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Non-unigueness and singularities

Non-unigue solutions of non-Lipschitz
differential equations

;= pl/3 (Kolmogorov-type singularity)

Solutions starting at the singularity:

r(t) = 4

How to select a solution?



Lagrangian spontaneous stochasticity

Dynamics in the inertial range: inviscid flows in the limit of large Re.

Particle in a singular (non-Lipschitz) velocity field

R = v(R, 1)

Solution selection with particle diffusion
(Brownian motion):

dAR=v(R,1)dt+ 2 kd B(1) k—0
Solution remains stochastic in non-diffusive limit. space

Falkovich, Gawedzki, Vergassola 2001

Velocity field is also a dynamical variable.



Origin of singularities in inviscid flows
Turbulent (weak) solutions of Euler equations

Finite time blowup

Inviscid Burgers equation

velocity

Uy +uu, =0

Discontinuous initial configuration

Kelvin—-Helmholtz
or Rayleigh-Taylor
instability

from Wikipedia




Model: nonlocal viscous conservation law

9 ) 92
—u+—g:v—u+f, x,t € R,
or 0x 0x?2

g(x,t) = %//K(y —x,z—x)u(y, u(z, t)dydz

Non-locality “mimics” incompressibility

Extra conditions on the kernel function K(y,z):
energy conservation, Hamiltonian structure. etc.

Example: Constantin-Lax—Majda equation w; — Vyw =0, vy = How



Special case: Sabra shell model

o (1+c)o? co

K(y,z) =Ky (y, )+ Ky(z,y), Ky(y,2)= 0y —2? (02y—2? (oy+2)

Solution representation A.M. 2016, Nonlinearity

kn = ko™, n €N, 1 <ky < A.
un(t) = k34 (ki/?),t) ,(k,t) = [u(z, t)e " dx
Sabra shell model

ou,
0t

=1 [kn+1un+2u:+1 — (1 + C)knunﬂu:_] — Ckn—lun—lun—2] — Yyl + fn

=0 :\/2+\/§%2.058

Gledzer-Ohkitani-Yamada (GOY) in 70-80th;
L'vov, Podivilov, Pomyalov, Procaccia, Vandembroucq (Sabra) in 90th

Inviscid invariants: energy, helicity, enstrophy etc. (depending on coefficients)



Self-similar blowup

Un (1) = i B2 U (K2 (t — 1)),  t <t

) oo 1N
R 2o

Hombre & Gilson 1988
Kolmogorov (inviscid) solution
Uy, = ik, /3

Stationary state: a shock
(unstable in Sabra model)

SBlowup and a shock wave

Continuous
representation

B=2—32/220.954
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Purely imaginary Sabra (Gledzer) model:
Non-unigue inviscid [imit
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Non-unique solutions!
However, a unique solution can be chosen for a given (small) viscosity

A.M. 2016, MMS (STAM)



Periodic wave in renormalized system

Renormalized system:

dw, 1 L1 Lo N
At — | Wn — ﬁwn—l-an—H + §wn+1wn—1 + ?wn—lwn—Q 1Og A.

t=1t,+ N\, wu,= —ik;l)\_Twn = —iko_l)\_T_”wn.

Logarithmic time: T =log,(t — 1) n = log, k,




Periodic wave: numerical simulations

y—9—4x+N)

N —00
T T
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Complex Sabra model
Chaotic wave in renormalized system: spontaneous stochasticity

t =1

/0—>

‘—

Dynamics in renormalized time:

w A T T=-00

LO9) @ @@\ \/ﬁ -

Implications:
* physically relevant solution is a (spontaneous!) probability distribution
* unique probabilistic description in inviscid limit
in the form of a steady-state traveling stochastic wave



Probability distribution as a steady-state traveling wave

a4t (w) — :LLT(Tw)a To = 1/a

1 (wl,wg,...) —> (U]Q,wg,...)
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small-scale noise:

no dependence on size of small noise: this is not chaos! A.M. 2016, Nonlinearity



Traveling probability measure with constant limiting states

Kolmogorov hypothesis on universality of velocity increments
(Kolmogorov 62; Benzi, Biferale & Parisi 93; Eyink 2003):

Wn = |Un/Un_1|, Ap=arg(u, o, 1u,)
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stable traveling wave: universal route to spontaneous stochasticity



Stochastic constant state describes
the equilibrium turbulent statistics

PDF

PDFs at stochastic constant state of the traveling wave (n = 15,...,25)
vs. PDFs of turbulent dynamics in inertial interval for the statistical equilibrium

Spontaneously stochastic solution is a traveling wave separating
the two constant states: deterministic blowup state and developed turbulent state.

Similar behavior from different singular initial conditions, not related to blowup.



Rayleigh—Taylor instability
ou+u-Vu=—-Vp+vVu+ fge.T, (2D or 3D)

O.T +u-VT =kV*T, V-u=0,

Linear analysis for ideal fluid:

= +Vok srowth rate oc e

ill-conditioned problem: explosive growth of small-scale perturbations

warm, T = 1

Nonlinear (turbulent) dynamics: phenomenological theory by Chertkov 2003

Shell model:
Gon, + Vk2w, = [wi_l — cwpwnpa1 + 0.1 (wp_1wp — cwiﬂ)} + k,R,,
Rn + /ﬁjkiRn — wan—H — wn—an—l =+ f}/wnTna

Tn + /{kiTn — wnTn—H — wn—lTn—l — ’Ywan,

models: stationary state, stability, dispersion relation,
phenomenology of turbulent dynamics, intermittency

A.M. 2016 ArXiv: 1610.03181




Turbulent dynamics of a shell model

15

Initial condition:

t=20: wn=0, -R’nzoa Tn=17 n=172)3"" ‘\'r |

+ small perturbation

T _(vertical fluctuation)
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Mixing layer:

054

L= /(1 — |T'))d= (continuous version) |
o 5 10 15 20 25 30 35
n (shell number)

L) = 30 - Tt un() = (3 u20)

n
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Phenomenology of turbulent dynamics:
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average over 100000 simulations
with a small random initial perturbation



Renormalization
Renormalized variables:
t=h", w,=h"®, R,=h " ¥R, T,=h""7T,

Renormalized inviscid system (translation invariant in logarithmic time and scale):

dw, . . - - - ~
Q y = w, + wi_l — CWOpWni1 + 0.1(0, 100, — cwiﬂ) + R,

T
dé”—zfz h o, R him_1 R on T,

A T 4 T Wl = A1 o1+ YWn L, (initial time ¢t = 0 corresponds 7 — —oo]
dTn ~ ~ ~ ~ ~ ~

Oéd— — 2Tn + h_lanTn—i—l — hwn—lTn—l - %Uan,
-

Stochastic traveling wave solution (depending on the single variable § = n — vT)
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RT instability for 2D

Convenient variables (multipliers):

Wp—1 Wn—1 Rn—l Rn—l 7
Mapping to a unit interval for representation purpose:

w 1 w R 1
p; = —arctanp;, ¢, = —arctanp
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Traveling stochastic wave
separating two constant states:

deterministic state (small n)
and developed turbulent state
(large n)




RT instability for 3D

Kolmogorov (non-intermittent) solution at small scales:

—n ( 2
Wp = knun — alki/ga Rn + i, = @24"” T C¥3C ) C — % + \/_,YZ + h_2/37

Stochastic wave for the RT instability between two regular constant states:
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Stochastic wave is generated by an attractor
for finite-dimensional chaos in renormalized system,

generating the spontaneously stochastic solution
in original variables




Inviscid Burgers equation
(compressible gas dynamics)

ou  of %
E‘F%—V@, ZU,tER,

v — 0"

Summary

A notion of weak solution, entropy condition,
extended functional spaces, etc. yields a

unique weak solution

Nonlocal flux term
(“incompressible” flow?)

f(x,t) = %//K(y—x,z—x)u(y,t)u(z,t)dydz

Renormalization, viscous regularization

with infinitesimal noise, etc. yields a

unique stochastic solution

[ =u?/2.
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Implications:

concept of regularization and inviscid limit: vanishing viscosity and noise
concept of weak solution needs to be extended to a weak stochastic solution

spontaneous stochasticity (infinite dim) vs. deterministic chaos (finite dim)



