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Incompressible Euler equations

Some facts: 

• To any given suff. smooth initial data there exists, at least for a short time, a 
unique suff. smooth solution  (Lichtenstein 1930s, Kato 1980s).

• For any suff. smooth solution, the energy is constant in time (classical). 
• There exist non-trivial weak solutions with compact support in time (Scheffer 1993).

@tv + v ·rv +rp = 0

div v = 0 t 2 [0, T ]

x 2 T3
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Weak solutions and 
non-uniqueness



Theorem (Scheffer 93, Shnirelman 97, De Lellis - Sz. 2009) 
	 There exist nontrivial weak solutions of the Euler equations 
with compact support in space-time.

• [Scheffer] in  
• [Shnirelman] in        
• [De Lellis-Sz.] works for general domains in any dimension 

R2

T2

Non-uniqueness inL2
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Theorem (De Lellis - Sz. 2010) 
     Given                              , there exist infinitely many weak 
solutions of the Euler equations with

e = e(x, t) > 0

1
2 |v(x, t)|

2 = e(x, t)



Theorem (Wiedemann 2011) 
      For any        initial data there exist infinitely many global weak 
solutions with bounded energy.

L2

• domain is a torus  
• first global existence result for weak solutions in dimension         n � 3

n � 2

Non-uniqueness in L2



Theorem (Wiedemann 2011) 
      For any        initial data there exist infinitely many global weak 
solutions with bounded energy.

L2

• domain is a torus  
• first global existence result for weak solutions in dimension         n � 3

n � 2

Non-uniqueness in L2

Theorem 
    Given       and      with                                  , there exist infinitely 
many weak solutions of the Euler equations with

v0 v1

v(t = 0) = v0, v(t = 1) = v1

Z

Td

v0 dx =

Z

Td

v1 dx



Differential Inclusions



Differential  Inclusions

Toy problem: construct
v : [0, 1] ! R such that |v| = 1

Baire-category approach
(Cellina, Bressan-Flores, Dacorogna-Marcellini, Kirchheim,….)

�
v : |v| = 1 a.e.

 �
v : |v|  1 a.e.

 
residual in L1 w*



Differential  Inclusions: Baire category approach

Theorem (folklore)

      Any 1-Lipschitz map                                           can be
uniformly approximated by (weak) Lipschitz isometries, i.e. 
solutions of 

u : ⌦ ⇢ Rn ! Rn

Du(x) 2 O(n) a.e. x
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Differential  Inclusions: Baire category approach

Theorem:    The typical short map is (weakly) isometric.

Theorem:    The typical Euler subsolution is a (weak) solution.

@tv + div (v ⌦ v) +rp = �div R

div v = 0

R � 0

n
Euler subsolution



Differential  Inclusions

Toy problem: construct
v : [0, 1] ! R such that |v| = 1

Constructive approach: define inductively

vN+1(x) = vN (x) + 1
2 (1� |vN (x)|2)s(�Nx){ {

s(t) = sign sin t

amplitude high-frequency
oscillation

|vN |  1 ) |vN+1|  1



Differential  Inclusions

Toy problem: construct
v : [0, 1] ! R such that |v| = 1

vN+1(x) = vN (x) + 1
2 (1� |vN (x)|2)s(�Nx)
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Differential  Inclusions

Toy problem: construct
v : [0, 1] ! R such that |v| = 1

vN+1(x) = vN (x) + 1
2 (1� |vN (x)|2)s(�Nx)

Lemma
      If                    , there exists             so that �N = 2N ↵ > 0

Z 1

0
(1� |vN |2) dx . 2�↵N



Beyond Lipschitz maps

Theorem (Nash-Kuiper 1954/55)

      Any short embedding                         can be uniformly 
approximated by        isometric embeddings.C1

Mn ,! Rn+1

• an example of Gromov’s h-principle 
• method of proof: convex integration 
•      embeddings are rigid 
• Lipschitz “version” of theorem is trivial
C2



Theorem (Borisov 1967-2004, Conti-De Lellis-Sz. ‘09)

      The Nash-Kuiper theorem remains valid for       
isometric embeddings with

Beyond Lipschitz maps

Theorem (Nash-Kuiper 1954/55)

      Any short embedding                         can be uniformly 
approximated by        isometric embeddings.C1

Mn ,! Rn+1

|Du(x)�Du(y)|  C|x� y|✓

C1

✓ <
1

1 + 2n⇤

Note: the embedding    is rigid for        S2 ,! R3 ✓ > 2/3



Selection criteria 
and instabilities



Theorem (P.L.Lions 1996) 
      Given an initial data      , if there exists a solution to the IVP with 
   

                       
then this solution is unique in the class of admissible weak solutions.

v0

⇥v +⇥vT � L�

• The Scheffer-Shnirelman solution clearly not admissible
• For the solutions of Wiedemann           has an instantaneous jump up at E(t) t = 0

Admissibility:
Z

|v(x, t)|2 dx 
Z

|v0(x)|2 dx

Weak-strong uniqueness



Theorem (De Lellis-Sz. 2010 / Wiedemann-Sz. 2012) 
    There exists a dense set of initial data                   for which there 
exist infinitely many admissible weak solutions. 

• solutions also satisfy the strong and local energy inequality        
• a posteriori such initial data needs to be irregular

Wild initial data is generic

v0 2 L2



Theorem (Sz. 2011) 
    There exist infinitely many admissible weak solutions on       with 
initial data given by       above.  v0

T2

T2

v0(x) =

c.f. Delort (1991): there exists a weak solution with curl v �M+(T2)

Kelvin-Helmholtz instability

Strong instabilities I: Kelvin-Helmholtz



Strong instabilities I: Kelvin-Helmholtz

“turbulent zone”

t = 0 t > 0

2t

|v| = 1 a.e.
selection principle?

• The solution above is conservative. Strictly dissipative solutions also possible. 
• There exists a maximal dissipation rate     
• Maximally dissipative solution is different from vanishing viscosity limit  
• More realistic limit should include perturbations of the initial condition, i.e.

(NS⌫) ! (E)

(NS⌫,") ! (E)



Strong instabilities II: Rayleigh-Taylor

@t⇢+ v ·r⇢ = 0

div v = 0

v +rp = �⇢g

Incompressible porous medium equation:

Darcy’s law

Theorem (D. Cordoba - D. Faraco - F. Gancedo 2011) 
	 There exist nontrivial weak solutions with compact support in time.

• R. Shvydkoy 2011: Same result holds for general active scalar 
equations with even (& non-degenerate) kernel 



Strong instabilities II: Rayleigh-Taylor 

@t⇢+ v ·r⇢ = 0

div v = 0

v +rp = �⇢g

Incompressible porous medium equation:

Darcy’s law g

⇢ = ⇢1

⇢ = ⇢2



Strong instabilities II: Muskat problem 

Muskat curve evolution:

⇢ = ⇢1

⇢ = ⇢2

@tz(s, t) =
⇢1 � ⇢2

2⇡
P.V.

Z 1

�1

z1(s, t)� z1(s0, t)

|z(s, t)� z(s0, t)|2 (@sz(s, t)� @sz(s
0, t)) ds0

• Stable case                          P.Constantin-F.Gancedo-V.Vicol-R.Shvydkoy 2016 

• Unstable case                      A.Castro-D.Cordoba-C.Fefferman-F.Gancedo-M.Lopez-Fernandez 2012

⇢1 < ⇢2
⇢2 < ⇢1



“mixing zone”

Strong instabilities II: Muskat problem 

regularized Muskat curve evolution:

⇢ = ⇢1

⇢ = ⇢2

A. Castro - D. Cordoba - D. Faraco 2016

@tz(s, t) =
⇢1 � ⇢2

2⇡

1

2ct

Z ct

�ct

Z 1

�1
(@sz(s, t)� @sz(s

0, t))
1

2ct

Z ct

�ct

z1(s, t)� z1(s0, t)

|z(s, t)� z(s0, t) + (�� �0)g|2 d�0ds0d�

2ct

c =
⇢2 � ⇢1

2



Unstable Muskat problem: Selection criteria?

⇢ = ⇢1

⇢ = ⇢2

Flat initial interface

• Lagrangian relaxation (F.Otto 1999): gradient flow formulation 
• Eulerian relaxation (Sz. 2012): calculation of “lamination hull” 
• Maximal mixing (Sz. 2012): 

2ct“mixing zone”

c  (⇢2 � ⇢1)



Eulerian relaxation

DuTDu = Id short
curl A = 0

n
ATA  Id

@tv + div (v ⌦ v) +rp = 0

div v = 0

@tv + div � +rp = 0

div v = 0

n
subsolution

v ⌦ v  �

@t⇢+ v ·r⇢ = 0

div v = 0

v +rp = �⇢g subsolution

@t⇢+ div � = 0

div v = 0

curl (v + ⇢g) = 0

n
��� � ⇢v + 1

2 (1� ⇢2)g
��  1

2 (1� ⇢2)



Onsager’s conjecture



Onsager’s Conjecture 1949

For (weak) solutions of Euler with

a) If                  energy is conserved.✓ > 1/3

b) If                  dissipation possible.✓ < 1/3

Onsager 1949, Eyink 1994,
Constantin-E-Titi 1993, 
Robert-Duchon 2000,
Cheskidov-Constantin-Friedlander-
-Shvydkoy 2007, …

Scheffer 1993, Shnirelman 1999
De Lellis - Sz. 2012

Buckmaster-De Lellis-Isett-Sz 2013
Buckmaster 2013

Isett 2016

|v(x, t)� v(y, t)|  C|x� y|✓



Two types of statements for b)

Let       be a function space.X

Theorem A
      There exists a nontrivial weak solution               of the Euler 
equations with compact support in time.

v 2 X

Theorem B
      For any smooth positive function           there exists a weak 
solution of the Euler equations                such thatv 2 X

E(t)

1

2

Z

T3

|v(x, t)|2 dx = E(t) for all t



Theorem A

• P. Isett 2013  

• T. Buckmaster 2013 

• T. Buckmaster-De Lellis-Sz. 2015 

• P. Isett 2016

Theorem A
      There exists a nontrivial weak solution               of the Euler 
equations with compact support in time.

v 2 X

X = L1(0, T ;C1/5�(T3))

X = L1(0, T ;C1/3�(T3))

X = L1(0, T ;C1/3�(T3))

v(·, t) 2 C1/3� a.e. t



Theorem B

Theorem B
      For any smooth positive function           there exists a weak 
solution of the Euler equations                such thatv 2 X

E(t)

1

2

Z

T3

|v(x, t)|2 dx = E(t) for all t

• De Lellis-Sz. 2012   

• A. Choffrut 2013       

• T. Buckmaster-De Lellis-Isett-Sz. 2015 

• T. Buckmaster-De Lellis-Sz.-Vicol work in progress:

X = L1(0, T ;C1/10�(T3))

X = L1(0, T ;C1/5�(T3))

X = L1(0, T ;C1/3�(T3))

X = L1(0, T ;C1/10�(T2))



H-principle and Closure: Subsolutions

Reynolds decomposition: v = v̄ + w

“average” “fluctuation”

@tv̄ + div(v̄ ⌦ v̄) +rp̄ = �divR̄

div v̄ = 0

Euler-Reynolds system:

where
R̄ = v ⌦ v � v̄ ⌦ v̄ = w ⌦ w

Closure problem: equation for      ? R̄ R̄ � 0We know:             .



H-principle and Closure: Subsolutions

Deterministic turbulence via weak convergence (following P.D.Lax)

vk
⇤
* v̄ L1in

@tvk + div(vk ⌦ vk) +rpk = ⌫k�vk

div vk = 0

with

⌫k ! 0

Then:
@tv̄ + div(v̄ ⌦ v̄) +rp̄ = �divR̄

div v̄ = 0

with

Assume

R̄ = w � lim
k!1

(vk � v̄)⌦ (vk � v̄) � 0

Energy:
E(t) =

1

2

Z
|v̄|2 + tr R̄ dx

{



H-principle and Closure

Theorem B (S. Daneri - Sz ’16) 
   Let                be a smooth strict subsolution. For any                   
there exist a sequence               of weak solutions of Euler such 
that   

moreover 
                              and                                                in  
and 

✓ < 1/5(v̄, p̄, R̄)
(vk, pk)

|vk(x, t)� vk(y, t)|  C|x� y|✓

vk
⇤
* v̄ vk ⌦ vk

⇤
* v̄ ⌦ v̄ + R̄ L1

8 t

Expect same result for all                  …. ✓ < 1/3

1
2

Z

T3

|vk|2 dx = 1
2

Z

T3

|v̄|2 + tr R̄ dx



Some ideas of the construction

(based on De Lellis-Sz. 2012) 



The Euler-Reynolds equations

@tvq +r · (vq ⌦ vq) +rpq = �r ·Rq

r · vq = 0

Euler-Reynolds system: q 2 N

vq+1(x, t) = vq(x, t) +W (x, t,�q+1x,�q+1t)} }
slow fast

“fluctuation” - analogue of Nash twist



The Euler-Reynolds equations

@tvq +r · (vq ⌦ vq) +rpq = �r ·Rq

r · vq = 0

Euler-Reynolds system: q 2 N

more precisely:

vq+1(x, t) = vq(x, t) +W

�
vq(x, t), Rq(x, t),�q+1x,�q+1t

�}
explicit dependence of previous “state”



Conditions on the "fluctuation"

(H1)

(H2)

(H3)

(H4)

periodic with average zero:⇠ 7! W (v,R, ⇠, ⌧)

W = W (v,R, ⇠, ⌧)

hW i =
Z

T3

W (v,R, ⇠, ⌧) d⇠ = 0

hW ⌦W i = R

@⌧W + v ·r⇠W +W ·r⇠W +r⇠P = 0

div⇠W = 0

|W | . |R|1/2 |@vW | . |R|1/2 |@RW | . |R|�1/2

in

prescribed average stress



Estimating new Reynolds stress

(I)

(II)

(III)

Rq+1

Rq+1 = �div�1
h
@tvq+1 + vq+1 ·rvq+1 +rpq+1

i

�div�1
h
wq+1 ·rvq

i

�div�1
h
r ·

�
wq+1 ⌦ wq+1 �Rq

�
+r(pq+1 � pq)

i

= �div�1
h
@twq+1 + vq ·rwq+1

i



Estimating new Reynolds stress

“stationary phase” + (H4)

k(III)k0 .
P

k kakk0
�q+1

. kRqk1/20 krvqk0
�q+1

(H1)

(III) = �div�1
h
w

q+1 ·rv

q

i
= div�1

hX

k 6=0

a

k

(x, t)ei�q+1k·x
i



Estimating new Reynolds stress

(H2)

slow

(H3)

“stationary phase” + (H4)

...and similarlyk(II)k0 = O(
1

�q+1
) k(I)k0 = O(

1

�q+1
)

(II) = �div�1
h
r ·

�
W ⌦W �R

q

�
+rP

i
= div�1

hX

k 6=0

b

k

(x, t)ei�q+1k·x
i



Estimating new Reynolds stress

Summarizing:

vq+1 = vq +W (vq, Rq,�q+1x,�q+1t) + corrector

kvq+1 � vqk0 . kRqk1/20

kRq+1k0 . O(
1

�q+1
)

1)

2)

…leads to convergence inC0

… more careful estimates lead in the ideal case:

2’) kRq+1k0 . kRqk1/20 krvqk0
�q+1



Conditions on the "fluctuation"

(H1)

(H2)

(H3)

(H4)

periodic with average zero:⇠ 7! W (v,R, ⇠, ⌧)

W = W (v,R, ⇠, ⌧)

hW i =
Z

T3

W (v,R, ⇠, ⌧) d⇠ = 0

hW ⌦W i = R

@⌧W + v ·r⇠W +W ·r⇠W +r⇠P = 0

div⇠W = 0

|W | . |R|1/2 |@vW | . |R|1/2 |@RW | . |R|�1/2

in

(family of) stationary solutions: Beltrami flows

convection of microstructure



Convection of microstructure

vq+1(x, t) = vq(x, t) +W

�
Rq(x, t),�q+1�q(x, t)

�

inverse flow of vq

Better Ansatz:

c.f. also D.W.McLaughlin-G.C.Papanicolaou-O.R.Pironneau 1985 

P. Isett 2013, PhD Thesis (1/5-Hölder, Theorem A)

(H1)

(H2)

(H3’)

(H4)hW ⌦W i = R

hW i = 0 W ·r⇠W +r⇠P = 0

div⇠W = 0

|W | . |R|1/2

|@vW | . |R|1/2 |@RW | . |R|�1/2



Convection of microstructure

vq+1(x, t) = vq(x, t) +W

�
Rq(x, t),�q+1�q(x, t)

�

inverse flow of vq

Better Ansatz:

Problem: Flow only controlled for very short times

vq+1(x, t) = vq(x, t) +
X

i

�i(t)Wi

�
Rq(x, t),�q+1�q,i(x, t)

�

time cut-off
partition of unity inverse flow restarted at time ti



Convection of microstructure
B. Eckhardt - B. Hof - H.Faisst 2006 

Problem: Flow only controlled for very short times

vq+1(x, t) = vq(x, t) +
X

i

�i(t)Wi

�
Rq(x, t),�q+1�q,i(x, t)

�

“turbulent puffs”

Buckmaster - Isett - De Lellis - Sz. 2014, (1/5-Hölder, Theorem A)
P. Isett 2013, PhD Thesis (1/5-Hölder, Theorem B)

Buckmaster - De Lellis - Sz. 2015, (1/3-Hölder L1 in time, Theorem B)
P. Isett 2016,(1/3-Hölder, Theorem B)



Convection of microstructure

Main problems 
• cell-problem: Beltrami modes not exact any more 
• gluing: orthogonality of Beltrami modes 



Convection of microstructure

Main problems 
• cell-problem: Beltrami modes not exact any more 
• gluing: orthogonality of Beltrami modes 

Alternative to Beltrami-flows: “Mikado flows”

“tensegrity”



Navier Stokes Equations

Turbulence

Euler Equations 
weak solutions

Relaxation  
dissipative/measure valued solutions

formal limit 

weak convergence

Deterministic approach

averaging



Navier Stokes Equations

Turbulence

Euler Equations 
weak solutions

formal limit 

Deterministic approach

convex
integration

averaging Relaxation  
“subsolutions”

Meta-Theorem    
Any Euler subsolution can be approximated by weak solutions. 



Thank you 
for your attention


