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Stacked 2D Heterostuctures: No Periodic Structure

hBN —

) e Top view of the atomic structure
Example of heterostructure with five monolayers

» Mechanical properties (relaxation, defects, etc.)

v

Diffraction, dark field imaging
» Electronic structure (density of states, Kubo transport, scattering)
» Quantum, kinetic, hydrodynamic models of transport

» Plasmonics, edge states, topological properties
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2D Lattices

A Bravais lattice, R, and its unit cell, I, is defined for non-singular A € R?*? by
R :={An: ne 7%, r={A3: B3e[0,1)%}.
A : set of m orbitals associated with the unit cell. |A| = m.

The orbitals in 4 can correspond to basis functions centered at the lattice points of
R or can be centered at other basis atoms in the unit cell.

Q =R x A : total degrees of freedom.

The reciprocal lattice to R and its unit cell (the Brillouin zone) is given by

R* .= {2rA""n: ne Z?}, ™ ={27A" T8 : Be[0,1)%}.
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2D bilayer geometry

For sheet j € {1, 2}, we define the Bravais lattice
Rj:={Ain: neZ?

where A; is a 2 x 2 invertible matrix. We define the unit cell for sheet j as

[ ={Ax: xe [0,1)%}.
Each individual sheet is trivially periodic, since

Rj=Ain+R; for n e Z°.
The combined system R; U R» need not be periodic, though.
We represent multilattices by Q; := Ry x A; and 2 := Ry x A», and
Q=2 U =R1 x A1 UR» x A>.

The orbitals in A; can correspond to basis functions centered at the lattice points
of R; or can be centered at other basis atoms in the unit cell.
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2D bilayer geometry

For sheet j € {1, 2}, we define the Bravais lattice
Rj:={Ain: neZ?

where A; is a 2 x 2 invertible matrix. We define the unit cell for sheet j as

[ ={Ax: xe [0,1)%}.
Each individual sheet is trivially periodic, since

Rj=Ain+R; for n e Z°.
The combined system R; U R» need not be periodic, though.
We represent multilattices by Q; := Ry x A; and 2 := Ry x A», and
Q=2 U =R1 x A1 UR» x A>.

The orbitals in A; can correspond to basis functions centered at the lattice points
of R; or can be centered at other basis atoms in the unit cell.
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2D multilayer geometry
For sheet j € {1,..., p}, we define the Bravais lattice
Rj:={Ain: neZ?

where A; is a 2 x 2 invertible matrix. We define the unit cell for sheet j as

[ ={Ax: xe [0,1)%}.
Each individual sheet is trivially periodic, since

Rj=Ain+R; for n e Z°.
The combined system R1 U --- U R, need not be periodic, though.
We represent multilattices by €; := R; x A; and
Q=@ U UQ=Rix A U---UR, x A,

The orbitals in A; can correspond to basis functions centered at the lattice points
of R; or can be centered at other basis atoms in the unit cell.
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Real space , e ® Configuration space

PR
o
-10 0 10 20 30 ﬂ . 0 1 2 3

r (A) . b (A)
Isomorphism between real space and configuration (disregistry) space for
incommensurate systems. Configuration space is uniformly sampled (Ergodicity).

Red-orbital’s local environment described completely by the “b-shift” between the
blue and red unit-cells.

Our configuration space approach gives a unified and computationally efficient
approach to mechanics, electronic structure, transport, diffraction.
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Twisted Trilayer Configuration Space

Real Space

« Layer 1
« Layer 2
« Layer 3

The local configuration (disregistry) of layer j in a twisted trilayer is given by the
2 -2 = 4 dimensional torus X; = I'; x [y, where i # j # k.

There is no 2D periodic moiré domain for p > 2. Moiré of moiré.

The local configuration (disregistry) of layer j in a p layer heterostructure is given

by the 2(p — 1) dimensional torus X; = X, T;.
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The Tight-Binding Model for 2D Multilayers

Construct a basis of (Wannier) orbitals defined on a lattice R; of R?:

(¢Q7R)RERJ where ¢a,R(X) = QZ5Q(X - R)

OLG.AJ’

Denote the (tight-binding) hamiltonian operator H by
[H]Ra,R’a’ = <¢(Y,R‘H‘¢w’,:‘?’> = hw.,m’(R - Rl)

where H = —1?/(2m.)A + Vion(x) is a Schrédinger operator with periodic
potential and the mass operator is

[S]Ra,R/o/ = <¢(¥,R|¢a’,R’> = sa,a’(R — R/)

When the basis of crystal orbitals is obtained from a Wannier orbital construction,
it is usually orthonormal, i.e., S is the identity operator.

The operator H does not have translation symmetry and thus cannot be
diagonalized by a Bloch-Fourier transform if R; U --- U R, is not periodic.
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Density of States Approximation
Finite domain Hamiltonian: for Q, := J’;l{[Rj N B x A}, r>0,

H = (HRQ,R’Q/)RQ,R’Q’EQ,~

The density of states, D[H"], can be defined as linear functional on test functions:
]

DIHNe) = o Tle(H )] = 1 D) &(H oo = 7 3, 8.
=1

12| Q] 25,

where €, ; are the eigenvalues of H".
Represent the linear functional by the density of states, p,(E),

D[H"](g) = /g(E)pr(E) dE.

: (E—=e)?

Approximate p,(e) by setting g(E) = \/Tm exp — 7,2
The local density of states distribution is defined as the linear functional

Dra|H')(g) = [g(H")]Ra.Ra> Ra e Q,.

Y, Dra[H]=D[H'].
e,

Note that

r
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Equidistribution of lattice shifts (Ergodicity)

Let Rq,..., R, be incommensurate lattices embedded in R?:

VFR{uU---UR;=RfuU---UR; = V*(8)7

where R is the reciprocal lattice to R;.

Theorem

For h € Cper(Xj) where X; = X, . T;, we have

i#j
1

#RjﬁB

1
h(R;) — W/ h(b)db.
" ReR;nB, I X

Local geometries around sites of sheet j can be parameterized by the local
configurations Xj.
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Real space , e ® Configuration space
3

Isomorphism between real space and configuration (disregistry) space for
incommensurate systems. Configuration space is uniformly sampled (Ergodicity).

Red-orbital’s local environment described completely by the “b-shift” between the
blue and red unit-cells.
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Shifted Hamiltonian and Local DoS

Define the Hamiltonian for a cluster of radius r in which the sheet i is shifted by
bierl; for i ;ﬁj
[Hr7j(b)]Ra,R’(x’7 RO&, R'a' e Q,.

We can then approximate

Dra[H"] ~ Doa|Hy j(modx (R))], RaeR; x A;.

Real space | T e Configuration space
3
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Formal Derivation of Disregistry-Based DoS

Since
Dra[H"] ~ Doa[Hy j(modx (R))], RaeR; x Aj,

and modx; (R) for R € R; uniformly samples X;, we can formally derive by the
ergodic property of incommensurate lattices

}: Z)Ra N|

RaEQ

> Doa[Hr j(modx (R))]
Ra€ef,

—wZE/DOQ ,j(b)]db,

j=1a€eA;

where
1

X XA

14

Global method D[H"](g) gives linear convergence.

Local method Dy, [H, j(b)] gives exponential convergence.

Mitchell Luskin (University of Minnesota) January 13, 2020
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Thermodynamic Limit
Let S(H) be an interval containing the spectrum of H.

Theorem

There exists a bounded linear functional D[H] : C(S(H)) — C such that

D[H,;(0)] - D[H] asr—oo, forj=1,...,

P
and
H=v3 S / DoalH
j=laeA;
where
1
V= =
1 Xl 1A

If g is analytic for d(z, S[H]) < d, we have the explicit error bound

‘D[H]( 71/2 /Doa L j(b)](g)db| < Cd™®  sup  |g(z)|e 7"

Tlaen, d(z,S[H])<d

Mitchell Luskin (University of Minnesota)
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If g is analytic for d(z, S[H]) < d, we have the explicit error bound

‘ 7,,2 Z/DO(Y Li(b)](g)db| < Cd™®  sup |g(z)]e "

j=1la€eA; d(z,5[H])<d
Algorithmic approximations:

» Sample from torus X;.
» Cut-off Hamiltonian at radius r to obtain H, j(b).

» Approximate DOS p(e) by setting g(E) = \/217” (

swp  |g(2)] < ep(dz)
u V4 X X —Q ].
d(z,S[H])<d V21K 22

Solution by Kernel (Chebyshev) polynomial method.

Mitchell Luskin (University of Minnesota) January 13, 2020
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Representation of LDoS by Cauchy Integral Formula

We can write for Q,  Q, , Ra € Q,, and g analytic

[£(H o = 5 £z = H) oo

where C is a contour around S[H] which contains the spectrum.

Assume that
| A (x)| < Ce™ X

Extend Combes—Thomas decay estimate for [(z — H") " rarrar

There exists C > 0 and x > 0 such that for all z € C, dist(z, S(H")) > d,

(2 = H) M| < Ce9IR-R
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Exponential Convergence of LDOS

For simplicity, consider a 1D lattice with lattice constant a = 1. Assume
Hom < Cexp(—t—ml),  (z—H");, < Cexp ([t —ml),
for dist(z, S[H]) = d. For r' > r, we then estimate

1

= 5= P &@)(z = H)™h = (z = H) ooz
i Jo

[g(Hr)]oo — [&(Hr)]oo

We thus need to estimate

[(z = H) ™ = (2= H) Moo = [(z = Hp) 7 (Hy = H)(z = Hy) oo

ol UPIRDIEDINDINEEDINED)

0eQ,\Q, meQ,  eQ, meQ\Q,  £eQ,\Q, meQ,\Q,

(z = Ho ) (He — H ) om(z — Hy ) -

mO0
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Exponential Convergence of LDOS

Estimate

Y0 2 @ Ho)ot (He = H ) em(z = Hi)

eQ,/\Q, meQ,
2C22 Zexp ~yl+ (£ —m)+ m)) —2C22 Zexp —274)
l=r+1m=0 £=r+1m=0
: -2 -2
<2C2/ x exp (—2yx) dX<2C2M+2C2M
r 2y (27)

< Grexp (—yr).

Local Method g(H")oo converges exponentially.
(periodic chain has only one configuration)

Global Method 5~ Trg(H") converges linearly:

1 r 1
Global Method Error ~ 5 / exp(—y(r—s))ds = — (1 —exp (yr)).
Jo Y
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Twisted Bilayer Graphene Calculation

Avg EDOS as function of twist angle in tBLG «10®

Twist Angle (degree)

Energy (eV)

Figure: 500 Angstrom radius disk ( 600,000 atoms in total)
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LEDoS (states/eV)

Energy (eV)

Figure: Local Electronic Density of States as a function of shift distance across the unit
cell diagonal: (a) Scan of a single orbital’s LEDoS with the coloring corresponding to
distance across the diagonal. The insets show the real-space configurations w for three
types of stacking with the bottom layer atoms represented by blue circles and the top layer
ones by red circles. The unit-cell of the bottom layer is outlined in blue and the shifted

orbital is highlighted as a filled red dot.
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Transform to Momentum Space
The multilayer wave function Vg o = (VRiars-- - YRya,) OF 1= (V1,...,1p) is
definedon Q:=Q U - UQ, =Ri x AU - UR, X A
Define the Bloch transform for each sheet
%(Q) = |r;k|71/2 Z U)l@ujeiiRj-q: qe sz7 Qj € -Aj-
RieR;
Transform the Hamiltonian to momentum space

Hyi(a) = ghy(a)d;(a).  qe€BZ,
Hix(q) = Z Cjkhjk(q + G)(q + Gj), j # k, qge BZ;,
GEeRF
, Cjk = Cj - Ck, and
hfj(q) = |rj'k|71/2 2 haj(yj(Rj)eiiRj.q, aj € Aj, qceE BZJ',
Ri€R;

where ¢; = |I'J’-“|1/2

Fe(q) = g/haa/(x)e_’x'qu, J#k aje A, axe Ay, qeR2.

The proof follows from the Poisson summation formula:

Pt > R = 3 6(g+G), qeR
Ri€R; GeR

Mitchell Luskin (University of Minnesota) January 13, 2020



Interlayer Scattering

Transform the Hamiltonian to momentum space

Hiti(a) = ghi(@)di(q),  qeBZ;,

Hicbi(q) = > cikhi(q+ G)n(q + G),  j+k, qeBZ;.
G,-eRj?"

We thus see that

Jj(q) scatters to Uy (q + Gj) = Dr(q + Gi— Gk), GjeR}, GieR;.

Bilayer:
1\/)/1(q) scatters to 1\/);(q + G —Gy), G eRY, GeR:.

z\b;(q + Gy — G,) scatters to E(q + (G — Gy) + (G — GY))
= 01(qg+ (G~ G)) — (G — G3)), GeRj, GeR;,

Mitchell Luskin (University of Minnesota) January 13, 2020
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Transform Bilayer Hamiltonian to Reciprocal Space

Note that if ¢ = modgz, G2,
expiq-R1 :expiG2-R1, RleRl.

Since the reciprocal lattice, R, uniformly samples the torus BZ; by g = modrf Gy,
we can equivalently formulate the Hamiltonian in reciprocal space.
The reciprocal space degrees of freedom are:

Qf =R} x Aj,

Q* =QF v Q3
QF = ((R5 n By) x A1) u ((Rf n By) x Ay),

r

and the Hamiltonian for the bilayer can then be defined by H:Q* — QF,

[Hl6a,67ar = Cihaa (G)dcer, if Gae QF, G'a/ € QF,
H Ga,G'a/ = COAaa’ + 5 i € : o €\,
[A] how (G + G) fGaeQr Ga e Qr

Mitchell Luskin (University of Minnesota)
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Shifted Configuration-Based Momentum Space Hamilton

Define the momentum Hamiltonian centered at a configuration g € BZ; by

[’L\l(q)]Ga,G’a’ = COBaa’(q + G + G/), if e Aj,()/ S Ah
[':/(CI)]Ga,G'a' = Cj/E;'(CI + G)dger, Ga,G'd € QJ’-".

We then have the following theorem based on the ergodicity property:

Theorem

J

Tr g(H) = Tr g(F) = v* ;ZA /B [ F@loaca,

where

—1
—[|BZQI-|A1|+|321|'|A2|] |

Mitchell Luskin (University of Minnesota) January 13, 2020
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Multilayer Momentum Space Hamiltonian
The multi-layer momentum degrees of freedom are

QF = uleQ}k = ulegj X .Aj,
where G; = {G = (G1,- - Gp) € ®kesRf : Gj = 0}. The intralayer interaction is

[i_\I]Ga,G& = 5@@/;-;(2 G), Ga,Gae QF.
X

If k # j and Gov€ Qy and Gé € Q;, we define the interlayer interaction by
[H] Ga,Ga

= S(1k—ji=13/IBZkl - IBZj|(Mses\ (k3 96,8,) Paar (G + G+ ), Gs).

seS\{k.j}

The density of states are given in momentum space by

/<> ) dE = v zz/ lg° H(@oacada. v* = () BZ]- |4

Jj=lacA;

Mitchell Luskin (University of Minnesota) January 13, 2020
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Graphene Band Structure

VN

[The electronic properties of graphene, Neto, Geim, et al, Rev. Mod. Phys]
[Correlated insulator behaviour at half-filling in magic-angle graphene superlattices,Cao, Jarillo-Herroro, et al, Nature]

Figure: L: Monolayer graphene bands at the Fermi level. The Dirac cone.
R: Band structure for non-interacting twisted bilayer graphene.

E = 50 meV E = 400 meV
Decoupled 4° tBLG Coupled 4° tBLG Decoupled 4° tBLG Coupled 4° tBLG
0.2 .2 0.2 .2
0.1 . .
<0
0.1 0. 0.
-0.2 -0.

-0.2 0 0.2 -0.2 l] 0.2 -0.2 0 0.2
ks k ks

Figure: Twisted bllayer graphene momentum local DoS

January 13,
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Momentum Space Hamiltonian Domain Reduction

o 50 100 150

Figure: Strongly interacting DoF in momentum g space (left) and reciprocal space (right).

Can approximate Icl(q) by I:I|Q;x<(q) in

2
Trg(H) = Tra(A) >t 3 / [ © Flgs (@)]on o0,
j=1 EAj sz

More efficient to approximate ﬁ(q) by I:l(q)|m< (@)

where QJ*U( ) < Q¥(q) are the strongly interacting degrees of freedom at energy e.

Mitchell Luskin (Univ Minnesota)
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Error Estimates for Hamiltonian Domain Reduction

(E—e)?

Let ¢ (E) = —2—e 22 . Then

Tr Gen(H) — v 2 | [en 0 Hlgr (@)]oa0a| < 57 7e77",

Jj=1la€cA; BZ;

For € with compact and connected strongly interacting sets 277 (q), we have the
improved convergence rate

Tr d)en -V Z 2 [¢em S 'L\/‘Q/ﬂ;(q)]OQ,Oa < Hi3eivr

j=lacA; BZ;

To obtain comparable error as kK — 0, % ~ k where r; for Q¥ and r, for Qj*er

Can do direct solution for eigenvalue problem for Q27 .

Mitchell Luskin (University of Minnesota) January 13, 2020 29 /



Smoothness of Real Space LDos

Can we improve the efficiency of the real space approach?

0.2-a)

0.1

LEDoS (states/eV)

Energy (eV)

Figure: LDoS is smooth for real space shift (disregisty, configuration). No strongly

interacting compact connected set of shifts.
January 13, 2020
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Improved Computational Efficiency for Momentum Space versus Real

Space
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Multilayer Challenge

For p = 2, I/-\l(q) can be reduced by restricting the Hamiltonian to DOF g + Kj that

lie in the a compact dark region of in the figure below.

For p > 2 the reduced Hamiltonian must retain the DOF in the cylinder

g+ K1+ Kz

that lies in the dark region.

-
2
<
c
<

(Un
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Kubo Formula for Conductivity on a Periodic Supercell

The Kubo formula for the linear response of charge to an applied field is

2
, e 1

Tji = ﬁ@ﬂ[aﬂ(iw + 0+ L) oufa(HN)],

where the current operator, Liouvillian operator, and Fermi-Dirac distribution are
0jH = i[R;, H] = i(R;H — HR)),  Lp(A) = é[H,A],
) -1
fa(E) = (1+ HE-5))

with w the frequency, 7 the dissipation, Er the Fermi-level.

The Hamiltonian H" now denotes H restricted to wave functions that are periodic
on a supercell of period r on R.
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Kubo Formula for Conductivity on a Periodic Supercell

The Kubo formula can equivalently be given by
o = \Q P Z Fe(Em, En){vn|0iH" |Vim )\ Vim| Ok H" | Vi),

where (Ep,, vin) are the eigenvalue, eigenvector pairs of H", £ = (8,7, w, EF), and
the conductivity function is given by

/e2 f/j(E — EF) — fﬁ(El — EF)

Fe(E B = I3 (E—EYE—-E +w+in)

The current-current correlation measure is given by

01 H' |V ) Vin| Ok H' | Vi ).

Mitchell Luskin (University of Minnesota) January 13, 2020



Kubo Formula for Periodic Structure

The limit o = lim,_,, o}, can be formally derived by replacing the sum of the
states indexed by m, n by integrals over the Brillouin zone, ['*, to obtain

o = lim ofy = 2 Fe(eq,m» €q/,n){Var,n|0jH|Va,m){Va,m| Ok H|Vq'.n) dq dq’,
= rsJT

* m,n

where (€4,m, Vq,m) are the eigenvalue-eigenvalue pairs of H.

How to generalize to incommensurate multilayers?

Mitchell Luskin (University of Minnesota)
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Current-current Correlation Measure

The velocity operator d,H" € R > s given by
[0pH |Ra,r7ar = iI[H",Rp]Ra,rrar = —i(R" = R)pHRo prar Ra,R'a’ € Q,,
where R,, is understood as a diagonal matrix
[RplRa,Rar = daarOrR Rp.

The matrix-valued current-current correlation measure ji” on the finite system €, is

¢(E, E") dji" (E, E')
R2

1 r jal r
- [mZ¢<Ef,E;/>Tr[v,-><vf|apH [V vyl H |]]

p,p'=1,2

where (E;, v;) denote the eigenpairs of the Hamiltonian H".

Mitchell Luskin (University of Minnesota) January 13, 2020 36 / 56



Current-current Correlation Measure

[ oy am e

= |y 2 98 Tl oo
p,p'=1,2

ii’

Approximate general functions ¢(E, E’) by sums of products of univariate functions
~ D bi(E)(E
iJ

We can then rewrite the current-current correlation measure as

R2(ﬁ(E,E)d,u(EE \Q\

Z Tr[i(H")dpH ¢;(H )0 H'].

Mitchell Luskin (University of Minnesota) January 13, 2020 37 / 56



Conductivity Tensor for Finite System

The conductivity tensor for the finite system Q, can now be defined by

1 .
o' =1 FC(Ea El)dpr(E7 E/)a
‘Qr‘ R?

where the conductivity function F. is defined as follows: if e is the elementary

charge, h the Planck constant, Ef the Fermi-level of the system, and
f3(E) = (1 + e?(E~FF))~1 the Fermi-Dirac distribution, then

/ ie2 f/j(E — EF) — fﬁ(E’ — EF)
Fo(EE) = R (E—EYE—-E +w+in)

Can we show that the thermodynamic limit

o:= lima’
r—0o0

exists and establish a rate of convergence?

Mitchell Luskin (University of Minnesota) January 13, 2020
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Local Current-current Correlation Measure

We can write the current-current correlation measure as

’ 1
/R OEE) i (E.E) = o 37 0(E ETe[[vXwldph lur) (vl ]

_ Z |:Z¢(Ei:Ei’)<eRa|Vi><ViapHrV,"><V,'/|ap/Hr|eRa>]

|Qr‘ Ra€ef,

i,

where
/0
[eR(Y]R'u’ = 5(xu’5RR’, R'a' e Q,,

and (E;, v;) are the eigenpairs of H".

Transform discretized integral over €2, to an integral over configuration space by
introducing the shifted Hamiltonian

[Hl(b)]Ra,R'a’ = hao (b(gaeATu) - 6&'6,4,_((4)) +R— R/), Ra, R'o e Q,

Mitchell Luskin (University of Minnesota) January 13, 2020 39 / 56



Local Current-current Correlation Measure
We can use the shifted Hamiltonian to approximate
(eralvi){vilopH"|vir) (vir|Op H'[era) ~ {€0a|vi){Vi|dpHy (b)|vir) {vi|0p Hy (b)|€ga)

where b = mod;(R;). Define the local current-current correlation measure pj[b] for
a finite system €,, at configuration b, in layer £, via

. ¢(E E")dp 2 @ (Ei, Eir) eoalvi){vi|OpHy (b)|vir) {vir|Op Hy (b)| €00,
ozE.Ag

where (Ej, v;) are the eigenpairs of H/(b), and the configuration-based approximate
current-current correlation measure and conductivity by

,f—y(/ u{[b]db+/ ug[b]db>, and
P r

o’ :/FC du'(E,E").

Mitchell Luskin (University of Minnesota) January 13, 2020 40 / 56



Exponential Convergence of Current-current Correlation Measure

We define a strip in the complex plane

S.={z|(z)e[-a—1,a+1],(z) € [—a,a]}.

Lemma

There exist unique measures pg[b] such that for all F that are analytic on S, x S,,

/R F(EE)d[BIE.E) — [ F(E.E)dulbl(E.E)

with the rate

[ FEEuIBIEE) ~ | FEE)dulbIE.E)
R2 R2

< sup ‘F(Z, Z/)|effyarfclog(a)7
2,2'€5,\S. 2

for some c,v > 0.
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Exponential Convergence of Conductivity
Theorem

We have

—r

o' —o0o and o' —o as r — oo.

If \ = min{n, 37}, then there exist constants ¢,y > 0 independent of \ and r,
such that
|U - Ur‘ < ef'y)\rfclog()\).

The global conductivity approximation only converges linearly

- 1
o —0or| < —.
r

Numerical Evaluation of the Approximate Conductivity:
Evaluate

o8] = [ FelEs, B2 dflb(E:. E2)
and integrate over local configurations b.

Computing eigenpairs E;, v; of H" takes O(|Q,\3)! Can we do better?

Mitchell Luskin (University of Minnesota) January 13, 2020



A Linear-Scaling Local Conductivity Algorithm

Alternatively, assume we have an approximation

ﬁC(El’ E2) = Z Cki ko Tkl(El) Tkz(E2) ~ FC(Eh EQ)
(kz,kz)GK

where K = N2 is a finite set of indices and T, (E) denotes the kth Chebyshev
polynomial defined through the three-term recurrence relation

To(X) = 17 Tl(X) = X, Tk+1(X) = 2x Tk(X) — kal(X)~
Define an approximate local conductivity
2
Gl =D D) ko [Tia(Hr (b)) 3Hre(b) Tio(Hr,e(b)) OkcHr (b)Joa.00
(=1 acA; (ki,k)eK
which satisfies the error bound

|o"[b] — &"[b]| < C|Fe — Fell—11p-
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Local Conductivity Via Tensor-Product Chebyshev Approximation

1. Vig '= €JH Tkl(H) €0a for all k]_ € Kl = {kl | 3/(2 . (k]_7 kz) € K}
2. Wi, 1= T;Q(H) (:]kH €0a for all k2 € K2 = {kg | E|k1 : (kl, kz) € K}

3.5"[b] := 2 Ve Wi,
(ki,ko)eK

Lines 1 and 2 take |Ki| and |K|, respectively, matrix-vector products when
evaluated using the Chebyshev recurrence relation.

Line 3 requires |K| inner products.

Due to the sparsity of H € R™", both types of products take O(|2,])
floating-point operations, and since |Kj|, |Kz| < |K| we conclude that the
computational cost is dominated by the cost of line 3 which is O(|K||,]).

The runtime of the algorithm is thus minimized by choosing |K| as small as possible
subject to the constraint that |F: — F¢|[_1,1]> is less than some error tolerance.
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Optimal Choice For The Index Set K

The optimal choice for the index set K is to truncate the infinite Chebsyhev series
0
F(EvB)i= ) ik Th(E) Ti(B)
ki, ka=0
using some small tolerance 7 > 0,
K(T) = {(kl, k2) € N2 ‘ ‘Ck1k2| < ’7'},

thus the size of K is linked to the decay of the Chebyshev coefficients cj,x, which in
turn depends on the regularity properties of F.
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Regularity of F;

Split the conductivity function F¢(Ei, E>) = gs.g (Ex, E2) f,, (B, E2) into

f3(E1 — EF) — f5(Ex — EF)
Ei—-E

83,5 (E1, B2) :=

and
1

E—-E+w+w

fw,n(Eh EQ) =
which are analytic everywhere except on the sets
Sor = (S5ih, xC) v (Cx SL,) with S}, = {Er + 2% | k odd}

and
Sum = {(E2,E2) € C* | 1 — B> +w + 11 = 0},

respectively.

The conductivity function F¢ is thus analytic except on the union of these two sets.
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Decay of Chebyshev Coefficients

In one dimension, the Chebyshev coefficients ¢, of a function f(x) analytic on a
neighborhood of [—1,1] decay exponentially, |cc| < C exp(—a k).

In two dimensions, we have two decay rates ag, o, and in the case of the
conductivity function F: we have two sets of singularities Sg g, S, limiting the
possible values of a; and as.

Increasing 3 renders conductivity calculations at low temperatures rather expensive.
Our pole expansion of F¢ provably reduces the cost of evaluating the local
conductivity to O(B2n~%/*) inner products for all 8 2 7~/ and whose actual

scaling was empirically found to be O(327~1%) inner products.

’ Constraint \ Parameter range \ # significant terms ‘

Relaxation B <n? (9(17’3 2)
Mixed Y2 < B <yt O(pn™?)
Temperature nl<pB 0(5?%)
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Decay of Chebyshev Coefficients

Theorem

There exist (vgjag (C), anti(¢) > 0 such that the Chebyshev coefficients cy,x, of F¢
are bounded by

|l k| < C(C) exp(—aiag (C) (ki + k2) — Qanti(C) | k1 — ko)

for some C(() < 0 independent of ki, kp. In the limit 3 — o0 and w,n — 0 with
|w| < Cn for some C > 0 and assuming Er € [—e, €] for some e < 1, it holds that

© 17) if C is relaxation- or mixed-constrained,
if { is temperature-constrained,

57)
/M) if C is relaxation-constrained,

[3*1) if ¢ is mixed- or temperature-constrained.
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Figure: Normalized Chebyshev coefficients &k, := |Ck ,|/|coo| of the conductivity function

F¢ with increasing temperature for fixed relaxation 7.
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The Chebyshev Decay Theorem suggests to truncate the infinite Chebyshev series to

Fer(ELB) = > Gk Th(Er) Ti(E2)
(ki,k2)EK(T)

where
K(r) = { (ko) € N2 | exp(—aiag () (K + ko) — ana(C) ks — kol) < 7}

It then follows from the Chebyshev Decay Theorem that

IFe = Ferli-rap = O(@ing ()™ can(€) ™ 7 10g(7)] ).

The | log(7)|-factor above varies very little over a large range of 7 such that one
may approximate it by a constant without losing much in accuracy. Doing so yields
that we need to choose the truncation tolerance 7. := giag (¢) @anii({) € to
guarantee an error |Fe — F¢ - |[—1.12 < €, which in turn yields

_ ‘ Iog(adiag(g) Uéanti(C) 5)|2
‘K(T€)| -0 < adiag(C) aanti(g) > ‘
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Pole Expansion For Low-Temperature Calculations

The number of coefficients eventually scales as O(/3?) so that the Chebyshev
algorithm becomes expensive at low temperatures.

To avoid these high costs at low temperatures, we propose to expand F¢ into a sum
over the poles in Sg g, .

Theorem
The conductivity function F¢ can be written as

Zzezk’ﬁ’EF % m + Rk,H,EF(Ela E)

Fe(Er, B) =
(B, B2) Ei—E+w+uwm

where
Zk B Er 1= {EF + % |le{—2k+1,—2k+3,...,2k—3,2k — 1}} < S5k

and the remainder Ry g g. is analytic on the larger biellipse

E(ak757EF)2 D E(OZO,B,EF)2 with o g g. the parameter of the ellipse through

(2k+1) me
EF + -
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Pole Expansion For Low-Temperature Calculations

For k large enough, the remainder term becomes relaxation constrained such that
the Chebyshev Algorithm becomes fairly efficient. For the pole terms, we propose
to employ the Chebyshev Algorithm using the weighted Chebyshev approximation

1 Tk1(E1) T’Q(EQ)

(B —2)(Ea—2)(Ey — By +w+1m) = kllQZeKZ @)t EE—-z E—z°

This leads to dominant computational cost:

2

O(f)  ifk<|"5]

nip = O(kn™) + 4 0(2%) if[27] < k< [ 257

O(n2) if [Z57] <

=y

inner products if we assume that solving a single linear system of the form
(H—zl)~! v is less expensive than O(n~3/2) inner products. This cost is
minimized if we choose k = O(B%2n!/4) which yields nip = O(8Y2775/4).
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Convergence of Local versus Naive Conductivity
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Figure: We let = 37, and look at convergence for 3 = 50 and 3 = 100. The local
technique converges exponentially, while the naive computation of conductivity is far
weaker. Also as expected, larger 8 and smaller i gives a slower rate of decay.
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