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Outline
Message: role of curves and moving frames for vehicle 
coordination problems in three dimensions and design of 
interaction laws.

• Motivation for unit-speed models

• Curves and moving frames

• Interaction laws and formations

• Boundary following (obstacle avoidance)

• UAV hardware-in-the-loop testbed (collaboration with NRL)

• Motion camouflage

Joint work with 
Fumin Zhang 
(Princeton Univ.)

See P.S. Krishnaprasad’s talk on Friday



Modeling with 3D Trajectories
gravity

Photo by Steven Dear

wind

Dragon Eye UAV

• Speed is constrained (no stopping) and trajectories are “smooth”

• Want to understand (or design) the trajectories, which involve sensor feedback

• An “autopilot” is responsible for trajectory tracking



Framing Trajectories
• Natural Frenet Frame equations for arc-length 
parameterized curve (s = arc-length parameter):

• r is the position vector and {x,y,z} is an orthonormal
frame (with x the unit tangent vector to the trajectory).

• The natural curvatures are u and v.

• Speed = ν = ds/dt
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Planar trajectories:

(prime denotes d/ds)

(dot denotes d/dt)



Planar Unit-Speed Simulations
We take speed ≡ 1 for all particles to understand the role of curvature control. 

Justh and Krishnaprasad, 2002
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Equations for relatively parallel adapted frame:



Control System on SE(3)
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Inversion
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γNormal Development of
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Two Vehicles Interacting
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The natural curvatures (u1,v1) and (u2,v2) are controls.



Two-Vehicle Formations

Collinear formation Circling formation 
(vehicle separation 
equals the diameter of 
the orbit)

Rectilinear formation 
(motion perpendicular 
to the baseline)



Two-Vehicle Lyapunov Functions
Rectilinear Law Circling Law
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• Note: V is not to be thought of as a synthetic potential (commonly used in 
robotics for directing motion toward a target or away from obstacles). 

• V is a Lyapunov function for the shape dynamics.

• The kinetic energy of each particle is conserved (because they interact via 
gyroscopic forces), and initial conditions are such that they all move at unit 
speed.

• There is an analogy with the Lorentz force law for charged particles in a 
magnetic field.

• In mechanics, gyroscopic forces are associated with vector potentials.

• References:
- L.-S. Wang and P.S. Krishnaprasad, J. Nonlin. Sci., 1992.
- J.E. Marsden and T.S. Ratiu, Introduction to Mechanics and Symmetry,     

Springer, 1999, (2nd edition)

Gyroscopically Interacting Particles
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Lyapunov Function Derivative
• Lyapunov function:

• Derivative of Vrect along trajectories:

2 1ln(1 ) (| |)rectV h= − + ⋅ +x x r
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Outline of Convergence Proof

• LaSalle’s Invariance Principle used to prove convergence of the (r,x1,x2)-dynamics.

• Linear analysis used to assess stability of particular equilibria.

R3×S2×S2

Ω

E
M

Manifold containing 
(r,x1,x2)

Sublevel set of V containing 
the initial condition

0V =�Set on which

Largest invariant 
set contained in E
≡ Set of equilibria
contained in Ω



• Restrict to the planar setting.

• Find a suitable planar control law.

• Return to the 3D setting, and determine how to generalize the planar law so that the 
calculation of          works out analogously to the planar setting.

• Interpret the resulting 3D control law (to understand why it takes the form derived). 

Systematically Deriving a 3D Law
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Planar Law and Interpretation

Align each vehicle 
perpendicular to the baseline 
between the vehicles.

Steer toward or away from 
the other vehicle to maintain 
appropriate separation.

Align with the 
other vehicle’s 
heading.

D. Grünbaum, “Schooling as a strategy for taxis in a noisy environment,” in Animal Groups in 
Three Dimensions, J.K. Parrish and W.M. Hamner, eds., Cambridge University Press, 1997.

• Biological analogy (swarming, schooling):
- Decreasing responsiveness at large separation distances. 
- Switch from attraction to repulsion based on   
separation distance or density.

- Mechanism for alignment of headings.

Steering controls:
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or
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Control Laws for 3D
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• Symmetries:
- Depend only on shape quantities: SE(3) symmetry
- Their effect depends only on r, x1, and x2

- Both vehicles “run the same algorithm”

• Rectilinear Law:

• Circling Law:

• Frame evolution:
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Rectilinear Control Law for 3D
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• Natural curvatures for first particle:

• Natural curvatures for second particle:

• Alignment term:

• Frame evolution:



Interpretation of Rectilinear Law
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• For particle #2, can express the control law as:

• Force = projection of a onto the normal plane (to x2).

• Similarly for particle #1. 
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Generalization to n vehicles

• One copy of the natural Frenet frame equations for each vehicle:

• Average of pair-wise interactions used in the two-vehicle law:

• Convergence conjectured: we are led to consider a new class of n-body problems.
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3-D Equilibrium Shapes (Formations)
• Control laws are assumed to be invariant under rigid motions. 

• Shape variables capture relative distances and angles between vehicles.  

• Shape equilibria correspond to steady-state formations.

• Three possibilities for particles moving at unit speed:

circling formation
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Lie Group Setting
• Represent each vehicle trajectory as a function on the Lie group SE(3) of rigid motions:

• Define the shape variable:

• Left-invariant dynamics on SE(3):
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Lie Group Setting (cont.)
• Lyapunov function:

• Control law:
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Obstacle Avoidance
• Idea: control inputs for the moving vehicle are determined by the trajectory of 
the closest point on the obstacle surface.

• Applications: obstacle avoidance and boundary following with non-collision.
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F. Zhang, E.W. Justh, and P.S. Krishnaprasad, CDC 2004.



Control Law for Boundary Following
( )obst 2 1ln (| |)V h= − ⋅ +x x r

Favor motion parallel 
to the boundary curve

Penalize distances from the 
boundary curve which are too 
large or small

Lyapunov function: 

Align parallel to the 
boundary curve.

Steer toward or away from the 
boundary curve to maintain 
appropriate separation.

Respond to the 
nonzero curvature of 
the boundary curve.
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F. Zhang, E.W. Justh, and P.S. Krishnaprasad, CDC 2004.



Boundary-Following Simulation



Obstacle-Avoidance Simulation



UAV Hardware-in-the-Loop Testbed

Flight dynamics 
simulator PC

Piccolo autopilot
(Cloud Cap Technology)

Ground Station

Ground Station  PC

CAN/
USB

UHF

Embedded controller

UAV-to-UAV 
wireless network

Real-time visualization 
(NRL’s SIMDIS)

DCS 
Interface

K. Galloway (NRL, USN, UMCP)
D. Tremper, J. Heyer (NRL)
Z.R. Kulis, E.W. Justh, 
P.S. Krishnaprasad (UMCP)

• UAVs communicate directly 
with each other
• Nominal trajectories computed 
onboard each vehicle
• Objective: minimize transition 
to flight demo with actual UAVs

Dragon Eye



Performance Criteria

Waypoints

time

Steering controlsumax

-umax

0

Steering “Energy”

time

time

Intervehicle distances

• Faithful following of waypoint-
specified trajectories

• Sufficient separation between 
vehicles (to avoid collisions)

• Minimize steering: 
for UAVs, turning 
requires considerably 
more energy than 
straight, level flight.  
Maneuverability is 
also limited.



Time Discretization (Planar System)
• Compute u1(tm), u2(tm), ..., un(tm), where tm=mT for m=1, 2, ..., and let

• Piecewise constant controls allow the vehicle positions to be computed 
using simple formulas:
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Time Discretization (3D System)
• Piecewise constant controls: tm=mT for m=1, 2, ..., and

• Corresponding to uj(tm) and vj(tm), ∃ such that               is orthonormal, 
and the trajectory for t ∈ [tm,tm+1) lies strictly in the x- plane.

• Use the planar constant-steering-control formulas (in the x- plane).

1( ) ( ), ( ) ( ), [ , ).j j m j j m m mu t u t v t v t t t t += = ∀ ∈
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Motion Camouflage: Bat Data

Cynthia Moss

http://www.bsos.umd.edu/psyc/batlab/index.html

Echolocating FM bat, 
Eptesicus fuscus

Timothy K. Horiuchi

Target is preying mantis, 
Parasphendale agrionina.
Hearing organ blocked by vaseline.  

Kaushik Ghose

K. Ghose, T.K. Horiuchi, P.S. Krishnaprasad, 
and C. Moss, Preprint, 2005

P.S. Krishnaprasad

Neuroscience and Cognitive 
Science Program (NACS)



Motion Camouflage: Dragonfly Data
3-D reconstruction of territorial interaction of 
two male dragonflies Hemianax papuensis.
Shadower – blue; Shadowee – red 

Thanks to Mandyam V. Srinivasan
(Australian National University) 
for inspiration and discussions

From A.K. Mizutani, J.S.Chahl, and M.V. Srinivasan, “Motion camouflage 
in dragonflies,”Nature, vol. 423, p. 604, 2003. (with permission)



Steering Law for Motion Camouflage

xp

yp

rp

ye

re

xe p p

p p p

p p p

u

u

=

=

= −

r x

x y

y x

�

�
�

e e

e e e

e e e

v
v u
v u

=
=
= −

r x
x y
y x

�
�
�

0 1ν< <

Frame equations
^ p e λ ∞≡ − =r r r r

. 0
| | | |
⎛ ⎞

− =⎜ ⎟
⎝ ⎠

r rr r
r r

� �

Motion camouflage condition:

Equivalent infinitesimal 
condition (we assume |r| ≠ 0):

Transverse component of 
relative  velocity = 0.

• r∞ is a fixed unit vector
• λ is a time-dependent scalar

pursuer

evader

Planar simulation of 
motion camouflage 
pursuit law | |

| | | | | |

d
dtΓ = = ⋅

r r r
r r r

�
� �

Distance function:

Drive Γ to -1 for motion camouflaged pursuit.

Pursuer control law:

| |pu µ ⊥⎛ ⎞
= − ⋅⎜ ⎟

⎝ ⎠

r r
r
�

E.W. Justh and P.S. Krishnaprasad, “Steering laws for motion camouflage,” arXiv:math.OC/0508023, 2005.



Formations vs. Motion Camouflage

Formation Control

Cooperation

Mechanism for collision avoidance

Study asymptotic convergence to a 
relative equilibrium (a.k.a, shape 
equilibrium, formation)

Motion Camouflage

Conflict

Objective is intercept (i.e., collision)

Finite time problem: Study accessibility 
of the state of motion camouflage: drive 
cost function Γ to Γ ≤ - 1 + ε, for ε > 0 
arbitrarily small.

3-D modeling with curves and moving frames – specifically, natural Frenet frames
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