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Outline

Message: role of curves and moving frames for vehicle
coordination problems in three dimensions and design of
Interaction laws.

* Motivation for unit-speed models

 Curves and moving frames

e Interaction laws and formations Joint work with
Fumin Zhang

 Boundary following (obstacle avoidance) «—— (Princeton Univ.)

« UAV hardware-in-the-loop testbed (collaboration with NRL)

* Motion camouflage «—— See P.S. Krishnaprasad’s talk on Friday




Modeling with 3D Trajectories

gravity

Dragon Eye UAV l / l

~

\—/—\ Photo by Steven Dear
 Speed is constrained (no stopping) and trajectories are “smooth”

» Want to understand (or design) the trajectories, which involve sensor feedback

« An “autopilot™ is responsible for trajectory tracking



Framing Trajectories

 Natural Frenet Frame equations for arc-length
parameterized curve (S = arc-length parameter):

r'=x (prime denotes d/ds)
X"=yu+zv

y' = —Xxu

z' = =XV

* I is the position vector and {X,y,z} is an orthonormal
frame (with X the unit tangent vector to the trajectory).

« The natural curvatures are u and v. Planar trajectories:

* Speed = v = ds/dt r'=x
r=vX (dot denotes d/dt) X' =yu
X=v(yu+2zv) y'=-—Xu

y = —vXu
7 = —VvXV




Planar Unit-Speed Simulations

We take speed = 1 for all particles to understand the role of curvature control.

e Justh and Krishnaprasad, 2002




Red Arrows
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Regular Curves and Moving Frames

Frenet-Serret Frame

Regular curve:

Frenet-Serret equations:

y(©) = T

T() = K(SIN(S)

N'(s) = —&(S)T(9) +7(8)B(S)
B(s) = ~7(S)N(S)

Natural Frenet or Relatively
Parallel Adapted Frame  +

Regular curve:
S y(S)
C2

Equations for relatively parallel adapted frame:

y'(s) = T(9)

T'(s) = k1(S)M1(5) +k2(S)M2(S)
Mi(s) = —k(S)T(s)

My(8) = =K, ()T(s)

R. L. Bishop, Amer. Math. Month. (1975), 82(3):246-251



Control System on SE(3)

Frenet-Serret frame equations

Natural Frenet frame equations

7)) = T y'(s) = T(s)
T'(s) K(SN(S) T'(s) = K (SM,(s) +ky (M, (5)
N'G) = ~&(5)T(S) +(©BO) [ | Mi(5) = —Kk(ST()
B(s) ~2(SN(S) Mi(s) = —k(S)T(S)
L_I\ djg 7 |9 7||¢ & J
ds|0 1] [0 1[0 0

)

where g=[T N B] or [T M, M, ]
-« 0] [0 —k —k]

K
=K
0
5N
e, =0

0

T

<

—rlor|k O O
0 k, 0 O




Inversion

Frenet-Serret:

K(S) =

7"(s)|
Y'(8)-(¥"(s)x7"(s))
(x(s))’

7(8) =

Relatively Parallel Adapted Frame:

k() = 7"(5)-M,(0)- [k (0)y"(5)7'(0) do, =172

Relationship between (x,7) and (K, K,):

k(S) = \/ k2(s)+k:(s) g'(s)=1
(where @ =arg(k))



Normal Development of ¥

Trajectory
1s a circle

Trajectory
is planar

-
N

N
%%

If traced out at
constant speed,
trajectory is a
helix

Trajectory lies
on a sphere



Two Vehicles Interacting

unit speed assumption " =%

Z2 X, =Y,U, +2,V,
”: X2 Y, ==X,
7, Z, = —X,V,
X1
P! Y1 S Py
2 T 2
X, =Y,U, +2,V,
r, 2
yz - _quz
L, = —=X,V,

relative position vector — F =1, — I

The natural curvatures (u,,v,) and (U,,v,) are controls.



Two-Vehicle Formations

/ / / s

.
. .
........
. .
..........

Rectilinear formation ~ Collinear formation Circling formation
(motion perpendicular (vehicle separation
to the baseline) equals the diameter of

the orbit)



Two-Vehicle Lyapunov Functions

Rectilinear Law

V. =—In(1+X,-X)+h(r)

/

rect

Circling Law

/
relative heading term /

relative distance term




Gyroscopically Interacting Particles

* Note: V 1s not to be thought of as a synthetic potential (commonly used in
robotics for directing motion toward a target or away from obstacles).

* V is a Lyapunov function for the shape dynamics.

* The kinetic energy of each particle is conserved (because they interact via
gyroscopic forces), and initial conditions are such that they all move at unit

speed. _

e There is an analogy #vith the Lorentz force law for charged particles in a

magnetic field.
* In mechanics, gyroscopic forces are associated with vector potentials.

 References:
- L.-S. Wang and P.S. Krishnaprasad, J. Nonlin. Sci., 1992.
- J.E. Marsden and T.S. Ratiu, Introduction to Mechanics and Symmetry,
Springer, 1999, (2™ edition)



Lyapunov Function Derivative

 Lyapunov function: V , =—-In(1+ X, -X,)+ h(]r])

rect

* Derivative of V., along trajectories:

VAR ChL. Tt S S e Y
1+ X, - X, dt

_ (X, Y )IU, + (X, Y U + (X -Z,)V, + (X, -Z,)V, + f(r |){L(X2 _Xl):|
1+ X, - X, s

== X [(Xl 'yz)F(r>X29y27X1)+(X2 'yl)F(_raxlaylaxz)

_>@ + (X, Z,))F(r,x,,z,,X,)+ (X, -z)F(-r,X,,2,,X,)]

;
Find a control law which cancels the term f (|1 |) {m (X, = X, )}
<0

rect —

and ensures V




Outline of Convergence Proof

» LaSalle’s Invariance Principle used to prove convergence of the (r,X,,X,)-dynamics.

Largest invariant
set contained in E

= Set of equilibria
contained in QQ

Sublevel set of V containing
the initial condition

Manifold containing | .
(r,X;,X,) Set on which V = 0

R3xS2xS2

* Linear analysis used to assess stability of particular equilibria.



Systematically Deriving a 3D Law

=X
* Restrict to the planar setting. X1 =Yl
Y1 =X

rect

V., =-In(0+x,-x)+h(r) , %2

r =X, X
(V(ect has the same form in 2D as in 3D) X, = y2u2y2
* Find a suitable planar control law. Y, =—=X5U,
; X, X, + X, X d
V., =—-———""1—=2 "1+ f(r|))—|r
== T D gl

_ (X, -y U, + (X, Y,y + f(r |)L:—|(X2 _Xl):|

1+ X, X,

|
= = X [(X1 'yz)F(r>X29y2>X1)+(X2 'yl)F(_raxlaylaxz)]

<0

* Return to the 3D setting, and determine how to generalize the planar law so that the
calculation of V__ works out analogously to the planar setting.

rect

* Interpret the resulting 3D control law (to understand why it takes the form derived).



Planar Law and Interpretation

r
——Y,

T

Steering controls:
U =F(rX,y,X,)—f(r |)(

] (Justh and Krishnaprasad, 2002)

r
uz = F(r,xz,yz,xl)— f(| r |)[Ty2j

:_U(L.ij(L-yszr,qu y, - (v )(L-yzj
|r| ||"| |r|

S

Align each vehicle Align with the Steer toward or away from
perpendicular to the baseline other vehicle’s the other vehicle to maintain
between the vehicles. heading. appropriate sepa?tion.

* Biological analogy (swarming, schooling):
- Decreasing responsiveness at large separation distances.
- Switch from attraction to repulsion based on
separation distance or density.
- Mechanism for alignment of headings.

D. Griinbaum, “Schooling as a strategy for taxis in a noisy environment,” in Animal Groups in
Three Dimensions, J.K. Parrish and W.M. Hamner, eds., Cambridge University Press, 1997.




Control Laws for 3D

* Symmetries:

: h(P), -
- Depend only on shape quantities: SE(3) symmetry :. /x”
- Their effect depends only on r, X,, and X, '. al f(p)
- Both vehicles “run the same algorithm” \ 2’
\ ro p—
- %
u, = F (raX29y29X1)_ f (l r |)(my2j
.. Collision avoidance P = |r|
* Rectilinear Law:
r r
F(r, X5,Y,5,%, ) = _77(| r Xz](m'yzj"" lu(Xl yz)
: u>+n>0
Baseline alignment H;:admg ?
* Circling Law: alignment

F(r, 2 Y 2. Xy )_ _77( ! XzJ(L'y2j+ﬂ|:_X1'y2+2(L'X1J(L'y2ji|
|| | || ||

* Frame evolution: | = X, r, =X,
Xl =Yy,u +2z\Vv Xz =Y,u, +2,v,
yl = =XU yz = —X,U,

Z, ==XV, Z,=-X,V,

r=r,—r,



Rectilinear Control Law for 3D

 Natural curvatures for first particle:

: h(p)...-
U = F(=rx,y,x,) = F(r |)(—|:—|-ylj ‘,
‘: <= f(p)
v, = F(=1,X,,2,,%X,) - f(|r|)(—‘:—|.zlj e —
* Natural curvatures for second particle: p= |I’|
U, = F(rx,y2.%) = £ ) “';—|yJ

r
v, =F(r,x,,z,,x,)— f(r \)(—-22]

T

 Alignment term:

r r
F(r,x,,y,,X,)=-7 (m'xzj(m'h}rﬂ(xl Y,) p>5n>0

 Frame evolution: | = X,

rz = X,
X, =Y,U +2ZVv, X, =Y,U, +2Z,V, r=r,—n
yl = =XU yz = —X,U,
21 = —X1V1 Z, ==X,V

2 272



Interpretation of Rectilinear Law

* For particle #2, can express the control law as:

r r r
a(r, Xzax)_—ﬂ(|r| + X )”’ ux, = f(r |)m
u, =a-y,
V,=a-z,

* Force = projection of a onto the normal plane (to X,).

X,

Force

* Similarly for particle #1.



Generalization to n vehicles

Circling Law

Rectilinear Law |

* One copy of the natural Frenet frame equations for each vehicle:

r =X,

X; =Yy U, +zV, j=12,....n
Yj ==Xy,

Z; =—X;V,

» Average of pair-wise interactions used in the two-vehicle law:

1 r.—r

N |j_k|

» Convergence conjectured: we are led to consider a new class of n-body problems.




3-D Equilibrium Shapes (Formations)

* Control laws are assumed to be invariant under rigid motions.
 Shape variables capture relative distances and angles between vehicles.
 Shape equilibria correspond to steady-state formations.

 Three possibilities for particles moving at unit speed:

gl/ gz/, ....................

e,

A Sl

rectilinear formation circling formation helical formation




Lie Group Setting

* Represent each vehicle trajectory as a function on the Lie group SE(3) of rigid motions:

X z, r X z, r
gl — 1 yl 1 1 ’ 92 — 2 y2 2 2 c SE(S)

0 0 0 1| 0 0 0 1

* Define the shape variable:

_Xl'xz XY, X2, (rz_rl)'xl—

Yoo Xy Y Y, YiZ, (hp-n)-y,

Z, "Xy ZyvY, Z,-Z, (r,—r)-z,
0 0 0 1

« Left-invariant dynamics on SE(3):

9g=9,'0g, =

0O -u -v, 1
| u 0 0 0 Uy =u(9)
9, =9, v, 0 0 0 v, =V,(9)
0 0 0 0
0O -u, -v, 1
_ u, o 0 o u, =u, (97"
9279 v, 0 0 0 v, =v,(g")
0 0 0 0




Lie Group Setting (cont.)

 Lyapunov function:

View = —In(1+9,,) + h(r)

» Control law:

u, =-7$ gl;#j"’:ugzl"‘f(r) gz4j

Vi=-1 91;934j+ﬂ931+f(r) 934j

14 o 24

24
u, =-n| L2 j+ug”+f<n(grj

r

14 34

34
v, = | 23 j+yg“+f(ﬂ(grj

r

9 :I:gij:l> g :[gij]: r:\/9124+9224+9324



Obstacle Avoidance

* Idea: control inputs for the moving vehicle are determined by the trajectory of
the closest point on the obstacle surface.

 Applications: obstacle avoidance and boundary following with non-collision.

F. Zhang, E.W. Justh, and P.S. Krishnaprasad, CDC 2004.




Control Law for Boundary Following

Lyapunov function: VObSt =-In (X2 X ) i I’ﬂm Penalize distances from the

A

Favor motion parallel | boundary curve which are too
to the boundary curve large or small
r X, - X
2-D law: u2=u(x1-y2)—f(|r|)(—-y2j+ —— |
T 1+ |k ||r]
| f \
Align parallel to the Steer toward or away from the =~ Respond to the
boundary curve. boundary curve to maintain nonzero curvature of
appropriate separation. the boundary curve.
r . .
3-D law: u, = ,u(xl Y, )—f(r )(—| ‘Y, j + term involving (U,,V,)
r

V, = ,u(Xl -22)— f(r )[%-szﬂerm involving (U,,V,)

F. Zhang, E.W. Justh, and P.S. Krishnaprasad, CDC 2004.




Boundary-Following Simulation




Obstacle-Avoidance Simulation




K. Galloway (NRL, USN, UMCP) _Real-time visualization
D. Tremper, J. Heyer (NRL) B _blMle)

Z.R. Kulis, E.W. Justh, L5l

d P.S. Krishnaprasad (UMCP) ’—'

-

<
Flight dynamics
simulator PC DCS )

CAN/ Interface
USB
[ 1]
A———N

——N

-‘ UHF | “

Piccolo autopilot S—

(Cloud Cap Tech
UAV-to/-k?N //
VI SRS Ground Station

4

Embedded controller

- Lot TN Ground Station PC




Performance Criteria

» Faithful following of waypoint- « Sufficient separation between
specified trajectories vehicles (to avoid collisions)

Intervehicle distancesp

|'.A\'

e Minimize steering: u
for UAVs, turning

requires considerably |

more energy than la |

straight, level flight. 01T | )

Maneuverability is | oy .

also limited. tme
Y | o




Time Discretization (Planar System)

« Compute U,(t.), Uu,(t.), ..., u(t.), where t =mT for m=1, 2, ..., and let
U; ()= Uj(tm)a Vit e[ty tn)-

 Piecewise constant controls allow the vehicle positions to be computed

using simple formulas: ) |
i(ty)T ) —sinlu; ()T

[xj(tm+1) yJ(th)]:[Xj(tm) Yj(tm)] COS(UJ( ) ) Sln(uj( ) )

_sin(u i (tm )T) cos(uj (to, )T)

[ t t ] sin(u j(tm)T) t
i) Vil o) [T

1 '
uj(tm)

r; (tn1) =

Iy =X,
X; =YY,
Y =—Xu

01- (tm+1) = 91- (tm) + uj (tm )T

cosd. (t ) —siné.(t )
. j Uim+1 JAm
|:Xj (tm+1) yj (tm+1):| - |:Sin Hj (tm+1) COS 01- (tm+1):|

sinc(u; (t,)T)

+1;(t,)
q(u,-(tmﬁ)}

r-j (tm+1) :T [Xj(tm) y](tm):| |:

l-cos(z) 7 ¢ L .
() 5—$+--- (use, e.g., a sinusoidal approximation)

o)
—~
N
~
Q




Time Discretization (3D System)

* Piecewise constant controls: t.=mT for m=1, 2, ..., and

uj(t) — uj(tm)9 V; (1) =V, (tm)9 Vte [tmﬂtmﬂ)'

» Corresponding to uj(t,) and v,(t,), 3(¥,2) such that (X,¥,Z) is orthonormal,
and the trajectory for t € [t_,t .,) lies strictly in the X-y plane.

t

« Use the planar constant-steering-control formulas (in the X-y plane).

m-1



Motion Camouflage Bat Data

Echolocating FM bat,
Eptesicus fuscus

Cynthia Moss Timothy K. Horiuchi
wRSIp
Neuroscience and Cognitive S o
Science Program (NACS) )
http://www.bsos.umd.edu/psyc/batlab/index.html 4RYLP§

—. Distance (m)

0

Target is preying mantis,
Parasphendale agrionina.
Hearing organ blocked by vaseline.

a) apture t=0 Trial 1
Bat chasing flying insect
01 Top view of pursuit
02 Insect
-0.3
-04
0.5
L b
-1.7
1.8
0 1 Distance (m) 2 3

K. Ghose, T.K. Horiuchi, P.S. Krishnaprasad,
and C. Moss, Preprint, 2005




Motion Camouflage: Dragonfly Data

3-D reconstruction of territorial interaction of
two male dragonflies Hemianax papuensis.
Shadower — blue; Shadowee — red

y (mm)
200

200 z(mm) 1
a 2,200 2,000 1,800 1,600 1400 1,200 1,000

y (mm)
=200
~250 .
o= Thanks to Mandyam V. Srinivasan
(Australian National University)
~350 for inspiration and discussions

R s X (mm)

100 150 200 250 300 350 2,200 ,

From A.K. Mizutani, J.S.Chahl, and M.V. Srinivasan, “Motion camouflage
in dragonflies,”Nature, vol. 423, p. 604, 2003. (with permission)




Steering Law for Motion Camouflage

Frame equations Motion camouflage condition:
o é _ _
M, = X, r = ” re = Ar,
, * I 1s a fixed unit vector
Xp = Yplp * X\ 1s a time-dependent scalar
Yo = XU, Equivalent infinitesimal
, condition (we assume |I| # 0):
r, = VX,
v _ . r .\ r
Xe = Vel r— ( -r) =
ye = —VX.U, | r | | r |
Transverse component of
O<v<l

relative velocity = 0.

- Planar simulation of pursuer

- motion camouflage Distance function:
 pursuit law - 4r|
dt

rr
¥ [rf [r|
Drive I' to -1 for motion camouflaged pursuit.

Pursuer control law:

| y - r Pl
S evader | p T TH T

E.W. Justh and P.S. Krishnaprasad, “Steering laws for motion camouflage,” arXiv:math.OC/0508023, 2005.




Formations vs. Motion Camouflage

Formation Control

Motion Camouflage

Cooperation

Conflict

Mechanism for collision avoidance

Objective is intercept (i.e., collision)

Study asymptotic convergence to a
relative equilibrium (a.k.a, shape
equilibrium, formation)

Finite time problem: Study accessibility

of the state of motion camouflage: drive
cost functionI'toI' <-1+¢, fore>0

arbitrarily small.

3-D modeling with curves and moving frames — specifically, natural Frenet frames
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