions K(y, z) =
πδ(y)δ(z) corresponds to ϕ ≡ (4π)−1 and generates the Burgers equation with g = u2/2 in
equation (2.1).

We do not specify the functional spaces for solutions u(x, t) and for the kernel K(y, z),
assuming that they allow the integral (Fourier) transformations used below. We will comment
on this issue when considering a specific form of K(y, z) in the next section. It is clear that the
function K(y, z) in equation (2.2) can always be chosen symmetric, i.e. K(y, z) = K(z, y).
One can check that permuting the variables y ↔ z in the expression (2.3) is equivalent to
permuting p ↔ q and substituting ϕ(ξ) by ϕ(1 − ξ). Thus, the symmetry of K(y, z) is
equivalent to the condition

ϕ(ξ) = ϕ(1 − ξ), (2.4)

which will be assumed from now on.
For the Fourier transformed function u(k) =

∫
u(x)e−ikxdx, equations (2.1)–(2.3)

reduce to
∂u(k)

∂t
= −ik

∫
ϕ

(p

k

)
u(p)u(k − p)dp − ν|k|2αu(k) + f (k), (2.5)

where we omitted the argument t for simplicity of notations. We also introduced the parameter
α, such that α = 1 corresponds to equation (2.1) and α > 1 determines the model with
hyperviscosity. The mean value

∫
u(x)dx is conserved by equation (2.1) provided that∫

f (x)dx = 0 and g → 0, ∂u/∂x → 0 as |x| → ∞. We will assume the vanishing mean
values, leading to f (k) = u(k) = 0 for k = 0. Recall the reality condition u(−k) = u∗(k) for
the Fourier transformed real function, where the asterisk denotes the complex conjugation.

2.1. Energy conservation

We define the energy as

E = 1
2

∫
u2(x)dx = 1

4π

∫
|u(k)|2dk. (2.6)

Let us show that the energy conservation condition in the inviscid model with zero force
(ν = f = 0) is given by the equality

ϕ (ξ) − ξϕ

(
1
ξ

)
+ (ξ − 1)ϕ

(
1

1 − ξ

)
= 0 (2.7)
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∂t
= −ik

∫
ϕ

(p

k

)
u(p)u(k − p)dp − ν|k|2αu(k) + f (k), (2.5)

where we omitted the argument t for simplicity of notations. We also introduced the parameter
α, such that α = 1 corresponds to equation (2.1) and α > 1 determines the model with
hyperviscosity. The mean value

∫
u(x)dx is conserved by equation (2.1) provided that∫

f (x)dx = 0 and g → 0, ∂u/∂x → 0 as |x| → ∞. We will assume the vanishing mean
values, leading to f (k) = u(k) = 0 for k = 0. Recall the reality condition u(−k) = u∗(k) for
the Fourier transformed real function, where the asterisk denotes the complex conjugation.

2.1. Energy conservation

We define the energy as

E = 1
2

∫
u2(x)dx = 1

4π

∫
|u(k)|2dk. (2.6)

Let us show that the energy conservation condition in the inviscid model with zero force
(ν = f = 0) is given by the equality

ϕ (ξ) − ξϕ

(
1
ξ

)
+ (ξ − 1)ϕ

(
1

1 − ξ

)
= 0 (2.7)
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We first give numerical evidence which shows that the solution of (1) exists globally in
time. De Gregorio [7, 8] considered (1) in order to contrast it with

ωt − vxω = 0, vx = Hω. (2)

This equation is called the Constantin–Lax–Majda equation (CLM for short) and was
introduced in [6] as a model for blow-up dynamics of vorticity of incompressible inviscid
fluid flow. In fact, as is rigorously proved in [6], most of the solutions of (2) blow up in finite
time. De Gregorio proposed his equation to show that his equation, though it differs from the
CLM equation only by the convection term vωx , is likely to admit no blow-up. He gave some
evidence but mathematical proof is yet to be given, and there is much room for scrutiny. We
cannot prove the global existence of solutions of (1) either, but we present accurate numerical
results conforming with the global existence.

We then consider a generalization of the CLM equation and De Gregorio’s equation in the
following form:

ωt + avωx − vxω = 0, vx = Hω, (3)

where a is a real parameter. If a = 0, it becomes the CLM equation [6]. If a = 1, it is De
Gregorio’s equation. If a = −1, then this is the equation considered by Córdoba et al [4, 5].
The authors of [4, 5] considered

θt + θxHθ = 0 (4)

and mathematically proved that this equation possesses many blow-up solutions. If we
differentiate (4) and set ω = −θx , then ω satisfies the generalized De Gregorio equation
with a = −1. Since we are going to argue that equation (3) with a = 1 admits no blow-up,
this contrast may be of some interest.

This paper is organized as follows. A motivation for (3) is explained in section 2. Section 3
introduces theorems on the local existence and a criterion on the global existence. Based on
these theorems, we give in section 4 the results by numerical experiments about De Gregorio’s
equation. Proofs of the theorems are presented in section 5. Then in section 6, we prove that
equation (3) in the limit of a → ∞ admits no blow-up. Concluding remarks are given in
section 7.

2. The role of the convection term

It is rather interesting to note the fact that

• equation (3) with a = −1 has blow-up solutions [4, 5];
• if a = 0, most solutions blow up in finite time [6];
• if a = 1, solutions exist globally in time, which is conjectured in [7, 8] and this paper.

This naturally leads us to the question about which values of a yield the global existence for
the respective solution.

By analogy with the 3D Euler equations, the term vωx in (1) or (3) may be called a
convection term. The term −vxω may be called a stretching term. In fluid dynamics literature,
the blow-up of the solutions of the 3D Euler equations is said to be caused by the stretching
term. It is also said that the convection term is a kind of neutral player, having little influence
on blow-up phenomena. Recently, however, [16, 17] showed, with many examples, that a
convection term often plays a role more important than is usually imagined. Hou and Li [9]
have drawn a similar conclusion for axisymmetric flows with swirl reduced from the 3D Euler
and Navier Stokes equations. In fact, blow-ups can be suppressed by a convection term, if

Non-locality “mimics” incompressibility
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Figure 3. Physical space solutions u(x, t) induced by solutions of the viscous DN shell
model with constant forcing (3.25) and zero initial conditions: (a) viscous coefficient
ν = 0.1, (b) viscous coefficient ν = 0.01. The red point in the right figure shows the
location of blowup for the inviscid system. Also, the right figure shows the stationary
solution of the inviscid model (bold blue line located at t = 1.5), see figure 1(b).

where c is a constant real parameter and σ = (1+
√

5)/2 ≈ 1.618 is the golden ratio satisfying
the equation

1 + σ = σ 2. (4.2)

After substituting expression (4.1) into equation (2.3), the lengthy derivations similar to
equation (3.3) with the use of equation (4.2) yield the kernel of the continuous model in
the form

K(y, z) = Kψ (y, z) + Kψ (z, y), Kψ (y, z) = σ

(σy − z)2
− (1 + c)σ 2

(σ 2y − z)2
− cσ

(σy + z)2
. (4.3)

Singular integrals in equation (2.2) must be taken with the Hadamard regularization.
The Fourier transformed continuous model is obtained by substituting function (4.1) into

equation (2.5). Using relations (3.2) and (4.2), this yields

∂u(k)

∂t
= − ik|k|

(
−σ 3u(σ 2k)u(−σk) + (1 + c)u(σk)u(−σ−1k) + cσ−3u(σ−1k)u(σ−2k)

)

− ν|k|2αu(k) + f (k). (4.4)

Now let us define the geometric progression

kn = k0λ
n, λ = σ 3/2 =

√
2 +

√
5 ≈ 2.058, n ∈ Z, (4.5)

with 1 ! k0 < λ, and introduce the corresponding variables

un = k1/3
n u

(
k2/3
n

)
, fn = k1/3

n f
(
k2/3
n

)
. (4.6)

Then equation (4.4) taken for k = k
2/3
n = k

2/3
0 σ n reduces to the form

∂un

∂t
= i

[
kn+1un+2u

∗
n+1 − (1 + c)knun+1u

∗
n−1 − ckn−1un−1un−2

]
− νnun + fn, n ∈ Z,

(4.7)
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Figure 3. Physical space solutions u(x, t) induced by solutions of the viscous DN shell
model with constant forcing (3.25) and zero initial conditions: (a) viscous coefficient
ν = 0.1, (b) viscous coefficient ν = 0.01. The red point in the right figure shows the
location of blowup for the inviscid system. Also, the right figure shows the stationary
solution of the inviscid model (bold blue line located at t = 1.5), see figure 1(b).

where c is a constant real parameter and σ = (1+
√

5)/2 ≈ 1.618 is the golden ratio satisfying
the equation

1 + σ = σ 2. (4.2)

After substituting expression (4.1) into equation (2.3), the lengthy derivations similar to
equation (3.3) with the use of equation (4.2) yield the kernel of the continuous model in
the form

K(y, z) = Kψ (y, z) + Kψ (z, y), Kψ (y, z) = σ

(σy − z)2
− (1 + c)σ 2

(σ 2y − z)2
− cσ

(σy + z)2
. (4.3)

Singular integrals in equation (2.2) must be taken with the Hadamard regularization.
The Fourier transformed continuous model is obtained by substituting function (4.1) into

equation (2.5). Using relations (3.2) and (4.2), this yields

∂u(k)
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(
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)
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Now let us define the geometric progression
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n, λ = σ 3/2 =

√
2 +

√
5 ≈ 2.058, n ∈ Z, (4.5)

with 1 ! k0 < λ, and introduce the corresponding variables

un = k1/3
n u

(
k2/3
n

)
, fn = k1/3

n f
(
k2/3
n

)
. (4.6)

Then equation (4.4) taken for k = k
2/3
n = k

2/3
0 σ n reduces to the form

∂un

∂t
= i

[
kn+1un+2u

∗
n+1 − (1 + c)knun+1u

∗
n−1 − ckn−1un−1un−2

]
− νnun + fn, n ∈ Z,

(4.7)
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Figure 3. Physical space solutions u(x, t) induced by solutions of the viscous DN shell
model with constant forcing (3.25) and zero initial conditions: (a) viscous coefficient
ν = 0.1, (b) viscous coefficient ν = 0.01. The red point in the right figure shows the
location of blowup for the inviscid system. Also, the right figure shows the stationary
solution of the inviscid model (bold blue line located at t = 1.5), see figure 1(b).

where c is a constant real parameter and σ = (1+
√

5)/2 ≈ 1.618 is the golden ratio satisfying
the equation

1 + σ = σ 2. (4.2)

After substituting expression (4.1) into equation (2.3), the lengthy derivations similar to
equation (3.3) with the use of equation (4.2) yield the kernel of the continuous model in
the form

K(y, z) = Kψ (y, z) + Kψ (z, y), Kψ (y, z) = σ

(σy − z)2
− (1 + c)σ 2

(σ 2y − z)2
− cσ

(σy + z)2
. (4.3)

Singular integrals in equation (2.2) must be taken with the Hadamard regularization.
The Fourier transformed continuous model is obtained by substituting function (4.1) into

equation (2.5). Using relations (3.2) and (4.2), this yields

∂u(k)

∂t
= − ik|k|

(
−σ 3u(σ 2k)u(−σk) + (1 + c)u(σk)u(−σ−1k) + cσ−3u(σ−1k)u(σ−2k)

)

− ν|k|2αu(k) + f (k). (4.4)

Now let us define the geometric progression

kn = k0λ
n, λ = σ 3/2 =

√
2 +

√
5 ≈ 2.058, n ∈ Z, (4.5)

with 1 ! k0 < λ, and introduce the corresponding variables

un = k1/3
n u

(
k2/3
n

)
, fn = k1/3

n f
(
k2/3
n

)
. (4.6)

Then equation (4.4) taken for k = k
2/3
n = k

2/3
0 σ n reduces to the form

∂un

∂t
= i

[
kn+1un+2u

∗
n+1 − (1 + c)knun+1u

∗
n−1 − ckn−1un−1un−2

]
− νnun + fn, n ∈ Z,

(4.7)
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The Fourier transformed continuous model has a simpler form. Indeed, substituting ϕ(ξ)

from equation (3.1) into equation (2.5) and using equation (3.2) yields

∂u(k)

∂t
= −ik|k|

[
1
2
u2

(
k

2

)
+ 4u∗(k)u(2k)

]
− ν|k|2αu(k) + f (k), (3.5)

where we used the reality condition u(−k) = u∗(k). We will show now that this equation is
equivalent to an infinite set of uncoupled discrete (shell) models.

Let us define the geometric progression

kn = k0λ
n, λ = 23/2, n ∈ Z, (3.6)

and the corresponding variables

un = −ik1/3
n u

(
k2/3
n

)
, fn = −ik1/3

n f
(
k2/3
n

)
. (3.7)

Then equation (3.5) taken for k = k
2/3
n reduces to the form

∂un

∂t
= knu

2
n−1 − kn+1u

∗
nun+1 − νnun + fn, n ∈ Z, (3.8)

where introduced the viscous factors

νn = νk4α/3
n . (3.9)

Equation (3.8) is the shell model, where kn is the shell wavenumber (forming a geometric
progression in n), un ∈ C is the complex shell speed, and the interaction occurs between the
neighboring shells.

One may consider the real variables un ∈ R. According to relation (3.7), this is the case
when u(k) is a purely imaginary function and, hence, the solution of the continuous model is
an odd function in physical space, u(−x) = −u(x). For real variables, system (3.8) becomes

∂un

∂t
= knu

2
n−1 − kn+1unun+1 − νnun + fn, n ∈ Z. (3.10)

This system is known as the Desnyansky–Novikov (DN) shell model [11], also called the
dyadic shell model. Note that, due to the exponent 4α/3 in this viscous term (3.9), the
conventional choice of νn = νk2

n in the shell model corresponds to the continuous model (3.5)
with hyperviscosity given by α = 3/2.

We have shown that the hydrodynamic model given by equations (2.1)–(2.3) and (3.1)
splits into a set of equivalent infinite-dimensional subsystems (3.8). Each of these subsystems
corresponds to a specific value of the parameter k0 in equation (3.6), which must be taken in
the interval

1 ! k0 < λ. (3.11)

For odd continuous solutions, u(−x) = −u(x), these subsystems take the form of the DN
shell model (3.10), where the real variables un are related to u(k) by equation (3.7).

3.1. Energy conservation and Hamiltonian form

Let us consider the shell model (3.8) in the inviscid unforced case, i.e. when νn = fn = 0 for
all n. Using equation (3.2), one can check that the function (3.1) satisfies the conditions

ϕ (ξ) = ϕ (1 − ξ) = ϕ

(
1
ξ

)
= ϕ

(
1

1 − ξ

)
, (3.12)

which imply the simultaneous energy conservation and Hamiltonian structure, see
equations (2.4), (2.7) and (2.14).
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invariants, the energy E =
P

|u
n

|2 and the helicity H =
P

(�1)nk
n

|u
n

|2 (the summation over

all n is assumed).

Solutions of viscous shell models exist and unique globally in time [9]. For the inviscid

models, i.e., with ⌫ = 0 in Eq. (4.1), the criterion of existence and uniqueness of the solution

requires a finite (enstrophy) norm

kuk1 =
⇣X

k2
n

|u
n

|2
⌘1/2

. (4.3)

If kuk1 = 1, the solution can be defined in a weak sense, but its uniqueness is not known [10].

We will also consider an entirely di↵erent derivation of the Sabra model [34]. For the specific

value of the inter-shell ratio,

� =

q
2 +

p
5 ⇡ 2.058, (4.4)

the Sabra model can be derived rigorously from the one-dimensional viscous conservation law

(1.1). Here the nonlocal flux function is given by

f =

ZZ
K(y � x, z � x)u(y, t)u(z, t)dydz (4.5)

with the kernel

K(y, z) =
K
 

(y, z) +K
 

(z, y)

4⇡
, K

 

(y, z) =
2�

(�y � z)2
� �2

(�2y � z)2
+

�

(�y + z)2
, (4.6)

where � = (1 +
p
5)/2 is the golden ratio. Singular integrals in Eq. (4.5) must be taken

with the Hadamard regularization. Let u(x, t) be a solution of Eqs. (1.1), (4.5), (4.6), and

û(k, t) =
R
u(x, t)e�ikxdx its Fourier transform. Then, for every fixed 1  k0 < �, the functions

u
n

(t) = k1/3
n

û
�
k2/3
n

, t
�
, k

n

= k0�
n, (4.7)

yield a solution of the Sabra model (4.1), (4.2), see [34]. Therefore, Eq. (1.1) in the Fourier

representation splits into a family of independent Sabra models parametrized by k0.

Note that the nonlocal quadratic term (4.5) is natural for a model of turbulence, because it

reflects a nonlocal character of the pressure term in incompressible flows. In the next sections,

we study the Sabra model, taking into account that the conclusions are automatically valid for

its one-dimensional continuous representation (1.1).

5 Self-similar dynamics before blowup

Let us consider the inviscid Sabra model

du
n

dt
= N

n

[u], n = 1, 2, 3, . . . . (5.1)
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Blowup and a shock wave

Self-similar blowup

For a generic initial condition, with a finite norm kuk1, the inviscid solution of the Sabra model

blows up in finite time, i.e., kuk1 ! 1 as the solution approaches the blowup time t ! t�
b

.

The local analysis presented in this section follows the construction of [12], see also further

developments in [31, 32, 33]. For this purpose, we introduce the rescaled shell variables v
n

and

time ⌧ as

u
n

= �ie
R ⌧
0 A(⌧ 0)d⌧ 0k�1

n

v
n

, t =

Z
⌧

0

e�
R ⌧ 0
0 A(⌧ 00)d⌧ 00d⌧ 0, (5.2)

where the function A(⌧) is given by

A =
Re

P
v⇤
n

P
n

[v]P
|v

n

|2 , P
n

[v] = � 1

�2
v
n+2v

⇤
n+1 +

1

2
v
n+1v

⇤
n�1 +

�2

2
v
n�1vn�2. (5.3)

This transformation is well defined at times before the blowup and leads to the following

equations [12, 33]
dv

n

d⌧
= P

n

[v]� Av
n

, n = 1, 2, 3, . . . . (5.4)

It is straightforward to see that Eq. (5.4) with A from Eq. (5.3) conserves the sum
P

|v
n

|2.
Eq. (5.4) is translation-invariant with respect to the shell number n, i.e., it does not change

under the transformation v
n

7! v
n+j

for any j (except in the region near the boundary condi-

tion). It was shown numerically [33], that Eq. (5.4) of the Sabra model has a stable traveling

wave solution, which can be written as

v
n

(⌧) = ei✓nV (n� a⌧), (5.5)

where ✓
n

are arbitrary phases (resulting from an action of the symmetry group) such that

✓
n

= ✓
n�1+ ✓

n�2. The wave (5.5) propagates with the constant speed a in the direction of large

n (small scales), Fig. 3(a).

In the original variables (5.2), the asymptotic traveling wave solution (5.5) yields [12, 33]

u
n

(t) = �iei✓nkz�1
n

U(kz

n

(t� t
b

)), t < t
b

, (5.6)

where

z =
1

log �

Z 1/a

0

A(⌧)d⌧, U(t� t
b

) = e
R ⌧
0 A(⌧ 0)d⌧ 0V (�a⌧), t

b

=

Z 1

0

e�
R ⌧ 0
0 A(⌧ 00)d⌧ 00d⌧ 0. (5.7)

The scaling exponent z is determined by the stable traveling wave solution and, hence, it is

universal (independent of initial conditions). The same refers to the function U(t), which is

universal up to the scaling symmetry. Numerical simulations in the case (4.4) yield z ⇡ 0.6975.
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Figure 3: (a) Renormalized variables v
n

(⌧) forming a traveling wave for large ⌧ ; the shell

number n = 1, 2, . . . increases from the left to the right. The initial conditions are v1 = v2 = 1

(with zeros for other variables) at ⌧ = 0. (b) Corresponding dynamics of the original variables

u
n

(t) developing into a self-similar blowup. (c) Physical space representation u(x, t) of the

solution u
n

(t) at blowup time.

The function A(⌧) given by Eqs. (5.3) and (5.5) is periodic with the period ⌧ = 1/a. Hence,

using the first expression in Eq. (5.7), we find that the integral
Z

⌧

0

A(⌧ 0)d⌧ 0 = za⌧ log �+ h(⌧), (5.8)

where h(⌧) is a periodic function. It follows from Eq. (5.8) that the integral in the last expression

of Eq. (5.7) converges providing a finite blowup time, 0 < t
b

< 1. Thus, a traveling wave

solution (5.5) leads to the universal self-similar asymptotic behavior at times preceding the

blowup as described by Eq. (5.6), see Fig. 3(b).

Using Eq. (5.8) and k
n

= k0�
n, we write the asymptotic scaling of variables (5.2) as

u
n

/ �za⌧�nv
n

, t� t
b

/ ���za⌧ . (5.9)

Additionally, the physical scale of shell n is expressed as

` / k�1
n

/ ��n. (5.10)

The comparison of Eqs. (5.9), (5.10) with Eq. (2.4) shows that our description of the blowup in

the Sabra model is analogous to the one for the Burgers equation in Section 2. Here n stands

for the logarithmic space variable ⇠. The blowup is associated with a wave traveling to large n

with a constant speed in the logarithmic time ⌧ .
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Continuous 
representation

Note that the shapes of the two traveling waves in Figs. 1(b) and 3(a) look di↵erent, because

the Burgers description was based on physical space representation, while the Sabra model

corresponds to the Fourier-transformed equations. Considering the Burgers equation in Fourier

space yields the description, which looks rather similar to the Sabra model [31].

6 The blowup state

Exactly at the blowup time, t = t
b

, expression (5.6) yields u
n
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discontinuity (shock), but has infinite limits at x = 0. One can also find numerically the
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Figure 3: (a) Renormalized variables v
n

(⌧) forming a traveling wave for large ⌧ ; the shell

number n = 1, 2, . . . increases from the left to the right. The initial conditions are v1 = v2 = 1

(with zeros for other variables) at ⌧ = 0. (b) Corresponding dynamics of the original variables

u
n

(t) developing into a self-similar blowup. (c) Physical space representation u(x, t) of the

solution u
n

(t) at blowup time.

The function A(⌧) given by Eqs. (5.3) and (5.5) is periodic with the period ⌧ = 1/a. Hence,

using the first expression in Eq. (5.7), we find that the integral
Z

⌧

0

A(⌧ 0)d⌧ 0 = za⌧ log �+ h(⌧), (5.8)

where h(⌧) is a periodic function. It follows from Eq. (5.8) that the integral in the last expression

of Eq. (5.7) converges providing a finite blowup time, 0 < t
b

< 1. Thus, a traveling wave

solution (5.5) leads to the universal self-similar asymptotic behavior at times preceding the

blowup as described by Eq. (5.6), see Fig. 3(b).

Using Eq. (5.8) and k
n

= k0�
n, we write the asymptotic scaling of variables (5.2) as

u
n

/ �za⌧�nv
n

, t� t
b

/ ���za⌧ . (5.9)

Additionally, the physical scale of shell n is expressed as

` / k�1
n

/ ��n. (5.10)

The comparison of Eqs. (5.9), (5.10) with Eq. (2.4) shows that our description of the blowup in

the Sabra model is analogous to the one for the Burgers equation in Section 2. Here n stands

for the logarithmic space variable ⇠. The blowup is associated with a wave traveling to large n

with a constant speed in the logarithmic time ⌧ .

11

Kolmogorov (inviscid) solution

Stationary state: a shock
(unstable in Sabra model)

Hombre & Gilson 1988
2246

where nθ  are arbitrary phases (resulting from an action of the symmetry group) such that 
n n n1 2θ θ θ= +− − . The wave (5.6) propagates with the constant speed a in the direction of large 

n (small scales), figure 3(a).
For the traveling wave solution, the function A( )τ  given by equation (5.5) is periodic with 

the period a1/τ = . Hence, using the relation A d log d/ω τ= , one obtains

A h z Aexp d ,
1

log
d ,za

a

0
0

0
0

1
( ) ( ) ( )

/
⎜ ⎟⎛
⎝

⎞
⎠∫ ∫ω ω τ τ ω τ λ

λ
τ τ= = =′ ′

τ
τ (5.7)

where h( )τ  is a positive (1/a)-periodic function. The scaling exponent z is determined by the 
stable traveling wave solution and, hence, it is universal (independent of initial conditions). 
Numerical simulations in the case (4.4) yield z 0.6975≈ . As long as z  >  0, the second expres-
sion in (5.2) ensures that the original time has a finite limit, t tb→ <∞, as →τ ∞. At the same 
time, the value za →ω λ∼ ∞τ , i.e. the system blows up at finite time tb.

In the original variables (5.2), the asymptotic traveling wave solution (5.6) yields [12, 32]

( ) ( ( ))=− − <θ −u t k U k t t t tie , ,n n
z

n
z

b b
i 1n (5.8)

where

τ λ τ− = −τU t t h V a .b
za( ) ( ) ( ) (5.9)

Thus, a traveling wave solution (5.6) leads to the self-similar asymptotic behavior at times 
preceding the blowup as described by equation (5.8), see figure 3(b). The function U(t) has a 
finite limit U(0) as →−t 0, which imposes the decay rate V z( )η λ∼ η as →η −∞ [12].

Using equation (5.7) and k kn
n

0λ= , we write the asymptotic scaling of variables (5.2) as

u v t t, .n
za n

n b
zaλ λ∝ − ∝−τ τ− − (5.10)

Additionally, the physical scale of shell n is expressed as

k .n
n1 λ∝ ∝− −ℓ (5.11)

The comparison of equations (5.10), (5.11) with equation (2.4) shows that our description of 
the blowup in the Sabra model is analogous to the one for the Burgers equation in section 2. 
Here n stands for the logarithmic space variable ξ. The blowup is associated with a wave trav-
eling to large n with a constant speed in the logarithmic time τ.

Note that the shapes of the two traveling waves in figures 1(b) and 3(a) look different, 
because the Burgers description was based on physical space representation, while the Sabra 
model corresponds to the Fourier-transformed equations. Considering the Burgers equation in 
Fourier space yields the description, which looks rather similar to the Sabra model [30].

6. The blowup state

Exactly at the blowup time, t  =  tb, expression (5.8) yields ( ) ( )=− θ −u t k Uie 0n n
zi 1n . With no loss 

of generality, we can drop the coefficients assuming that

( )=− −u t ki ,n b n
z 1 (6.1)

which can be obtained by using a symmetry group of the Sabra model [32]. Equation (6.1) 
describes the asymptotic inviscid state for large shell numbers n. Using equation (4.7), one 
recovers the function =− β−u k t k, ibˆ( )  for k  >  0 and z2 3 2 0.954/β = − ≈ , which is a Fourier 
transposed solution of the continuous representation for the Sabra model. As a Fourier 
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Non-unique inviscid limit
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Fig. 8. a) Magnified version of Fig. 1 near the blowup time tb ≈ 2.35 represented by the vertical
red line. b) Before the blowup, t < tb, the self-similar inviscid dynamics (6.1) corresponds to the
asymptotic traveling wave (6.5) in renormalized variables vn(τ) given by Eq. (6.4). Shown are the
variables vn, n = −1, 0, . . . , 30, at logarithmic times τ = 0, 3τ0, . . . , 21τ0 for the inviscid solution
with zero initial conditions and boundary values u−1 = u0 = 0.7. The symmetry parameters in
Eq. (6.4) are c = 0.7 and σn = +1.

Then, following [10, 26], expression (6.1) can be written in the form

vn(τ) → V

(

n−
τ

τ0

)

,(6.5)

where the function V (η), η ∈ R, and constant τ0 are defined as

V (η) = U (−2τ0η) , τ0 = 1− y ≈ 0.719.(6.6)

According to Eqs. (6.2) and (6.6), the convergence in Eq. (6.5) is understood in the
limit

τ = τ0n+ const → ∞, n → ∞,(6.7)

i.e., pointwise for a constant η = n− τ/τ0.
The function V (η) has the limits

lim
η→−∞

V (η) = 1, lim
η→∞

V (η) = 0,(6.8)

where the first condition follows from the property U(0) = 1. In the second condition,
large η corresponds to the region of large shell numbers, where un decays faster than
k−1
n due to the finite enstrophy condition and, hence, vn → 0 in Eq. (6.4).

Note that the limit τ → ∞ for the logarithmic time τ = − log2[c(tb − t)] corre-
sponds to t → t−b . Hence, expression (6.5) describes the blowup as a traveling wave
with the universal stationary profile V (η) moving from smaller to larger shell numbers
with constant speed τ−1

0 in logarithmic time τ , see Fig. 8b. This implies periodicity
of the rescaled shell speeds vn(τ) in Eq. (6.5), which attain the same values with the
shift by one shell number after each period τ0.

7. Onset of spontaneous stochasticity after the blowup. After the blowup,
t > tb, the inviscid solution is not unique, as we observed in numerical simulations,

SPONTANEOUS STOCHASTICITY IN TURBULENCE MODELS 11

Fig. 6. Evolution of the shells (u3, u4) for the solution in vanishing viscosity limit for zero
initial conditions and boundary values u−1 = u0 = 0.7. The curves show solutions for very small
viscosities ν = 2−4(χ+6) with χ = 0, 0.04, . . . , 1. The inviscid solutions coincide for all 0 ≤ χ < 1
before the blowup, t ≤ tb, and define a surface for larger times, t > tb. The right figure shows the
amplified region near the blowup time tb ≈ 2.35, when the spontaneous stochasticity occurs.

At each time, the solution u[ν]
n (t), n = 1, 2, . . ., represents a random variable (prob-

ability measure) in the ℓ2 space with the norm given by the square root of energy,
and the limit can be understood in a weak sense. Note that no choice of a special
viscosity subsequence is necessary in the limit (5.3), where all limiting solutions (5.1)
are involved through the random variable X . As a result, the inviscid solution Un(t)
is given by a singular probability measure supported on the one-parameter set of
solutions (5.1).

Figure 6 shows the solution (5.3) computed numerically. One can see that the
limiting solution is deterministic until a certain time t ≤ tb (with the blowup time
tb as described in the next section), and becomes stochastic for t > tb. This reveals
the striking property of the spontaneous stochasticity of the inviscid solution Un(t)
obtained in the limit of vanishing viscosity.

Figure 7 (thin solid line) shows the one-dimensional support of the singular prob-
ability measure of solutions (5.3) for the shell speeds u3 and u4 computed numerically
at t = 3. This support represents a closed curve. It is remarkable that the probability
measure depends on the viscosity mechanism. Indeed, let us consider Eq. (2.2) with
the hyperviscous term −νkβnun, where the usual viscosity corresponds to β = 2. The
general case with β ̸= 2 can be studied in a similar way, where one should use a differ-
ent scaling of viscosity depending on β. The inviscid solution in the vanishing viscosity
limit can be defined as a probability measure, similarly to Eq. (5.3). This measure
was computed numerically for β = 1.5 and 2.5, see Fig. 7 (thick solid and dashed
lines). The simulations confirm that the measure is singular with a one-dimensional
support, which is different for different β, i.e., the inviscid limit depends strongly on
the viscosity mechanism.

6. Blowup. Let us consider the Cauchy problem for the system (2.2) with arbi-
trary boundary conditions (2.3) and initial conditions at t = 0 with finite enstrophy
Ω(0) =

∑

k2nu
2
n < ∞. In the viscous case, ν > 0, there exists a unique solution [2, 7, 8].

For the inviscid system, ν = 0, the solution exists in a weak sense and it is unique as
soon as the enstrophy is finite. The enstrophy may explode (blowup) in finite time
tb > 0 such that Ω → ∞ as t → t−b . Before the blowup, 0 ≤ t < tb, the viscous

Non-unique solutions! 
However, a unique solution can be chosen for a given (small) viscosity

⌫ = 2�4(�+N) ����!
N!1

0

A.M. 2016, MMS (SIAM)



Periodic wave in renormalized system

Renormalized system:

Note that the shapes of the two traveling waves in Figs. 1(b) and 3(a) look di↵erent, because

the Burgers description was based on physical space representation, while the Sabra model

corresponds to the Fourier-transformed equations. Considering the Burgers equation in Fourier

space yields the description, which looks rather similar to the Sabra model [31].

6 The blowup state

Exactly at the blowup time, t = t
b

, expression (5.6) yields u
n

(t) = �iei✓nkz�1
n

U(0). With no

loss of generality, we can drop the coe�cients assuming that

u
n

(t
b

) = �ikz�1
n

, (6.1)

which can be obtained by using a symmetry group of the Sabra model [33]. Eq. (6.1) describes

the asymptotic inviscid state for large shell numbers n. Using Eq. (4.7), one recovers the

function û(k, t
b

) = �ik�� for k > 0 and � = 2 � 3z/2 ⇡ 0.954, which is a Fourier transposed

solution of the continuous representation for the Sabra model. As a Fourier transform of a

real function, it extends to negative k < 0 as û(k) = û⇤(�k) = i|k|��. The inverse Fourier

transform yields [3]

u(x, t
b

) =
�(1� �)

⇡
cos

✓
�⇡

2

◆
|x|��1sgn x. (6.2)

This function is shown in Fig. 3(c) and it represents a discontinuity of the solution in physical

space, which is created at the blowup time. As � is close to 1, function (6.2) is close to a

discontinuity (shock), but has infinite limits at x = 0. One can also find numerically the

physical space representation u(x, t) of the asymptotic relation (5.6), which describes a self-

similar formation of a singularity (6.2) in a classical solution [34].

7 Spontaneously stochastic dynamics after blowup

In order to study the behavior after blowup, we introduce the new variables

t = t
b

+ �⌧, u
n

= �ik�1
n

��⌧w
n

= �ik�1
0 ��⌧�nw

n

. (7.1)

Together with the shell scale ` / k�1
n

= k�1
0 ��n, expressions (7.1) follow the analogous definition

(2.9) for the Burgers equation. For new variables, the inviscid Sabra model (5.1), (4.2) takes

the form
dw

n

d⌧
=

✓
w

n

� 1

�2
w

n+2w
⇤
n+1 +

1

2
w

n+1w
⇤
n�1 +

�2

2
w

n�1wn�2

◆
log �. (7.2)

12

Note that the shapes of the two traveling waves in Figs. 1(b) and 3(a) look di↵erent, because

the Burgers description was based on physical space representation, while the Sabra model

corresponds to the Fourier-transformed equations. Considering the Burgers equation in Fourier

space yields the description, which looks rather similar to the Sabra model [31].

6 The blowup state

Exactly at the blowup time, t = t
b

, expression (5.6) yields u
n

(t) = �iei✓nkz�1
n

U(0). With no

loss of generality, we can drop the coe�cients assuming that

u
n

(t
b

) = �ikz�1
n

, (6.1)

which can be obtained by using a symmetry group of the Sabra model [33]. Eq. (6.1) describes

the asymptotic inviscid state for large shell numbers n. Using Eq. (4.7), one recovers the

function û(k, t
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Logarithmic time:

the time ⌧ is merely measures the “local” characteristic time of the disturbance in its way

from large to infinitely small scales at the blowup. Analogously, after the blowup, the time ⌧

is measured by the internal “clock” of the shock wave in its development from a point at the

blowup to a finite size.

3 Dynamical system description of blowup

The transformation proposed in the previous section does not bring much new understanding

for the Burgers equation, since the analytic solution is available, but it helps understanding

the origin of the spontaneous stochasticity phenomenon studied below in this paper. A trav-

eling wave solution is the simplest form of the large-time behavior for a translation-invariant

autonomous dynamical system such as Eq. (2.8) or (2.10). One can ask a question, what will

happen if this solution gets unstable giving rise to a periodic or even chaotic attractor? For

solutions before the blowup this is indeed possible if the nonlinear term f in Eq. (1.1) is non-

local, as in continuous representations of shell models [34]. This problem was studied in [32]

demonstrating di↵erent blowup scenarios corresponding to periodic, quasi-periodic and chaotic

waves. These waves define an asymptotic form of a classical inviscid solution as it approaches

the blowup, since large ⌧ = � log(t
b

� t) correspond to t ! t�
b

.

A very di↵erent situation is expected for a solution (2.11), which describes the unfolding of

a blowup. This solution starts at ⌧ = log(t� t
b

) = �1 corresponding to t = t
b

. Therefore, an

infinite interval (in terms of ⌧) preceeds any finite time after the blowup. An example of the

equation, where the attractor is a periodic wave was given in [36]. This means that there is a

stable solution w = G(⇠+a⌧, ⌧) such that G(⌘, ⌧) = G(⌘, ⌧+⌧1) for some period ⌧1 > 0 and any

⌘ and ⌧. This solution represents a periodically pulsating wave traveling with an average speed

a from large to small values of ⇠. In fact, there is a family of solutions w = G(⇠ + a⌧ + ⇠0, ⌧)

defined up to a constant shift ⇠0, because the governing equation is translation invariant, see

Eq. (2.10), for example. It was shown that a specific value of ⇠0 is chosen if one defines a

solution in the inviscid limit ⌫
n

! 0+ for a specific sequence of viscosities. Any value of ⇠0

can be obtained in this way, leading to the non-uniqueness (an infinite number) of physically

relevant inviscid solutions.

In this paper we show that the Sabra shell model of turbulence [30], which is equivalent

to system (1.1) with a nonlocal quadratic flux function given below by Eqs. (4.5) and (4.6),

provides an example in which the blowup unfolding is given by a chaotic wave. This means

6

2 Internal “clock” of the blowup

In this section we describe how a finite-time blowup problem can be mapped into a problem

of large-time behavior for a dynamical system. For this purpose, let us consider the Burgers

equation (1.1), where the flux function f = u2/2. In the inviscid case (⌫ = 0), a well-known

classical (smooth) solution is given implicitly by

u = u0(x0), x = x0 + (t� t0)u, (2.1)

where u(x, t0) = u0(x) is an initial condition and x0 is an auxiliary variable. Let us consider a

solution, which blows up at finite time t = t
b

. One can use a symmetry group of the Burgers

equation, which includes shifts of origin, scale changes and the Galilean transformation, to

simplify the blowup description. In generic case, this reduces the initial condition to the form

u0(x) = �x + x3 + o(x3) with t0 = �1, see e.g. [38, 31]. Substituting this expression into

Eq. (2.1) and solving with respect to x yields

x = ut� u3 + o(u3). (2.2)

The corresponding solution u(x, t) blows up at t
b

= 0, when u(x, 0) ⇡ �x1/3 has an infinite

derivative at the origin, Fig. 1(a).

To simplify our further arguments, we ignore the o(u3) term in Eq. (2.2). Then, for x > 0,

we write this expression as

e�⇠ = ve�⇠ + v3e3⌧�3⇠, (2.3)

where the renormalized time ⌧ , space variable ⇠ and state v are introduced as

t = �e�⌧ , x = e�⇠, u = �ve⌧�⇠. (2.4)

Equation (2.3) yields

v = F (⇠ � a⌧), a = 3/2, (2.5)

where the function F (⌘) is defined implicitly by the equation

1 = F + e�2⌘F 3. (2.6)

We see that the blowup formation can be seen as a traveling wave (2.5) moving with the constant

speed a in the logarithmic space coordinate ⇠ and time ⌧ , Fig. 1(b). In this description, the

limit ⌧ ! 1 corresponds to the blowup time t = �e�⌧ ! 0�, and the limit ⇠ ! 1 yields the

3

Stable periodic-wave solution:
w

n

time



Periodic wave: numerical simulations
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of the scaling parameter c and signs σn. Hence, we can expect that similar univer-
sality holds after the blowup as well. Thus, we conjecture (and confirm later nu-
merically) that the functions in Eq. (7.2) have a universal asymptotic form for large
n. This asymptotic form should not be affected by the symmetry transformation
(7.3), which leaves the asymptotic state (6.3) unchanged. Since this transformation
changes the shell number by one in the functions (7.6), their universal asymptotic
form, Wn(η1, η2) → W (η1, η2), must be the independent of the shell number n. Using
Eq. (7.2), this yields the asymptotic expression of the form

wn(τ̃ ,χ) → W

(

n−
τ̃

τ0
,χ− χc −

τ̃

τ1

)

.(7.7)

Similarly to Eqs. (6.5) and (6.7), we understand the limit (7.7) pointwise for large
n → ∞ with fixed η1 = n− τ̃/τ0 and η2 = χ− χc − τ̃/τ1.

Recall that the values of χ, which differ by an integer number, correspond to
the same inviscid solution, see Section 5. Hence, the universal function W (η1, η2) is
periodic with respect to the second variable as

W (η1, η2) = W (η1, η2 + 1).(7.8)

The power law (6.3), where tb corresponds to τ̃ → ∞, and the relations (7.1), (7.7),
(7.8) yield the left-side limiting value of the function W (η1, η2) with respect to the
first argument as

lim
η1→−∞

W (η1, η2) = 1.(7.9)

The limit on the other side follows from the period-3 condition (5.2), which implies

that wn ∼ ky−1/3
n → 0 for large n with y − 1/3 < 0. This yields

lim
η1→∞

W (η1, η2) = 0.(7.10)

Note that the convergence in Eq. (7.10) is rather slow due to the small absolute value
of the exponent y − 1/3 ≈ −0.0524.

The conjectured universal asymptotic form (7.7) fully agrees with the numerical
simulations. In Fig. 9a,b we show the results of high-precision simulations carried out
for Eq. (2.2) with the boundary conditions u−1 = u0 = 0.7, zero initial conditions and
very small viscosities ν = 2−4(χ+10) ∼ 10−13 with χ = 0, 0.01, . . . , 0.99 (the viscous
range starts at nK ≈ 30). Shown are the functions Wn(η1, η2) for n = 14 and 18,
which are determined by the corresponding shell speeds using Eqs. (7.1) and (7.2).
These functions appear to be almost identical, confirming the asymptotic relation
(7.7). Figure 9c shows the function W22(η1, η2) of the analogous simulation, but for
the boundary and initial conditions un = k−y

n , n = −1, 0, 1, . . .. These conditions
correspond to the power law (6.3) at the blowup point satisfied exactly. Since the
function W22 is the same as the functions W14 and W18 in Fig. 9a,b, we confirmed the
universality of the asymptotic form (7.7), i.e., its independence of the boundary and
initial conditions. Note that relations (7.8)–(7.10) are clearly satisfied in Fig. 9a-c
with very slow convergence in the last condition, as it was expected.

The asymptotic form (7.7) contains different periods τ0 ≈ 0.719 and τ1 ≈ 2.245
in two different arguments of the function W . This means that, in renormalized
variables (7.1), the dynamics after the blowup is quasi-periodic (together with the
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Fig. 9. (a), (b) Functions W14 and W18 describing behavior after the blowup in new shell
coordinates and logarithmic time (7.2). The functions are computed numerically using (2.2) with
35 shells for viscosities ν = 2−4(χ+10), χ = 0, 0.01, . . . , 0.99. The boundary and initial conditions
are as in Figure 1. (c) Similar computations for the function W22 but for the boundary and initial

conditions un = k−y
n . The functions in figures (a)–(c) are almost identical, confirming existence

of the universal asymptotic form (7.7). Note that these figures correspond to the same interval
3τ0 ≤ τ̃ ≤ 30τ0, which yields different intervals of η1 = n − τ̃/τ0 for different n in (7.2). (d)
Renormalized shell variables wn(τ̃ ,χ) computed under conditions of figures (a), (b) for χ = 0 and
different τ̃ , demonstrating quasi-periodic dynamics.

The limit on the other side follows from the period-3 condition (5.2), which implies

that wn ∼ ky−1/3
n → 0 for large n with y − 1/3 < 0. This yields

(7.10) lim
η1→∞

W (η1, η2) = 0.

Note that the convergence in (7.10) is rather slow due to the small absolute value of
the exponent y − 1/3 ≈ −0.0524.

The conjectured universal asymptotic form (7.7) fully agrees with the numerical
simulations. In Figure 9(a), (b) we show the results of high-precision simulations
carried out for (2.2) with the boundary conditions u−1 = u0 = 0.7, zero initial
conditions, and very small viscosities ν = 2−4(χ+10) ∼ 10−13 with χ = 0, 0.01, . . . , 0.99
(the viscous range starts at nK ≈ 30). Shown are the functions Wn(η1, η2) for n = 14
and 18, which are determined by the corresponding shell speeds using (7.1) and (7.2).
These functions appear to be almost identical, confirming the asymptotic relation
(7.7). Figure 9(c) shows the function W22(η1, η2) of the analogous simulation, but
for the boundary and initial conditions un = k−y

n , n = −1, 0, 1, . . . . These conditions
correspond to the power law (6.3) at the blowup point satisfied exactly. Since the
function W22 is the same as the functions W14 and W18 in Figure 9(a), (b), we
confirmed the universality of the asymptotic form (7.7), i.e., its independence of the
boundary and initial conditions. Note that relations (7.8)–(7.10) are clearly satisfied
in Figure 9(a)–(c) with very slow convergence in the last condition, as expected.

The asymptotic form (7.7) contains different periods τ0 ≈ 0.719 and τ1 ≈ 2.245
in two different arguments of the function W . This means that, in renormalized
variables (7.1), the dynamics after the blowup is quasi-periodic (together with the
shift by one shell number after each τ0), unlike the periodic dynamics before the
blowup in (6.5); see Figures 8 and 9. Figure 9(d) shows this quasi-periodic dynamics
with the logarithmic time intervals of 5τ0. Here the viscous range starts at nK = 30,
so that the formula (7.7) for the inviscid dynamics is appropriate for the shells n ! 25.
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Fig. 6. Evolution of the shells (u3, u4) for the solution in vanishing viscosity limit for zero
initial conditions and boundary values u−1 = u0 = 0.7. The curves show solutions for very small
viscosities ν = 2−4(χ+6) with χ = 0, 0.04, . . . , 1. The inviscid solutions coincide for all 0 ≤ χ < 1
before the blowup, t ≤ tb, and define a surface for larger times, t > tb. The right figure shows the
amplified region near the blowup time tb ≈ 2.35, when the spontaneous stochasticity occurs.

At each time, the solution u[ν]
n (t), n = 1, 2, . . ., represents a random variable (prob-

ability measure) in the ℓ2 space with the norm given by the square root of energy,
and the limit can be understood in a weak sense. Note that no choice of a special
viscosity subsequence is necessary in the limit (5.3), where all limiting solutions (5.1)
are involved through the random variable X . As a result, the inviscid solution Un(t)
is given by a singular probability measure supported on the one-parameter set of
solutions (5.1).

Figure 6 shows the solution (5.3) computed numerically. One can see that the
limiting solution is deterministic until a certain time t ≤ tb (with the blowup time
tb as described in the next section), and becomes stochastic for t > tb. This reveals
the striking property of the spontaneous stochasticity of the inviscid solution Un(t)
obtained in the limit of vanishing viscosity.

Figure 7 (thin solid line) shows the one-dimensional support of the singular prob-
ability measure of solutions (5.3) for the shell speeds u3 and u4 computed numerically
at t = 3. This support represents a closed curve. It is remarkable that the probability
measure depends on the viscosity mechanism. Indeed, let us consider Eq. (2.2) with
the hyperviscous term −νkβnun, where the usual viscosity corresponds to β = 2. The
general case with β ̸= 2 can be studied in a similar way, where one should use a differ-
ent scaling of viscosity depending on β. The inviscid solution in the vanishing viscosity
limit can be defined as a probability measure, similarly to Eq. (5.3). This measure
was computed numerically for β = 1.5 and 2.5, see Fig. 7 (thick solid and dashed
lines). The simulations confirm that the measure is singular with a one-dimensional
support, which is different for different β, i.e., the inviscid limit depends strongly on
the viscosity mechanism.

6. Blowup. Let us consider the Cauchy problem for the system (2.2) with arbi-
trary boundary conditions (2.3) and initial conditions at t = 0 with finite enstrophy
Ω(0) =

∑

k2nu
2
n < ∞. In the viscous case, ν > 0, there exists a unique solution [2, 7, 8].

For the inviscid system, ν = 0, the solution exists in a weak sense and it is unique as
soon as the enstrophy is finite. The enstrophy may explode (blowup) in finite time
tb > 0 such that Ω → ∞ as t → t−b . Before the blowup, 0 ≤ t < tb, the viscous

⌫ = 2�4(�+N) ����!
N!1

0
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Fig. 8. a) Magnified version of Fig. 1 near the blowup time tb ≈ 2.35 represented by the vertical
red line. b) Before the blowup, t < tb, the self-similar inviscid dynamics (6.1) corresponds to the
asymptotic traveling wave (6.5) in renormalized variables vn(τ) given by Eq. (6.4). Shown are the
variables vn, n = −1, 0, . . . , 30, at logarithmic times τ = 0, 3τ0, . . . , 21τ0 for the inviscid solution
with zero initial conditions and boundary values u−1 = u0 = 0.7. The symmetry parameters in
Eq. (6.4) are c = 0.7 and σn = +1.

Then, following [10, 26], expression (6.1) can be written in the form

vn(τ) → V

(

n−
τ

τ0

)

,(6.5)

where the function V (η), η ∈ R, and constant τ0 are defined as

V (η) = U (−2τ0η) , τ0 = 1− y ≈ 0.719.(6.6)

According to Eqs. (6.2) and (6.6), the convergence in Eq. (6.5) is understood in the
limit

τ = τ0n+ const → ∞, n → ∞,(6.7)

i.e., pointwise for a constant η = n− τ/τ0.
The function V (η) has the limits

lim
η→−∞

V (η) = 1, lim
η→∞

V (η) = 0,(6.8)

where the first condition follows from the property U(0) = 1. In the second condition,
large η corresponds to the region of large shell numbers, where un decays faster than
k−1
n due to the finite enstrophy condition and, hence, vn → 0 in Eq. (6.4).

Note that the limit τ → ∞ for the logarithmic time τ = − log2[c(tb − t)] corre-
sponds to t → t−b . Hence, expression (6.5) describes the blowup as a traveling wave
with the universal stationary profile V (η) moving from smaller to larger shell numbers
with constant speed τ−1

0 in logarithmic time τ , see Fig. 8b. This implies periodicity
of the rescaled shell speeds vn(τ) in Eq. (6.5), which attain the same values with the
shift by one shell number after each period τ0.

7. Onset of spontaneous stochasticity after the blowup. After the blowup,
t > tb, the inviscid solution is not unique, as we observed in numerical simulations,



the time ⌧ is merely measures the “local” characteristic time of the disturbance in its way

from large to infinitely small scales at the blowup. Analogously, after the blowup, the time ⌧

is measured by the internal “clock” of the shock wave in its development from a point at the

blowup to a finite size.

3 Dynamical system description of blowup

The transformation proposed in the previous section does not bring much new understanding

for the Burgers equation, since the analytic solution is available, but it helps understanding

the origin of the spontaneous stochasticity phenomenon studied below in this paper. A trav-

eling wave solution is the simplest form of the large-time behavior for a translation-invariant

autonomous dynamical system such as Eq. (2.8) or (2.10). One can ask a question, what will

happen if this solution gets unstable giving rise to a periodic or even chaotic attractor? For

solutions before the blowup this is indeed possible if the nonlinear term f in Eq. (1.1) is non-

local, as in continuous representations of shell models [34]. This problem was studied in [32]

demonstrating di↵erent blowup scenarios corresponding to periodic, quasi-periodic and chaotic

waves. These waves define an asymptotic form of a classical inviscid solution as it approaches

the blowup, since large ⌧ = � log(t
b

� t) correspond to t ! t�
b

.

A very di↵erent situation is expected for a solution (2.11), which describes the unfolding of

a blowup. This solution starts at ⌧ = log(t� t
b

) = �1 corresponding to t = t
b

. Therefore, an

infinite interval (in terms of ⌧) preceeds any finite time after the blowup. An example of the

equation, where the attractor is a periodic wave was given in [36]. This means that there is a

stable solution w = G(⇠+a⌧, ⌧) such that G(⌘, ⌧) = G(⌘, ⌧+⌧1) for some period ⌧1 > 0 and any

⌘ and ⌧. This solution represents a periodically pulsating wave traveling with an average speed

a from large to small values of ⇠. In fact, there is a family of solutions w = G(⇠ + a⌧ + ⇠0, ⌧)

defined up to a constant shift ⇠0, because the governing equation is translation invariant, see

Eq. (2.10), for example. It was shown that a specific value of ⇠0 is chosen if one defines a

solution in the inviscid limit ⌫
n

! 0+ for a specific sequence of viscosities. Any value of ⇠0

can be obtained in this way, leading to the non-uniqueness (an infinite number) of physically

relevant inviscid solutions.

In this paper we show that the Sabra shell model of turbulence [30], which is equivalent

to system (1.1) with a nonlocal quadratic flux function given below by Eqs. (4.5) and (4.6),

provides an example in which the blowup unfolding is given by a chaotic wave. This means

6

2 Internal “clock” of the blowup

In this section we describe how a finite-time blowup problem can be mapped into a problem

of large-time behavior for a dynamical system. For this purpose, let us consider the Burgers

equation (1.1), where the flux function f = u2/2. In the inviscid case (⌫ = 0), a well-known

classical (smooth) solution is given implicitly by

u = u0(x0), x = x0 + (t� t0)u, (2.1)

where u(x, t0) = u0(x) is an initial condition and x0 is an auxiliary variable. Let us consider a

solution, which blows up at finite time t = t
b

. One can use a symmetry group of the Burgers

equation, which includes shifts of origin, scale changes and the Galilean transformation, to

simplify the blowup description. In generic case, this reduces the initial condition to the form

u0(x) = �x + x3 + o(x3) with t0 = �1, see e.g. [38, 31]. Substituting this expression into

Eq. (2.1) and solving with respect to x yields

x = ut� u3 + o(u3). (2.2)

The corresponding solution u(x, t) blows up at t
b

= 0, when u(x, 0) ⇡ �x1/3 has an infinite

derivative at the origin, Fig. 1(a).

To simplify our further arguments, we ignore the o(u3) term in Eq. (2.2). Then, for x > 0,

we write this expression as

e�⇠ = ve�⇠ + v3e3⌧�3⇠, (2.3)

where the renormalized time ⌧ , space variable ⇠ and state v are introduced as

t = �e�⌧ , x = e�⇠, u = �ve⌧�⇠. (2.4)

Equation (2.3) yields

v = F (⇠ � a⌧), a = 3/2, (2.5)

where the function F (⌘) is defined implicitly by the equation

1 = F + e�2⌘F 3. (2.6)

We see that the blowup formation can be seen as a traveling wave (2.5) moving with the constant

speed a in the logarithmic space coordinate ⇠ and time ⌧ , Fig. 1(b). In this description, the

limit ⌧ ! 1 corresponds to the blowup time t = �e�⌧ ! 0�, and the limit ⇠ ! 1 yields the

3

Figure 2: Schematic picture of the formation of a traveling-wave probability measure µ⌧(w) for

renormalized chaotic solutions w(⇠, ⌧) from a blowup state at ⌧ = �1.

that w = G(⇠ + a⌧, ⌧), where G(⌘, ⌧) is characterized for large ⌧ by a chaotic attractor. The

blowup imposes a specific initial condition for the inviscid solution w at ⌧ ! �1. But, due to

exponential divergence of trajectories with close initial conditions (the famous butterfly e↵ect),

we cannot choose any particular solution at finite ⌧, see Fig. 2. Namely, even if a particular

inviscid solution is chosen by some viscous regularization procedure, with a discrete subsequence

of viscosities ⌫
n

! 0+ [28], an arbitrarily small perturbation will provide a totally di↵erent

solution. Thus, no physically relevant deterministic solution can be expected in a vanishing

viscosity limit. The limiting object is a chaotic attractor with an invariant probability measure

for di↵erent observable solutions w, Fig. 2.

We are led to the surprising conclusion: the inviscid solution becomes stochastic at every

time after the blowup despite the governing equation (1.1) looks fully deterministic! This is

not just the non-uniqueness phenomenon for weak solutions. On the contrary, one can expect

a unique solution as a probability distribution, because this distribution is associated with the

invariant measure of a chaotic attractor.

Our argument above suggests, and we will provide a detailed numerical evidence, that a

physically relevant inviscid solution at times after the blowup should be defined as a measure

dµ⌧(w), which describes a probability distribution of solutions w(⇠, ⌧) at fixed ⌧ = log(t� t
b

).

The measure dµ⌧(w) has the form of a traveling wave moving with a constant speed a in

logarithmic coordinates (⇠, ⌧). This traveling wave connects a deterministic blowup state on

one side (deterministic “past” of the solution) and a stochastic state on the other side. A steady

motion of such a wave in the direction of smaller ⇠ describes the propagation of stochasticity

from arbitrarily small to finite scales x = e�⇠, Fig. 2.

An important theoretical implication is the revision of a viscous regularization procedure.

A small viscosity present in a physical system suppresses the dynamics at su�ciently large ⇠
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| for (a) n = 10, (b) n = 15, (c) n = 20 as functions of ⌧ = log
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t.

Darker color means larger probability. These functions represent a traveling wave in (n, ⌧)

coordinates, with a deterministic blowup state for ⌧ ! �1.

n ⇠ 35. Thus, we can observe the inviscid dynamics in the inertial interval of shells n . 30.

Fig. 4(b) shows the standard deviation of Rew
n

with increasing ⌧. The figure demonstrates

the formation of a stable traveling wave moving with the constant speed a in the direction of

small n, i.e., from large to small scales. Note a similarity of Fig. 4(b) with the analogous graph

for the deterministic w(⇠, ⌧) of the Burgers equation in Fig. 1(c). For the probability measure

µ⌧(w), the traveling wave condition implies

µ⌧+⌧0(w) = µ⌧(Tw), (7.4)

where ⌧0 = 1/a = z is the time period, in which the wave travels for a distance of one shell

number, and T : (w1, w2, . . .) 7! (w2, w3, . . .) is the corresponding translation operator. Fig. 5

shows probability density functions (PDFs) of log |w
n

| for the shells n = 10, 15, 20 at di↵erent

times ⌧, which are in full agreement with the traveling wave condition (7.4). For each shell, the

stochastic component grows with ⌧ in the same way but with a shift in ⌧. The stochasticity

of equal intensity is developed earlier at larger shell numbers (smaller scales) and later for

smaller shell numbers (larger scales). The limit ⌧ ! �1, corresponding to t ! t+
b

, describes a

deterministic “past” of the solution given by Eq. (7.3), and it is clearly seen as a straight sold

line in Fig. 5.

An interesting representation of the traveling probability measure can be obtained using

the shell speed multipliers, which include the factors and phases defined as [4, 17]
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Probability distribution as a steady-state traveling wave
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Figure 4: (a) Chaotic dynamics of variables w
n

shown at di↵erent times ⌧ = log
�

t, where

⌧ = �1 corresponds to blowup state (6.1). (b) Standard deviation of Rew
n

at a⌧ =

�27,�26, . . . ,�7 (increasing time is indicated by an arrow). The graphs form a traveling

wave moving in the direction of smaller n with the constant speed a.

This equation is autonomous and translation-invariant, thus, it allows traveling-wave type of

solutions. Condition (6.1) at t = t
b

must be satisfied in the limit ⌧ ! �1. For this limit, the

second relation in Eq. (7.1) with k
n

= k0�
n defines

w
n

= ik
n

�⌧u
n

! kz

n

�⌧ = kz

0�
z(n+a⌧), a = 1/z, ⌧ ! �1. (7.3)

This expression determines the speed a = 1/z ⇡ 1.4337 of a traveling wave, with the direction

of motion from larger to smaller shell numbers n.

Numerical simulations suggest that the dynamics described by Eq. (7.2) is chaotic, which

is a well-known fact for the Sabra model, Fig. 4(a). In this case, our argument in Section 3

suggests that the inviscid solution should be understood in the probabilistic sense, i.e., as a

measure dµ⌧(w) describing a probability distribution for the infinite sequence w = (w1, w2, . . .)

at given ⌧. This measure should be obtained in the inviscid limit, which includes a small-scale

random perturbation. In order to verify this hypothesis, we found the statistical distribution

numerically. We took the asymptotic blowup state (6.1) as the initial condition at t = t
b

= 0.

A very small viscosity is set to ⌫ = 10�15. Also, a small perturbation is applied in the viscous

range, u36(0) = (�i + 0.01x)kz�1
36 , with a random real number x uniformly distributed in the

interval [�1, 1] (a specific form and magnitude of this perturbation does not a↵ect the results).

Eqs. (4.1) and (4.2), with � given by Eq. (4.4) and the total number of shells n = 45, are

integrated numerically with high accuracy. We performed 104 simulations for di↵erent values

of the random number x. These numerical simulations feature the viscous range for shells
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This expression determines the speed a = 1/z ⇡ 1.4337 of a traveling wave, with the direction

of motion from larger to smaller shell numbers n.

Numerical simulations suggest that the dynamics described by Eq. (7.2) is chaotic, which

is a well-known fact for the Sabra model, Fig. 4(a). In this case, our argument in Section 3

suggests that the inviscid solution should be understood in the probabilistic sense, i.e., as a

measure dµ⌧(w) describing a probability distribution for the infinite sequence w = (w1, w2, . . .)

at given ⌧. This measure should be obtained in the inviscid limit, which includes a small-scale

random perturbation. In order to verify this hypothesis, we found the statistical distribution

numerically. We took the asymptotic blowup state (6.1) as the initial condition at t = t
b

= 0.

A very small viscosity is set to ⌫ = 10�15. Also, a small perturbation is applied in the viscous

range, u36(0) = (�i + 0.01x)kz�1
36 , with a random real number x uniformly distributed in the

interval [�1, 1] (a specific form and magnitude of this perturbation does not a↵ect the results).

Eqs. (4.1) and (4.2), with � given by Eq. (4.4) and the total number of shells n = 45, are

integrated numerically with high accuracy. We performed 104 simulations for di↵erent values

of the random number x. These numerical simulations feature the viscous range for shells
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Kolmogorov hypothesis on universality of velocity increments
(Kolmogorov 62; Benzi, Biferale & Parisi 93; Eyink 2003):

Figure 5: PDFs of log |w
n

| for (a) n = 10, (b) n = 15, (c) n = 20 as functions of ⌧ = log
�

t.

Darker color means larger probability. These functions represent a traveling wave in (n, ⌧)

coordinates, with a deterministic blowup state for ⌧ ! �1.

n ⇠ 35. Thus, we can observe the inviscid dynamics in the inertial interval of shells n . 30.

Fig. 4(b) shows the standard deviation of Rew
n

with increasing ⌧. The figure demonstrates

the formation of a stable traveling wave moving with the constant speed a in the direction of

small n, i.e., from large to small scales. Note a similarity of Fig. 4(b) with the analogous graph

for the deterministic w(⇠, ⌧) of the Burgers equation in Fig. 1(c). For the probability measure

µ⌧(w), the traveling wave condition implies

µ⌧+⌧0(w) = µ⌧(Tw), (7.4)

where ⌧0 = 1/a = z is the time period, in which the wave travels for a distance of one shell

number, and T : (w1, w2, . . .) 7! (w2, w3, . . .) is the corresponding translation operator. Fig. 5

shows probability density functions (PDFs) of log |w
n

| for the shells n = 10, 15, 20 at di↵erent

times ⌧, which are in full agreement with the traveling wave condition (7.4). For each shell, the

stochastic component grows with ⌧ in the same way but with a shift in ⌧. The stochasticity

of equal intensity is developed earlier at larger shell numbers (smaller scales) and later for

smaller shell numbers (larger scales). The limit ⌧ ! �1, corresponding to t ! t+
b

, describes a

deterministic “past” of the solution given by Eq. (7.3), and it is clearly seen as a straight sold

line in Fig. 5.

An interesting representation of the traveling probability measure can be obtained using

the shell speed multipliers, which include the factors and phases defined as [4, 17]
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= arg(u
n�2un�1u

⇤
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Figure 6: PDFs of the multiplier !
n

(left column) and the phase �
n

(right column) for the

shells n = 10, 15, 20 as functions of ⌧ = log
�

t. Darker color means larger probability. These

functions represent a traveling wave with a constant deterministic state for small ⌧ and a

constant stochastic state for large ⌧.

According to the Kolmogorov hypothesis [25, 8], these variables have universal statistics for

the stationary developed turbulence. Condition (7.4) implies that the PDFs of the random

variables (!
n

,�
n

) have the form of a traveling wave. These PDFs are shown in Fig. 6. They

not only confirm the traveling wave form of the solution, but also demonstrate a stationary

stochastic state on the right side, ⌧ ! 1. This state corresponds to the stationary developed

turbulence, according to the Kolmogorov hypothesis, which we confirm in Fig. 7.

Finally, we performed additional tests, where we followed the solution from large-scale initial

conditions, both before and after the blowup. In order to see the stochastic inviscid limit, we

assumed a small perturbation of the viscosity ⌫ = 10�15(1 + 0.01x). The obtained results lead

to the probability distribution in the form of a traveling wave with no noticeable di↵erence
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Figure 7: PDFs of (a) the multiplier !
n

and (b) the phase �
n

. Thin black lines are obtained

from the simulations for the shells n = 15, . . . , 25 at final time in Fig. 6. All the curves collapse

onto the PDF corresponding to the stationary turbulent regime (bold red curves) [17].

(within the numerical accuracy) in comparison with Figs. 5 and 6, confirming the asymptotic

universality of the stochastic solution.

8 Conclusions

In this work, we studied solutions for one-dimensional models of hydrodynamic type, u
t

+ f
x

=

⌫u
xx

, where the flux function f is nonlocal. Our main focus is the behavior of solutions in

inviscid limit near the blowup time t
b

. We showed that an asymptotic evolution before the

blowup can be mapped into an autonomous dynamical system with the logarithmic temporal

variable ⌧ = � log(t
b

� t). Similarly, a dynamical system can be introduced after the blowup

with the logarithmic time ⌧ = log(t� t
b

). For the Burgers equation, with f = u2/2, these two

dynamical systems have stable traveling wave solutions describing a universal form of shock

formation. However, chaotic waves may appear for models with a nonlocal flux function f , as we

demonstrated for the Sabra shell model of turbulence and its one-dimensional representation.

This chaotic behavior triggers a spontaneous probabilistic description for the system solutions.

A crucial element of our analysis is the existence of a probability measure in the form of a

traveling wave, which moves from small to large scales with constant profile and speed in the

logarithmic space-time. This wave has the blowup state on one side, describing a deterministic

past at ⌧ = �1, and the developed turbulent state on the other side, describing a stochastic

future at finite ⌧. The semi-infinite interval (�1, ⌧] of the chaotic dynamics collapses into a
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Rayleigh–Taylor instability

provides statistical predictions for the growth of a mixing layer and scaling of velocity and

temperature fluctuations in the inertial interval and dissipative scales. Qualitatively di↵erent

theories follow for two (2D) and three (3D) spatial dimensions. The phenomenological predic-

tions were shown to be in reasonable agreement with numerical simulations [9, 7, 28]. However,

measurable deviations were observed for scaling exponents [10, 5], leading to anomalous correc-

tions in direct analogy with the hydrodynamic turbulence. The full theoretical understanding of

the RT instability remains a big challenge in fluid mechanics. It includes a description of small-

scale behavior, which may (or may not) be equivalent to the developed isotropic turbulence, as

well as strongly anisotropic and non-stationary dynamics at large scales.

In this paper, we propose the analytic approach that goes beyond the phenomenological

theory. We suggest that with a proper renormalization one maps the RT dynamics into a

relatively simple object – a stochastic traveling wave, which can be understood as the conse-

quence of ordinary deterministic chaos in renormalized time. The basic idea is inspired by the

explanation of spontaneously stochastic solutions developing from a blowup state in inviscid

shell models of turbulence [24, 25]. Here, one expands the evolution to a semi-infinite interval

(�1, ⌧ ] using a logarithmic time variable ⌧ = log
h

t. Thereby, the solution is determined by a

probability measure of a chaotic attractor in the new system.

For numerical analysis, we create a new shell model for the RT instability. This model is

based on a discrete number of scales, r
n

= h

�n with n = 1, 2, . . . and h > 1, and it mimics

all basic properties underlying the phenomenological theory in [12]. With a large number

of accurate simulations (105 independent simulations with random initial perturbations for

each case), a convincing confirmation of the proposed theoretical construction is given. A

stochastic RT wave traveling from small to large scales at a constant speed is clearly observed

in renormalized variables, separating two constant limiting states corresponding to the initial

temperature jump and stationary turbulence. The RT wave occupies two and three decades of

spatial scales for the 2D and 3D shell models, respectively, suggesting that a similar numerical

analysis is feasible for the full Boussinesq system.

The paper is organized as follows. We start with basic facts of the RT instability in Section 2.

Section 3 introduces a new shell model, and Section 4 describes a renormalization scheme.

Sections 5 and 6 analyze the shell models that describe the RT instability in two and three

dimensions, respectively. We end with some conclusions.

2 Basics of the Rayleigh–Taylor instability

Let us consider an incompressible buoyancy-driven flow in unbounded space r = (x, y, z) 2 R3 or

plane r = (x, z) 2 R2. In Boussinesq approximation, the flow is governed by the equations [21]

@

t

u+ u ·ru = �rp+ ⌫r2

u+ �ge

z

T, (1)

2
@

t

T + u ·rT = r2

T, (2)

r · u = 0, (3)

where u 2 R3 (or R2) is the velocity, T 2 R is the temperature and e

z

= (0, 0, 1) is the

unit vector in vertical direction. The constant parameters are the viscosity ⌫, the thermal

conductivity  and the product �g of the thermal expansion coe�cient with the gravitational

acceleration. In this description, a warmer fluid is assumed to be lighter that a colder fluid.

The Rayleigh–Taylor (RT) instability refers to the initial condition

t = 0 : u = 0, T = ��⇥ sgn z, (4)

where � = ±1 and ⇥ > 0 is half of the temperature jump. This initial condition describes the

fluid composed of two layers with di↵erent temperatures in the upper and lower half-spaces.

To simplify the formulae, we choose the units of time and temperature such that

�g = 1, ⇥ = 1. (5)

In the ideal fluid, ⌫ =  = 0, the initial state (4) is an equilibrium. Then the relation [20]

� = ±
p
�k (6)

defines the growth rate / e

�t for a small single-mode perturbation of the interface z = 0 with

the wavenumber k. The configuration with � = �1, when the warmer fluid is above the colder

fluid, is stable because the exponent � = ±i

p
k is purely imaginary. The Rayleigh–Taylor

instability occurs in the opposite case of � = 1, when the warmer fluid is below. In this case

the real exponents � =
p
k are positive and unbounded for large k, which corresponds to

explosive growth of small-scale perturbations.

In the unstable configuration, a small perturbation after a rapid linear stage develops into

a strongly nonlinear flow, involving larger and larger scales with increasing time, Fig. 1. This

generates turbulent dynamics in a layer of characteristic width L(t) and velocity u

L

(t) around

the initial interface z = 0. When this layer gets large, di↵usive e↵ects become negligible at scale

L(t). Thus, the product �g⇥ = 1 [m/s2], taken as unity in (5), is the only dimensional param-
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warm, T = 1

cold, T = -1
(2D or 3D)

Linear analysis for ideal fluid: 

ill-conditioned problem: explosive growth of small-scale perturbations

Nonlinear (turbulent) dynamics: phenomenological theory by Chertkov 2003

Figure 1: Rayleigh–Taylor instability in (a) 2D and (b) 3D obtained by direct numerical simu-

lations. The warm (while) fluid is below the cold (black) fluid under the action of gravity.

we describe here following [12], development of the RT instability is qualitatively di↵erent in

two- and three-dimensional spaces. In three dimensions, the inertial interval is dominated by

a nonlinear transfer of kinetic energy from large to small scales, while the buoyancy term is

negligible. The mean energy flux to small scales can be estimated as "(t) ⇠ u

3

L

/L. With

the quasi-stationarity assumption, this energy flux can be written as "(t) ⇠ �u

3

r

/r for velocity

fluctuations �u
r

at any scale r in the inertial interval. Similarly, passively advected temperature

fluctuations develop the flux "

T

(t) ⇠ �T

2

r

�u

r

/r ⇠ u

L

/L. This yields

3D : �u

r

(t) ⇠ u

L

(t)

✓
r

L(t)

◆
1/3

, �T

r

(t) ⇠
✓

r

L(t)

◆
1/3

. (8)

One can check with relations (7) and (8) that �T
r

⌧ �u

2

r

/r for r ⌧ L, justifying the hypothesis

that the buoyancy term is negligible in Eq. (1) at small scales. It must be emphasized however,

that the dynamics in the inertial range is intermittent [6], which implies anomalous corrections

for the exponents in relations like (8).

The viscous scale ⌘(t) is estimated by comparing the nonlinear term �u

2

r

/r with the viscous

term ⌫�u

r

/r

2 at r ⇠ ⌘. Using (7) and (8), one obtains

3D : ⌘(t) ⇠ ⌫

3/4

t

�1/4

, (9)

showing that the viscous scale decreases with time. When ⌫ ⇠ , thermal dissipation becomes

important at the same small scale r

d

(t) ⇠ ⌘(t). For ⌫ � , further analysis [12] provides

r

d

(t) ⇠ ⌘(t)
p

/⌫ ⌧ ⌘(t). Condition ⌘ ⌧ L with relations (7) and (9), yield the lower bound

for the width L � ⌫

2/3 and time t � ⌫

1/3 that allow for existence of the inertial interval.
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Quite a di↵erent phenomenology corresponds to the two-dimensional RT instability, when

r = (x, z) 2 R2. In this case, the cascade of kinetic energy to small scales is not possible

due to the enstrophy, which is a second inviscid invariant in a 2D flow. As a result, the

buoyancy term is not negligible and leads to the so-called Bolgiano–Obukhov scenario. This

scenario is characterized by the cascade of temperature fluctuations to small scales with the

flux "

T

(t) ⇠ �T

2

r

�u

r

/r ⇠ u

L

/L. Additionally, the buoyancy term �T

r

matches the nonlinear

term �u

2

r

/r in Eq. (1). Using (7), this provides the relations

2D : �u

r

(t) ⇠ u

L

(t)

✓
r

L(t)

◆
3/5

, �T

r

(t) ⇠
✓

r

L(t)

◆
1/5

. (10)

Estimating the viscous scale as in the 3D case yields

2D : ⌘(t) ⇠ ⌫

5/8

t

1/8

. (11)

Contrary to the 3D case, this scale grows with time. From the condition ⌘ ⌧ L we get the

same bounds L � ⌫

2/3 and t � ⌫

1/3 compatible with the existence of inertial interval. Again,

one may expect anomalous corrections due to intermittency [5].

3 Shell model of the Rayleigh–Taylor instability

In this section, we create a “toy model” that possesses all properties of the RT instability

described in Section 2. We will construct this model based on a geometric progression of

discrete scales r
n

= h

�n with h > 1 and n = 1, 2, . . .. Note that the scaling symmetry is a key

feature underlying the RT phenomenology, and a geometric progression is the simplest possible

scaling invariant representation, where the shift n 7! n+1 stands for r
n

7! r

n+1

= r

n

/h. At each

scale r

n

(also called shell), we represent the velocity fluctuations by a real number u
n

2 R and

associate !

n

= k

n

u

n

with the vorticity fluctuations, where k

n

= 1/r
n

= h

n is the wavenumber.

For the temperature field, we have to distinguish horizontal temperature fluctuations R
n

2 R
and vertical temperature fluctuations T

n

2 R. Shell models of this kind represent a common

tool for testing theoretical ideas on statistical behavior in developed turbulence [4].

Equations of motion are formed similarly to the Obukhov and Desnyansky–Novikov mod-

els [26, 15], i.e., limiting interactions to the neighboring shells; see also [8, 13, 22] for shell

models of natural convection. First, it is convenient to rewrite Eq. (1) with (5) in terms of

vorticity as
@!

@t

� ⌫r2! = rot (v ⇥ !) + @

y

Te

x

� @

x

Te

y

, v = rot�1!, (12)

where the buoyancy terms contain only horizontal derivatives of temperature. Then the shell

model we propose reads

!̇

n

+ ⌫k

2

n

!

n

=
⇥
!

2

n�1

� c!

n

!

n+1

+ 0.1(!
n�1

!

n

� c!

2

n+1

)
⇤
+ k

n

R

n

, (13)

5Ṙ

n

+ k

2

n

R

n

= !

n

R

n+1

� !

n�1

R

n�1

+ �!

n

T

n

, (14)

Ṫ

n

+ k

2

n

T

n

= !

n

T

n+1

� !

n�1

T

n�1

� �!

n

R

n

, (15)

where c and � > 0 are real parameters specified later, and dots denote derivatives with respect

to time. A large-scale boundary condition is chosen as !

0

= R

0

= T

0

= 0. One can see

that Eqs. (13)–(15) contain the terms that mimic viscous terms (on the left-hand side) and

nonlinear together with buoyancy terms (on the right-hand sides) of the original Eqs. (12) and

(2). Following (12), only the variables R
n

corresponding to horizontal temperature fluctuations

appear in (13). The last terms in (14) and (15) model the transition between horizontal and

vertical temperature fluctuations due to rotation. Equations (14) and (15) are designed to have

the inviscid invariant S =
P

(R2

n

+ T

2

n

) measuring the temperature fluctuations (entropy).

A final property that makes the phenomenological theory in Section 2 to be applicable for

our shell model is achieved by the right choice of the model parameter as

3D : c = 1/h2; 2D : c = 1. (16)

In the “3D case”, Eq. (13) with c = 1/h2 and no buoyancy term has the energy E =
P

u

2

n

=P
!

2

n

/k

2

n

as the inviscid invariant. In the “2D case”, the Bolgiano–Obukhov dynamics is dom-

inated by the enstrophy ⌦ =
P

!

2

n

, which becomes the inviscid invariant for c = 1.

For the RT instability, we choose the initial condition

t = 0 : !

n

= 0; R

n

= 0, T

n

= �, n = 1, 2, 3, . . . , (17)

that mimics a jump with �⇥ = ±1 for vertical temperature fluctuation T

n

. This initial condition

is clearly an equilibrium of our shell model in the absence of dissipative terms, ⌫ =  = 0.

Inviscid equations (13)–(15) linearized near this equilibrium take the form

�!̇

n

= k

n

�R

n

, �Ṙ

n

= ���!

n

, �Ṫ

n

= �(�!

n

��!

n�1

). (18)

Considering the time dependence proportional to e

�t, the first two equations yield the spectrum

� = ±
p

��k

n

, (19)

which has the same form as (6), up to a positive factor �. Additionally, the system possesses an

infinite number of neutral modes with � = 0, since any vertical distribution of the temperatures

T

n

with !

n

= R

n

= 0 is an equilibrium, similarly to the original continuous system. We see

that the equilibrium state (17) is stable for � = �1 and unstable for � = 1. The latter case is

attributed to the RT instability in our shell model.

The phenomenological theory of RT instability can be deduced for the shell model (13)–(15)

following just the same arguments as for the Boussinesq equations. A small generic perturbation

develops rapidly at small scales r
n

= h

�n (large n), because the linear instability is dominated
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Turbulent dynamics of a shell model

Phenomenology of turbulent dynamics:

by larger exponents � =
p
k

n

for larger k

n

= h

n. Then oscillations propagate to larger and

larger scales (smaller n) due to nonlinear interaction. Thus, in terms of shell numbers, the

disturbance propagates from large to small n. The mixing layer width L(t) can be related to the

characteristic shell number N(t) reached by the RT instability at time t as L(t) = r

N

= h

�N(t).

Then Eq. (7) of the phenomenological theory is written in terms of shell variables as

L(t) = h

�N(t) ⇠ t

2

, u

N

(t) ⇠ t. (20)

Similarly, the power laws (8) and (10) for scales in the inertial interval, max(⌘(t), r
d

(t)) ⌧
r

n

⌧ L(t), are written as

3D : u

n

(t) ⇠ u

N

(t)

✓
r

n

L(t)

◆
1/3

, R

n

(t) ⇠ T

n

(t) ⇠
✓

r

n

L(t)

◆
1/3

. (21)

2D : u

n

(t) ⇠ u

N

(t)

✓
r

n

L(t)

◆
3/5

, R

n

(t) ⇠ T

n

(t) ⇠
✓

r

n

L(t)

◆
1/5

. (22)

The Kolmogorov viscous scales are given by the same Eqs. (9) and (11).

For comparison with numerical simulations, we use n = 1, . . . , 40 total shells with the

parameters h = 2, ⌫ =  = 10�14 and � = 1 (2D) or � = 0.7 (3D). A tiny random initial

perturbation is given to the horizontal temperature variable R

n

at the shell n = 29, slightly

above the scale r
n

⇠ ⌫

2/3, see Section 2. For the statistical analysis, 105 independent simulations

were performed for each model using parallel computing.

In agreement with the linear analysis in (19), the initial conditions with � = �1 do not lead

to instability, demonstrating only a slow increase of the viscous range. This case corresponds to

the stable configuration with a warmer fluid on the top. On the contrary, for � = 1, after a very

fast linear growth, the solution develops chaotic oscillations at small scales, which propagate

to larger and larger scales (smaller shell numbers). Let us define the mixing layer width and

the large-scale velocity as

L(t) =
X

n

h1� T

n

(t)ir
n

, u

N

(t) =
DX

n

u

2

n

(t)
E
1/2

(23)

where the averaging is made at fixed time t over an ensamble of 105 independent simulations.

These expressions are analogous to the integral definition used for the continuous model, see e.g.

[5]. Figure 2 shows the numerical results confirming the dimensional prediction (20). Note that

a small periodic oscillation around the power-law average value is an artifact of the shell model,

which contains only discrete scales r

n

. Indeed, the dynamics can only reproduce itself, when

the mixing layer grows from scale r

n

to r

n�1

. This corresponds to time intervals proportional

to t

n

⇠ r

1/2

n

and is manifested as small periodic oscillations in logarithmic scale of Fig. 2.
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Figure 2: Evolution of the mixing-layer width L(t) and large-scale velocity u

N

(t) in logarithmic

scale for (a) 2D and (b) 3D model. Dashed lines show the slopes for power laws L ⇠ t

2 and

u

N

⇠ t.

4 Stochastic traveling wave in renormalized system

For understanding a detailed mechanism of the RT instability, we propose the renormalized

form of model equations. Let us introduce the new (logarithmic) time variable ⌧ and new

dependent variables denoted with tildes as

t = h

⌧

, !

n

= h

�⌧

!̃

n

, R

n

= h

�n�2⌧

R̃

n

, T

n

= h

�n�2⌧

T̃

n

. (24)

Since we are interested in the dynamics at integral and inertial interval scales, we will drop the

dissipative terms in our analysis. Then, in the new variables, inviscid Eqs. (13)–(15) take the

form

↵

d!̃

n

d⌧

= !̃

n

+ !̃

2

n�1

� c!̃

n

!̃

n+1

+ 0.1(!̃
n�1

!̃

n

� c!̃

2

n+1

) + R̃

n

, (25)

↵
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= 2R̃
n

+ h

�1

!̃

n

R̃

n+1

� h!̃

n�1

R̃

n�1

+ �!̃

n

T̃

n

, (26)

↵

dT̃

n

d⌧

= 2T̃
n

+ h

�1

!̃

n

T̃

n+1

� h!̃

n�1

T̃

n�1

� �!̃

n

R̃

n

, (27)

where ↵ = 1/ log h.

It is remarkable that the new system (25)–(27) is translation invariant both in the new

time ⌧ and in the shell number n, which simply reflects the scaling invariance of the original

model. Another key property is that the initial time t = 0 corresponds ⌧ ! �1, i.e., the

relevant solution of the renormalized inviscid system is the one corresponding to an infinitely

long evolution, i.e., an attractor. The translation invariance allows an attractor to be a traveling
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2D 3D

average over 100000 simulations  
with a small random initial perturbation

by larger exponents � =
p
k

n

for larger k

n

= h

n. Then oscillations propagate to larger and

larger scales (smaller n) due to nonlinear interaction. Thus, in terms of shell numbers, the

disturbance propagates from large to small n. The mixing layer width L(t) can be related to the

characteristic shell number N(t) reached by the RT instability at time t as L(t) = r

N

= h

�N(t).

Then Eq. (7) of the phenomenological theory is written in terms of shell variables as

L(t) = h

�N(t) ⇠ t

2

, u

N

(t) ⇠ t. (20)

Similarly, the power laws (8) and (10) for scales in the inertial interval, max(⌘(t), r
d

(t)) ⌧
r

n

⌧ L(t), are written as

3D : u

n

(t) ⇠ u

N

(t)

✓
r

n

L(t)

◆
1/3

, R

n

(t) ⇠ T

n

(t) ⇠
✓

r

n

L(t)

◆
1/3

. (21)

2D : u

n

(t) ⇠ u

N

(t)

✓
r

n

L(t)

◆
3/5

, R

n

(t) ⇠ T

n

(t) ⇠
✓

r

n

L(t)

◆
1/5

. (22)

The Kolmogorov viscous scales are given by the same Eqs. (9) and (11).

For comparison with numerical simulations, we use n = 1, . . . , 40 total shells with the

parameters h = 2, ⌫ =  = 10�14 and � = 1 (2D) or � = 0.7 (3D). A tiny random initial

perturbation is given to the horizontal temperature variable R

n

at the shell n = 29, slightly

above the scale r
n

⇠ ⌫

2/3, see Section 2. For the statistical analysis, 105 independent simulations

were performed for each model using parallel computing.

In agreement with the linear analysis in (19), the initial conditions with � = �1 do not lead

to instability, demonstrating only a slow increase of the viscous range. This case corresponds to

the stable configuration with a warmer fluid on the top. On the contrary, for � = 1, after a very

fast linear growth, the solution develops chaotic oscillations at small scales, which propagate

to larger and larger scales (smaller shell numbers). Let us define the mixing layer width and

the large-scale velocity as

L(t) =
X

n

h1� T

n

(t)ir
n

, u

N

(t) =
DX

n

u

2

n

(t)
E
1/2

(23)

where the averaging is made at fixed time t over an ensamble of 105 independent simulations.

These expressions are analogous to the integral definition used for the continuous model, see e.g.

[5]. Figure 2 shows the numerical results confirming the dimensional prediction (20). Note that

a small periodic oscillation around the power-law average value is an artifact of the shell model,

which contains only discrete scales r

n

. Indeed, the dynamics can only reproduce itself, when

the mixing layer grows from scale r

n

to r

n�1

. This corresponds to time intervals proportional

to t

n

⇠ r

1/2

n

and is manifested as small periodic oscillations in logarithmic scale of Fig. 2.
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4 Stochastic traveling wave in renormalized system

For understanding a detailed mechanism of the RT instability, we propose the renormalized

form of model equations. Let us introduce the new (logarithmic) time variable ⌧ and new

dependent variables denoted with tildes as

t = h

⌧

, !

n

= h

�⌧

!̃

n

, R

n

= h

�n�2⌧

R̃

n

, T

n

= h

�n�2⌧

T̃

n

. (24)

Since we are interested in the dynamics at integral and inertial interval scales, we will drop the

dissipative terms in our analysis. Then, in the new variables, inviscid Eqs. (13)–(15) take the

form

↵

d!̃

n

d⌧

= !̃

n

+ !̃

2

n�1

� c!̃

n

!̃

n+1

+ 0.1(!̃
n�1

!̃

n

� c!̃

2

n+1

) + R̃

n

, (25)

↵

dR̃

n

d⌧

= 2R̃
n

+ h

�1

!̃

n

R̃

n+1

� h!̃

n�1

R̃

n�1

+ �!̃

n

T̃

n

, (26)

↵

dT̃

n

d⌧

= 2T̃
n

+ h

�1

!̃

n

T̃

n+1

� h!̃

n�1

T̃

n�1

� �!̃

n

R̃

n

, (27)

where ↵ = 1/ log h.

It is remarkable that the new system (25)–(27) is translation invariant both in the new

time ⌧ and in the shell number n, which simply reflects the scaling invariance of the original

model. Another key property is that the initial time t = 0 corresponds ⌧ ! �1, i.e., the

relevant solution of the renormalized inviscid system is the one corresponding to an infinitely

long evolution, i.e., an attractor. The translation invariance allows an attractor to be a traveling
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4 Stochastic traveling wave in renormalized system

For understanding a detailed mechanism of the RT instability, we propose the renormalized

form of model equations. Let us introduce the new (logarithmic) time variable ⌧ and new

dependent variables denoted with tildes as

t = h

⌧

, !

n

= h

�⌧

!̃

n

, R

n

= h

�n�2⌧

R̃

n

, T

n

= h

�n�2⌧

T̃

n

. (24)

Since we are interested in the dynamics at integral and inertial interval scales, we will drop the

dissipative terms in our analysis. Then, in the new variables, inviscid Eqs. (13)–(15) take the

form

↵

d!̃

n

d⌧

= !̃

n

+ !̃

2

n�1

� c!̃

n

!̃

n+1

+ 0.1(!̃
n�1

!̃

n

� c!̃

2

n+1

) + R̃

n

, (25)

↵

dR̃

n

d⌧

= 2R̃
n

+ h

�1

!̃

n

R̃

n+1

� h!̃

n�1

R̃

n�1

+ �!̃

n

T̃

n

, (26)

↵

dT̃

n

d⌧

= 2T̃
n

+ h

�1

!̃

n

T̃

n+1

� h!̃

n�1

T̃

n�1

� �!̃

n

R̃

n

, (27)

where ↵ = 1/ log h.

It is remarkable that the new system (25)–(27) is translation invariant both in the new

time ⌧ and in the shell number n, which simply reflects the scaling invariance of the original

model. Another key property is that the initial time t = 0 corresponds ⌧ ! �1, i.e., the

relevant solution of the renormalized inviscid system is the one corresponding to an infinitely

long evolution, i.e., an attractor. The translation invariance allows an attractor to be a traveling
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4 Stochastic traveling wave in renormalized system

For understanding a detailed mechanism of the RT instability, we propose the renormalized

form of model equations. Let us introduce the new (logarithmic) time variable ⌧ and new

dependent variables denoted with tildes as

t = h

⌧

, !

n

= h

�⌧

!̃

n

, R

n

= h

�n�2⌧

R̃

n

, T

n

= h

�n�2⌧

T̃

n

. (24)

Since we are interested in the dynamics at integral and inertial interval scales, we will drop the

dissipative terms in our analysis. Then, in the new variables, inviscid Eqs. (13)–(15) take the

form

↵

d!̃

n

d⌧

= !̃

n

+ !̃

2

n�1

� c!̃

n

!̃

n+1

+ 0.1(!̃
n�1

!̃

n

� c!̃

2

n+1

) + R̃

n

, (25)

↵

dR̃

n

d⌧

= 2R̃
n

+ h

�1

!̃

n

R̃

n+1

� h!̃

n�1

R̃

n�1

+ �!̃

n

T̃

n

, (26)

↵

dT̃

n

d⌧

= 2T̃
n

+ h

�1

!̃

n

T̃

n+1

� h!̃

n�1

T̃

n�1

� �!̃

n

R̃

n

, (27)

where ↵ = 1/ log h.

It is remarkable that the new system (25)–(27) is translation invariant both in the new

time ⌧ and in the shell number n, which simply reflects the scaling invariance of the original

model. Another key property is that the initial time t = 0 corresponds ⌧ ! �1, i.e., the

relevant solution of the renormalized inviscid system is the one corresponding to an infinitely

long evolution, i.e., an attractor. The translation invariance allows an attractor to be a traveling
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Stochastic traveling wave solution (depending on the single variable                    ) 
wave. For example, such solutions can be steady-state waves traveling with a constant speed

v, i.e., depending only on a single variable ⇠ = n� v⌧ . Alternatively, this can be a wave with

a pulsating (periodically or chaotically) state moving with an average speed v, see [24, 25] for

some examples. These types of waves can be seen as direct analogs of fixed-point, periodic or

chaotic attractors in dynamical systems. Assuming a traveling wave solution, the speed can be

found immediately as v = �2 by comparing (17) and (24), which yields

T̃

n

! h

n+2⌧ as ⌧ ! �1 (fixed n). (28)

Negative sign of the speed implies that the wave moves from large to small shell numbers n

(from small to large scales r
n

). We will clearly demonstrate in the following sections that the

RT instability in our model is described by a chaotic wave traveling with average speed v = �2,

both in the 2D and 3D cases.

For interpretation of the results, it is useful to discuss some implications of a chaotic wave

in the renormalized model. Due to exponential separation of trajectories in a chaotic system,

we expect that the information on the initial state is rapidly forgotten at times ⇠ ⌧⇤ corre-

sponding to the transient from an initial state to a chaotic attractor. At later times, physical

description of the dynamics is given by the chaotic attractor, i.e., the relevant physical solu-

tion is a stochastic process (an invariant probability measure) moving as a traveling wave from

larger to smaller shell numbers. This description becomes exact in the inviscid limit, when both

dissipation parameters ⌫, ! 0: in this limit the initialization process is moved to ⌧⇤ ! �1
corresponding to a vanishing transient time t⇤ = h

⌧⇤ ! 0. This, in particular, implies that

the solution becomes stochastic immediately for t > 0, i.e., the RT instability is an example

of the spontaneous stochasticity phenomenon. Another key observation is that the resulting

stochastic solution is unique (universal) provided that there is a unique chaotic attractor for

the renormalized system.

The next feature that is substantial for representating the RT instability as a stochastic

traveling wave refers to the so-called third Kolmogorov hypothesis. This hypothesis suggests

that the ratios of velocity increments have universal probability distribution at small scales [19],

which was verified extensively for shell models [3, 16] and the Navier–Stokes equations [11].

There is a large freedom of choosing such ratios in our model. For example, it is convenient to

use the ratios (multipliers)

⇢

!

n

=
!̃

n

!̃

n�1

=
!

n

!

n�1

, ⇢

R

n

=
R̃

n

R̃

n�1

=
hR

n

R

n�1

, ⇢

T

n

=
T̃

n

T̃

n�1

=
hT

n

T

n�1

, (29)

where we also provided the expressions in terms of the original variables (with no tildes). Note

that the statistic description in terms of multipliers (29) is complete, because there is a one-to-

one relation between the multipliers and the original variables, except for a zero-measure set

when any of the original variables vanishes. Of course, other ratios can also be used for the

same purpose.
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Figure 2: Schematic picture of the formation of a traveling-wave probability measure µ⌧(w) for

renormalized chaotic solutions w(⇠, ⌧) from a blowup state at ⌧ = �1.

that w = G(⇠ + a⌧, ⌧), where G(⌘, ⌧) is characterized for large ⌧ by a chaotic attractor. The

blowup imposes a specific initial condition for the inviscid solution w at ⌧ ! �1. But, due to

exponential divergence of trajectories with close initial conditions (the famous butterfly e↵ect),

we cannot choose any particular solution at finite ⌧, see Fig. 2. Namely, even if a particular

inviscid solution is chosen by some viscous regularization procedure, with a discrete subsequence

of viscosities ⌫
n

! 0+ [28], an arbitrarily small perturbation will provide a totally di↵erent

solution. Thus, no physically relevant deterministic solution can be expected in a vanishing

viscosity limit. The limiting object is a chaotic attractor with an invariant probability measure

for di↵erent observable solutions w, Fig. 2.

We are led to the surprising conclusion: the inviscid solution becomes stochastic at every

time after the blowup despite the governing equation (1.1) looks fully deterministic! This is

not just the non-uniqueness phenomenon for weak solutions. On the contrary, one can expect

a unique solution as a probability distribution, because this distribution is associated with the

invariant measure of a chaotic attractor.

Our argument above suggests, and we will provide a detailed numerical evidence, that a

physically relevant inviscid solution at times after the blowup should be defined as a measure

dµ⌧(w), which describes a probability distribution of solutions w(⇠, ⌧) at fixed ⌧ = log(t� t
b

).

The measure dµ⌧(w) has the form of a traveling wave moving with a constant speed a in

logarithmic coordinates (⇠, ⌧). This traveling wave connects a deterministic blowup state on

one side (deterministic “past” of the solution) and a stochastic state on the other side. A steady

motion of such a wave in the direction of smaller ⇠ describes the propagation of stochasticity

from arbitrarily small to finite scales x = e�⇠, Fig. 2.

An important theoretical implication is the revision of a viscous regularization procedure.

A small viscosity present in a physical system suppresses the dynamics at su�ciently large ⇠
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4 Stochastic traveling wave in renormalized system

For understanding a detailed mechanism of the RT instability, we propose the renormalized

form of model equations. Let us introduce the new (logarithmic) time variable ⌧ and new

dependent variables denoted with tildes as

t = h

⌧

, !

n

= h

�⌧

!̃

n

, R

n

= h

�n�2⌧

R̃

n

, T

n

= h

�n�2⌧

T̃

n

. (24)

Since we are interested in the dynamics at integral and inertial interval scales, we will drop the

dissipative terms in our analysis. Then, in the new variables, inviscid Eqs. (13)–(15) take the

form

↵

d!̃

n

d⌧

= !̃

n

+ !̃

2

n�1

� c!̃

n

!̃

n+1

+ 0.1(!̃
n�1

!̃

n

� c!̃

2

n+1

) + R̃

n

, (25)

↵

dR̃

n

d⌧

= 2R̃
n

+ h

�1

!̃

n

R̃

n+1

� h!̃

n�1

R̃

n�1

+ �!̃

n

T̃

n

, (26)

↵

dT̃

n

d⌧

= 2T̃
n

+ h

�1

!̃

n

T̃

n+1

� h!̃

n�1

T̃

n�1

� �!̃

n

R̃

n

, (27)

where ↵ = 1/ log h.

It is remarkable that the new system (25)–(27) is translation invariant both in the new

time ⌧ and in the shell number n, which simply reflects the scaling invariance of the original

model. Another key property is that the initial time t = 0 corresponds ⌧ ! �1, i.e., the

relevant solution of the renormalized inviscid system is the one corresponding to an infinitely

long evolution, i.e., an attractor. The translation invariance allows an attractor to be a traveling
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4 Stochastic traveling wave in renormalized system

For understanding a detailed mechanism of the RT instability, we propose the renormalized

form of model equations. Let us introduce the new (logarithmic) time variable ⌧ and new

dependent variables denoted with tildes as

t = h

⌧

, !

n

= h

�⌧

!̃

n

, R

n

= h

�n�2⌧

R̃

n

, T

n

= h

�n�2⌧

T̃

n

. (24)

Since we are interested in the dynamics at integral and inertial interval scales, we will drop the

dissipative terms in our analysis. Then, in the new variables, inviscid Eqs. (13)–(15) take the

form

↵

d!̃

n

d⌧

= !̃

n

+ !̃

2

n�1

� c!̃

n

!̃

n+1

+ 0.1(!̃
n�1

!̃

n

� c!̃

2

n+1

) + R̃

n

, (25)

↵

dR̃

n

d⌧

= 2R̃
n

+ h

�1

!̃

n

R̃

n+1

� h!̃

n�1

R̃

n�1

+ �!̃

n

T̃

n

, (26)

↵

dT̃

n

d⌧

= 2T̃
n

+ h

�1

!̃

n

T̃

n+1

� h!̃

n�1

T̃

n�1

� �!̃

n

R̃

n

, (27)

where ↵ = 1/ log h.

It is remarkable that the new system (25)–(27) is translation invariant both in the new

time ⌧ and in the shell number n, which simply reflects the scaling invariance of the original

model. Another key property is that the initial time t = 0 corresponds ⌧ ! �1, i.e., the

relevant solution of the renormalized inviscid system is the one corresponding to an infinitely

long evolution, i.e., an attractor. The translation invariance allows an attractor to be a traveling
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RT instability for 2D
Convenient variables (multipliers):

wave. For example, such solutions can be steady-state waves traveling with a constant speed

v, i.e., depending only on a single variable ⇠ = n� v⌧ . Alternatively, this can be a wave with

a pulsating (periodically or chaotically) state moving with an average speed v, see [24, 25] for

some examples. These types of waves can be seen as direct analogs of fixed-point, periodic or

chaotic attractors in dynamical systems. Assuming a traveling wave solution, the speed can be

found immediately as v = �2 by comparing (17) and (24), which yields

T̃

n

! h

n+2⌧ as ⌧ ! �1 (fixed n). (28)

Negative sign of the speed implies that the wave moves from large to small shell numbers n

(from small to large scales r
n

). We will clearly demonstrate in the following sections that the

RT instability in our model is described by a chaotic wave traveling with average speed v = �2,

both in the 2D and 3D cases.

For interpretation of the results, it is useful to discuss some implications of a chaotic wave

in the renormalized model. Due to exponential separation of trajectories in a chaotic system,

we expect that the information on the initial state is rapidly forgotten at times ⇠ ⌧⇤ corre-

sponding to the transient from an initial state to a chaotic attractor. At later times, physical

description of the dynamics is given by the chaotic attractor, i.e., the relevant physical solu-

tion is a stochastic process (an invariant probability measure) moving as a traveling wave from

larger to smaller shell numbers. This description becomes exact in the inviscid limit, when both

dissipation parameters ⌫, ! 0: in this limit the initialization process is moved to ⌧⇤ ! �1
corresponding to a vanishing transient time t⇤ = h

⌧⇤ ! 0. This, in particular, implies that

the solution becomes stochastic immediately for t > 0, i.e., the RT instability is an example

of the spontaneous stochasticity phenomenon. Another key observation is that the resulting

stochastic solution is unique (universal) provided that there is a unique chaotic attractor for

the renormalized system.

The next feature that is substantial for representating the RT instability as a stochastic

traveling wave refers to the so-called third Kolmogorov hypothesis. This hypothesis suggests

that the ratios of velocity increments have universal probability distribution at small scales [19],

which was verified extensively for shell models [3, 16] and the Navier–Stokes equations [11].

There is a large freedom of choosing such ratios in our model. For example, it is convenient to

use the ratios (multipliers)

⇢

!

n

=
!̃

n

!̃

n�1

=
!

n

!

n�1

, ⇢

R

n

=
R̃

n

R̃

n�1

=
hR

n

R

n�1

, ⇢

T

n

=
T̃

n

T̃

n�1

=
hT

n

T

n�1

, (29)

where we also provided the expressions in terms of the original variables (with no tildes). Note

that the statistic description in terms of multipliers (29) is complete, because there is a one-to-

one relation between the multipliers and the original variables, except for a zero-measure set

when any of the original variables vanishes. Of course, other ratios can also be used for the

same purpose.
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Mapping to a unit interval for representation purpose:

5 RT instability in 2D case

Our theoretical construction in the previous section, which suggests that the RT instability

represents a stochastic wave traveling with a constant speed in renormalized coordinates, is

confirmed by numerical simulations in Fig. 3 for the 2D model. For statistical analysis 105

independent simulations were used as specified in Section 3. The figure shows probability

density functions (PDFs) for the angles

'

!

n

=
1

⇡

arctan ⇢!
n

, '

R

n

=
1

⇡

arctan ⇢R
n

, '

T

n

=
1

⇡

arctan ⇢T
n

. (30)

The use of such variables allows a convenient representation of multipliers (29) that accounts

both for large and small values. Variables (30) have values in the interval �1/2  '

n

 1/2,

where '

n

= 0 corresponds to ⇢

n

= 0 and '

n

= ±1/2 correspond to ⇢

n

= ±1. This interval

is extended periodically in the figure for better visualization. The traveling wave structure is

seen very clearly connecting the two constant states at both sides. The constant state in front

of the wave (at smaller times) corresponds to a deterministic state given by initial condition

(17), i.e., the PDFs are Dirac delta-functions. Behind the wave (at larger times), the constant

state is stochastic with a continuous probability density independent of ⌧ . We will study this

stationary stochastic state later in this section.

Representation of the same stochastic wave in also given in Fig. 4 from a di↵erent point of

view. Here we fixed the renormalized time at ⌧ = �2.5, �2, �1.5 and showed PDFs depending

on the discrete shell number n. Since the wave speed is v = �2, these times correspond to

the traveling wave shifted exactly by one and two shells to the left, in full agreement with the

numerical results shown in the figure. The wave has a finite spread in renormalized space-time:

it extends roughly to �n ⇡ 6 shells (Fig. 4) and it passes over a given shell in time interval

�⌧ ⇡ �n/|v| ⇡ 3 (Fig. 3). This corresponds to less than two decades of spatial scales r

n

,

featuring a strongly anisotropic and non-stationary transition to a developed turbulent state.

5.1 Universal growth of the mixing layer

Uniqueness of the chaotic attractor in the renormalized system provides a universal probability

measure for the RT wave. In principle, multi-stability with several attractors is also possible,

but it does not seem to be the case for our model. Uniqueness of the RT wave explains

several important properties extensively studied both numerically and experimentally for the

full Bussinesq approximation. The first property refers to the asymptotic growth of the mixing

layer in (20). It can be written as

L(t) = ↵t

2

, (31)

where the coe�cient ↵ is expected to be universal [6]. The corresponding

N = � log
h

L = �a� 2⌧, a = log
h

↵, (32)
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Traveling stochastic wave 
separating two constant states: 
deterministic state (small n) 
and developed turbulent state  
(large n) 

Figure 3: Stochastic traveling wave of the RT instability in 2D model. Shown are PDFs of the

variables '!

n

, 'R

n

and '

T

n

that describe shell multipliers in (29) and (30). PDFs are plotted using

grayscale (darker color corresponds to a higher probability) as functions of renormalized time

⌧ = log
h

t at shell numbers n = 9, 12, 15. The graphs at di↵erent shells are almost identical,

with horizontal shifts due to wave speed v = �2.
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Figure 4: Stochastic traveling wave of the RT instability in 2D model: same as in Fig. 3 but

now represented as functions of shell numbers n at di↵erent renormalized times ⌧ = log
h

t. The

graphs at di↵erent times are almost identical, with the shifts by one and two shell numbers.
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RT instability for 3D
Kolmogorov (non-intermittent) solution at small scales:

Stochastic wave for the RT instability between two regular constant states:

k

n

R

n

, yields

!

n

= k

n

u

n

= ↵

1

k

2/3

n

, ✓

n

= ↵

2

⇣

n + ↵

3

⇣

n

, ⇣ =
i�

2
±
r
��

2

4
+ h

�2/3

, (36)

where ↵

1

2 R and ↵

2

,↵

3

2 C are arbitrary factors. The scaling of (36) agrees exactly with the

dimensional prediction (21), because |⇣| = h

�1/3. Note that the solution u

n

= ↵

1

k

�1/3

n

in (36)

can be interpreted as a shock wave [23].

For the RT instability, we observe a stochastic wave traveling with constant speed in renor-

malized coordinates, in full agreement with the theory of Section 4. Numerical evidence of this

fact is demonstrated in Fig. 8, presenting the results for multipliers of vorticity variables. The

stochastic RT wave is seen very clearly as almost identical PDF patterns shifted horizontally

according to the wave speed v = �2. At small scales (large n) the solution tends to a constant

deterministic solution (36): the PDF represents a Dirac delta-function at ⇢!
n

= !

n

/!

n�1

= h

2/3,

see second row in Fig. 8. For the temperature variables, simulations yield a similar behav-

ior apart from a more sophisticated asymptotic at small scales, which we expect to agree with

(36). Following the argument of Section 5.1, we associate the stochastic RT wave with a chaotic

attractor, which explains the universal quadratic growth (31) of the mixing layer in Fig. 2(b).

Despite our shell model does not quite reproduce a typical behavior of the 3D Boussinesq

system, where the dynamics at small scales is chaotic, it brings an important message that

distinguishes the RT instability from the developed turbulence. In our case, the “developed

turbulent state” given by (36) is regular, while the RT instability is intrinsically stochastic.

Therefore, the stochastic component in our example is an attribute of the RT wave only, which

has deterministic constant states at both large- and small-scale sides, Fig. 8. A range of scales

occupied by the RT wave extends to almost 10 shells or, equivalently, to almost three decades

of scales r
n

= h

�n.

7 Conclusions

In this paper we argue that turbulent development of the Rayleigh–Taylor (RT) instability (the

instability of an interface between fluids of di↵erent density under the action of gravity) can

be described as a stochastic traveling wave in a renormalized system. A proposed renormaliza-

tion scheme uses logarithmic time and space variables, and the RT wave is associated with a

probability measure of a chaotic attractor in a usual dynamical system sense. The infinite-time

dynamics in this setting is induced by mapping the initial time t = 0 to the renormalized time

⌧ = log
h

t ! �1. Furthermore, with the third Kolmogorov hypothesis suggesting that the

turbulence can be described using ratios of velocity increments (multipliers), we arrive to a

simple picture of a steady-state wave traveling with a constant speed between two constant

limiting states. These constant states correspond to a deterministic initial condition (temper-

ature jump) at large scales and to developed turbulence at small scales. It is shown how the
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Figure 7: (a) Moments h|R
n

|5i and h|T
n

|5i at late time ⌧ = �1, averaged with respect to

ensemble of 105 simulations. (b) Same moments but for the developed turbulent state, averaged

with respect to time. (c) Flux of entropy at di↵erent times (white dots indicate negative flux

values) for the RT instability and developed turbulence.

scales is rather poorly satisfied for the RT instability despite a large extent of the inertial range.

This once again shows a drastic di↵erence of the weak convergence for original variables, as

opposed to the very fast and accurate convergence for multipliers at small scales, indicating the

latter as proper variables for description of turbulence.

6 RT instability in 3D case

The 3D RT instability is modeled by choosing the parameter c = 1/h2 in (16), in which case

the nonlinear term in vorticity equation (13) conserves the kinetic energy E =
P

u

2

n

. In this

section we demonstrate that the RT instability in our model is similar for the 3D and 2D cases,

in the sense that both are described by a stochastic wave traveling from small to large scales.

We choose the coupling parameter in Eqs. (14) and (15) as � = 0.7 for numerical simulations,

which leads to chaotic behavior for the RT instability. With the parameter � = 1, used earlier

in the 2D model, the dynamics becomes regular (quasi-periodic as in [24]), making this choice

less attractive for our purpose.

Recall that the phenomenological theory summarized in Section 2 predicts that the energy

cascade to small scales dominates the statistics in the inertial interval, while the buoyancy

becomes a passively advected scalar. In this approximation, we can find a stationary solution

in our 3D shell model at small scales. To find this solution explicitly, it is convenient to

introduce a complex variable ✓

n

= R

n

+ iT

n

for the total temperature fluctuation at scale r

n

.

Then, equating the right-hand sides in (13)–(15) to zero and neglecting the buoyancy term
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where ↵
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2 R and ↵
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3

2 C are arbitrary factors. The scaling of (36) agrees exactly with the

dimensional prediction (21), because |⇣| = h

�1/3. Note that the solution u

n

= ↵

1

k

�1/3

n

in (36)

can be interpreted as a shock wave [23].

For the RT instability, we observe a stochastic wave traveling with constant speed in renor-

malized coordinates, in full agreement with the theory of Section 4. Numerical evidence of this

fact is demonstrated in Fig. 8, presenting the results for multipliers of vorticity variables. The

stochastic RT wave is seen very clearly as almost identical PDF patterns shifted horizontally

according to the wave speed v = �2. At small scales (large n) the solution tends to a constant

deterministic solution (36): the PDF represents a Dirac delta-function at ⇢!
n

= !

n

/!

n�1

= h

2/3,

see second row in Fig. 8. For the temperature variables, simulations yield a similar behav-

ior apart from a more sophisticated asymptotic at small scales, which we expect to agree with

(36). Following the argument of Section 5.1, we associate the stochastic RT wave with a chaotic

attractor, which explains the universal quadratic growth (31) of the mixing layer in Fig. 2(b).

Despite our shell model does not quite reproduce a typical behavior of the 3D Boussinesq

system, where the dynamics at small scales is chaotic, it brings an important message that

distinguishes the RT instability from the developed turbulence. In our case, the “developed

turbulent state” given by (36) is regular, while the RT instability is intrinsically stochastic.

Therefore, the stochastic component in our example is an attribute of the RT wave only, which

has deterministic constant states at both large- and small-scale sides, Fig. 8. A range of scales

occupied by the RT wave extends to almost 10 shells or, equivalently, to almost three decades

of scales r
n

= h

�n.

7 Conclusions

In this paper we argue that turbulent development of the Rayleigh–Taylor (RT) instability (the

instability of an interface between fluids of di↵erent density under the action of gravity) can

be described as a stochastic traveling wave in a renormalized system. A proposed renormaliza-

tion scheme uses logarithmic time and space variables, and the RT wave is associated with a

probability measure of a chaotic attractor in a usual dynamical system sense. The infinite-time

dynamics in this setting is induced by mapping the initial time t = 0 to the renormalized time

⌧ = log
h

t ! �1. Furthermore, with the third Kolmogorov hypothesis suggesting that the

turbulence can be described using ratios of velocity increments (multipliers), we arrive to a

simple picture of a steady-state wave traveling with a constant speed between two constant

limiting states. These constant states correspond to a deterministic initial condition (temper-

ature jump) at large scales and to developed turbulence at small scales. It is shown how the
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Stochastic wave is generated by an attractor  
for finite-dimensional chaos in renormalized system, 
generating the spontaneously stochastic solution  
in original variables

Figure 8: Stochastic traveling wave of the RT instability for 3D model. Shown are the PDFs of

variables '!

n

that describe the multipliers for vorticity in (29) and (30). PDFs are plotted using

grayscale (darker color corresponds to a higher probability) as functions of renormalized time

⌧ = log
h

t at shell numbers n = 6, 9, 12 (first row) and functions of shell numbers n at di↵erent

renormalized times ⌧ = log
h

t = 0, 1, 2 (second row). The graphs at di↵erent shells are almost

identical, shifted according to the wave speed v = �2.

existence of such a wave leads to various universal properties of the RT instability, e.g. the

universal growth of a mixing layer and scaling laws.

The analysis is performed using a new shell model that is designed to feature all basic

properties of the phenomenological theory for the RT instability. This is done both for the two-

and three-dimensional cases. Following theoretical arguments, we perform 105 independent

numerical simulations that persuasively confirm the predicted form of a stochastic solution.

Also, numerical simulations verify several properties of the RT instability that are hard to

access accurately in full convection models. We show that the RT instability in the 2D case

recovers isotropy at small scales in terms of the multipliers, but not in original variables.

Furthermore, the multipliers demonstrate a very fast and accurate convergence to universal

distributions at small scales, while this is again not the case for original variables. The results

provide a traveling wave that occupies an interval of scales up to two decades for the 2D shell

model and three decades in the 3D shell model. This means that a similar structure may be

accessible (especially for the 2D case) in the full continuous model with modern computational

resources.

Our results provide the new terminology that goes beyond the phenomenological and dimen-

sional theories. Namely, a representation that maps the solution into the stochastic wave may

17

Figure 1: Rayleigh–Taylor instability in (a) 2D and (b) 3D obtained by direct numerical simu-

lations. The warm (while) fluid is below the cold (black) fluid under the action of gravity.

we describe here following [12], development of the RT instability is qualitatively di↵erent in

two- and three-dimensional spaces. In three dimensions, the inertial interval is dominated by

a nonlinear transfer of kinetic energy from large to small scales, while the buoyancy term is

negligible. The mean energy flux to small scales can be estimated as "(t) ⇠ u

3

L

/L. With

the quasi-stationarity assumption, this energy flux can be written as "(t) ⇠ �u

3

r

/r for velocity

fluctuations �u
r

at any scale r in the inertial interval. Similarly, passively advected temperature

fluctuations develop the flux "

T

(t) ⇠ �T

2

r

�u

r

/r ⇠ u

L

/L. This yields

3D : �u

r

(t) ⇠ u

L

(t)

✓
r

L(t)

◆
1/3

, �T

r

(t) ⇠
✓

r

L(t)

◆
1/3

. (8)

One can check with relations (7) and (8) that �T
r

⌧ �u

2

r

/r for r ⌧ L, justifying the hypothesis

that the buoyancy term is negligible in Eq. (1) at small scales. It must be emphasized however,

that the dynamics in the inertial range is intermittent [6], which implies anomalous corrections

for the exponents in relations like (8).

The viscous scale ⌘(t) is estimated by comparing the nonlinear term �u

2

r

/r with the viscous

term ⌫�u

r

/r

2 at r ⇠ ⌘. Using (7) and (8), one obtains

3D : ⌘(t) ⇠ ⌫

3/4

t

�1/4

, (9)

showing that the viscous scale decreases with time. When ⌫ ⇠ , thermal dissipation becomes

important at the same small scale r

d

(t) ⇠ ⌘(t). For ⌫ � , further analysis [12] provides

r

d

(t) ⇠ ⌘(t)
p

/⌫ ⌧ ⌘(t). Condition ⌘ ⌧ L with relations (7) and (9), yield the lower bound

for the width L � ⌫

2/3 and time t � ⌫

1/3 that allow for existence of the inertial interval.

4



Summary

Spontaneously stochastic solutions

in one-dimensional inviscid systems

Alexei A. Mailybaev⇤

Abstract

In this paper, we study the inviscid limit of the Sabra shell model of turbulence, which

is considered as a particular case of a viscous conservation law in one space dimension with

a nonlocal quadratic flux function. We present a theoretical argument (with a detailed

numerical confirmation) showing that a classical deterministic solution before a finite-

time blowup, t < t
b

, must be continued as a stochastic process after the blowup, t > t
b

,

representing a unique physically relevant description in the inviscid limit. This theory is

based on the dynamical system formulation written for the logarithmic time ⌧ = log(t�t
b

),

which features a stable traveling wave solution for the inviscid Burgers equation, but a

stochastic traveling wave for the Sabra model. The latter describes a universal onset of

stochasticity immediately after the blowup.

1 Introduction

In this paper, we study the inviscid limit (⌫ ! 0+) for one-dimensional conservation laws of

the form
@u

@t
+

@f

@x
= ⌫

@2u

@x2
, x, t 2 R, (1.1)

where ⌫ � 0 is the viscosity and the flux function f is quadratic and nonlocal, i.e., f =
RR

K(y � x, z � x)u(y, t)u(z, t)dydz. Such equations can be used as hydrodynamic models of

turbulence, where the nonlocality of f mimics the nonlocality of the pressure term in inviscid

flows [20]. In fact, some of popular shell models of turbulence, which attracted a lot of interest

⇤
Instituto Nacional de Matemática Pura e Aplicada – IMPA, Est. Dona Castorina 110, 22460-320 Rio de

Janeiro, RJ, Brazil. E-mail: alexei@impa.br.
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2 Internal “clock” of the blowup

In this section we describe how a finite-time blowup problem can be mapped into a problem

of large-time behavior for a dynamical system. For this purpose, let us consider the Burgers

equation (1.1), where the flux function f = u2/2. In the inviscid case (⌫ = 0), a well-known

classical (smooth) solution is given implicitly by

u = u0(x0), x = x0 + (t� t0)u, (2.1)

where u(x, t0) = u0(x) is an initial condition and x0 is an auxiliary variable. Let us consider a

solution, which blows up at finite time t = t
b

. One can use a symmetry group of the Burgers

equation, which includes shifts of origin, scale changes and the Galilean transformation, to

simplify the blowup description. In generic case, this reduces the initial condition to the form

u0(x) = �x + x3 + o(x3) with t0 = �1, see e.g. [38, 31]. Substituting this expression into

Eq. (2.1) and solving with respect to x yields

x = ut� u3 + o(u3). (2.2)

The corresponding solution u(x, t) blows up at t
b

= 0, when u(x, 0) ⇡ �x1/3 has an infinite

derivative at the origin, Fig. 1(a).

To simplify our further arguments, we ignore the o(u3) term in Eq. (2.2). Then, for x > 0,

we write this expression as

e�⇠ = ve�⇠ + v3e3⌧�3⇠, (2.3)

where the renormalized time ⌧ , space variable ⇠ and state v are introduced as

t = �e�⌧ , x = e�⇠, u = �ve⌧�⇠. (2.4)

Equation (2.3) yields

v = F (⇠ � a⌧), a = 3/2, (2.5)

where the function F (⌘) is defined implicitly by the equation

1 = F + e�2⌘F 3. (2.6)

We see that the blowup formation can be seen as a traveling wave (2.5) moving with the constant

speed a in the logarithmic space coordinate ⇠ and time ⌧ , Fig. 1(b). In this description, the

limit ⌧ ! 1 corresponds to the blowup time t = �e�⌧ ! 0�, and the limit ⇠ ! 1 yields the

3

due to their non-trivial behavior analogous to the developed hydrodynamic turbulence [6],

are strictly equivalent to Eq. (1.1), see [34]. In particular, this refers to the Sabra model of

turbulence [30] studied in this paper.

When f = u2/2, Eq. (1.1) represents the Burgers equation and its solution is well known.

Inviscid solutions blow up in finite time forming a shock wave. A discontinuous (weak) solu-

tion at larger times is well-defined in the inviscid limit, see e.g. [11]. When the flux function

is nonlocal, a finite-time blowup in the inviscid system can be described using renormaliza-

tion techniques [14, 31]. Our aim in this work is to demonstrate and explain the striking

phenomenon, when a deterministic (classical) inviscid solution before the blowup continues

spontaneously as a stochastic process for times after the blowup.

Understanding of the stochasticity phenomenon proposed in this work is based on a combina-

tion of the two concepts: non-uniqueness and chaos. It is known that Lagrangian trajectories

of a rough deterministic velocity field are non-unique [5, 13, 19, 26, 18]. The origin of this

stochasticity is a violation of the Lipschitz condition, which ensures the uniqueness of solu-

tions for di↵erential equations, see e.g. [2]. In our system, the roughness necessary for such

non-uniqueness is provided by the blowup phenomenon.

It is widely accepted [20] that the developed turbulence is not just a finite-dimensional

chaos phenomenon, due to a large (infinite as ⌫ ! 0+) separation of scales both in space

and time. These arguments are equally applied to the Sabra model of turbulence and the

corresponding Eq. (1.1). We show, however, that the dynamical system approach can be used

immediately after the blowup time t
b

, if formulated for the logarithmic time ⌧ = log(t� t
b

). A

crucial observation leading to the stochastic description is that the solution at every time t > t
b

undergoes an infinitely long chaotic evolution with respect to ⌧. We argue that this leads to

the unique physically relevant description of the inviscid flow as a probability distribution for

solutions u(x, t) at t > t
b

.

The paper is organized as follows. In Section 2 we show how the dynamics before and after

the blowup in the inviscid Burgers equation can be translated into traveling wave solutions

of respective renormalized systems. This representation is used in Section 3 to explain quali-

tatively the origin of the stochasticity phenomenon. Section 4 introduces the Sabra model of

turbulence and its continuous representation (1.1). Section 5 explains the universal self-similar

structure of a finite-time blowup. Section 6 describes the solution at blowup time. Section 7

demonstrates the universal emergence of a stochastic process from a deterministic blowup state.

We end with the Conclusions.

2

Inviscid Burgers equation 
(compressible gas dynamics)

A notion of weak solution, entropy condition, 
extended functional spaces, etc. yields a 
unique weak solution

Nonlocal flux term 
(“incompressible” flow?)

Nonlinearity 28 (2015) 2497 A A Mailybaev

2. One-dimensional hydrodynamic models

We consider one-dimensional models for a scalar variable u(x, t) in the form

∂u

∂t
+

∂g

∂x
= ν

∂2u

∂x2
+ f, x, t ∈ R, (2.1)

where ν is a viscous coefficient, f (x, t) is the forcing term and

g(x, t) = 1
2π

∫ ∫
K(y − x, z − x)u(y, t)u(z, t)dydz (2.2)

is the nonlocal quadratic flux term. For hydrodynamic models, where the quadratic term
originates from the convective acceleration (and pressure for inviscid flows), it is natural to
assume that K(y, z) is a real homogeneous function of degree −2. Therefore, it can be
considered in the form

K(y, z) =
∫ ∫

ϕ

(
p

p + q

)
e−i(py+qz)dpdq, (2.3)

with a real function ϕ(ξ). For example, the product of Dirac delta functions K(y, z) =
πδ(y)δ(z) corresponds to ϕ ≡ (4π)−1 and generates the Burgers equation with g = u2/2 in
equation (2.1).

We do not specify the functional spaces for solutions u(x, t) and for the kernel K(y, z),
assuming that they allow the integral (Fourier) transformations used below. We will comment
on this issue when considering a specific form of K(y, z) in the next section. It is clear that the
function K(y, z) in equation (2.2) can always be chosen symmetric, i.e. K(y, z) = K(z, y).
One can check that permuting the variables y ↔ z in the expression (2.3) is equivalent to
permuting p ↔ q and substituting ϕ(ξ) by ϕ(1 − ξ). Thus, the symmetry of K(y, z) is
equivalent to the condition

ϕ(ξ) = ϕ(1 − ξ), (2.4)

which will be assumed from now on.
For the Fourier transformed function u(k) =

∫
u(x)e−ikxdx, equations (2.1)–(2.3)

reduce to
∂u(k)

∂t
= −ik

∫
ϕ

(p

k

)
u(p)u(k − p)dp − ν|k|2αu(k) + f (k), (2.5)

where we omitted the argument t for simplicity of notations. We also introduced the parameter
α, such that α = 1 corresponds to equation (2.1) and α > 1 determines the model with
hyperviscosity. The mean value

∫
u(x)dx is conserved by equation (2.1) provided that∫

f (x)dx = 0 and g → 0, ∂u/∂x → 0 as |x| → ∞. We will assume the vanishing mean
values, leading to f (k) = u(k) = 0 for k = 0. Recall the reality condition u(−k) = u∗(k) for
the Fourier transformed real function, where the asterisk denotes the complex conjugation.

2.1. Energy conservation

We define the energy as

E = 1
2

∫
u2(x)dx = 1

4π

∫
|u(k)|2dk. (2.6)

Let us show that the energy conservation condition in the inviscid model with zero force
(ν = f = 0) is given by the equality

ϕ (ξ) − ξϕ

(
1
ξ

)
+ (ξ − 1)ϕ

(
1

1 − ξ

)
= 0 (2.7)
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Renormalization, viscous regularization 
with infinitesimal noise, etc. yields a
unique stochastic solution

singularity + chaos



Implications: 

concept of regularization and inviscid limit: vanishing viscosity and noise

concept of weak solution needs to be extended to a weak stochastic solution

spontaneous stochasticity (infinite dim) vs. deterministic chaos (finite dim)


