Scalable Approaches to Deploying Swarms of Vehicles and Sensors

Vijay Kumar

GRASP Laboratory University of Pennsylvania

www.swarms.org

Research supported by ARO Swarms (R. Zachery) and ONR IA (M. Steinberg)

—— University of Pennsylvania —

Scalable sWarms of Autonomous Robots and Mobile Sensors

An ARO MURI Project

www.swarms.org

www.swarms.org

Outline

• Why swarms?

- Overview of approaches
- Field Experiments
 - Heterogeneous network of robots (UGVs, UAVs)

Abstractions for control of large teams

- Decentralized control with local information
- Design of simple behaviors
- Design of simple estimators

1. Motivation

Why Swarms?

- Robot networks applications with large numbers of networked robots, embedded computers, high data rate sensors (cameras)
 - ▼ ¥20 Trillion industry* by 2013, Network robot forum
- n ↑ (1-10 to 10's to 100's)?

Research problems: Communication, control and perception

- Self aware, localize, organize
- Navigation/mobility with local sensing/communication
- Integrate information

*Japanese Ministry of Internal Affairs and Communications, "Toward the Realization of Network Robots", 2003.

——— University of Pennsylvania —

Swarming in the Military

Scythians vs. Macedonians, Central Asian Campaign, 329-327 B.C.

Mongols, "the ultimate swarmers" vs. Eastern Europeans, Battle of Liegnitz, 1241

- Decentralizated command and control
- Communication for situational awareness
- Emphasis on mobility

German U-boats use "wolfpack tactics" versus British convoys BATTLEFIELD of the Atlantic, 1939-1945

• Use of "radio tactics" for "self-organization"

– University of Pennsylvania –

Approaches to Control/Planning: Taxonomy		
	Centralized	Decentralized
Vehicles identified		
Identical vehicles		
(anonymous)		
	- University of Pennsylvania	GRASP 7

Approach 1

Centralized planning

	Centralized	Decentralized
Vehicles identified		
Identical vehicles		

Exponential growth in complexity ^{(Motion Planning under Uncertainty," IEEE} International Conference on Robotics and

Zhang, H., Kumar, V., and Ostrowski, J., Automation, Leuven, Belgium, May 16-21, 1998

——— University of Pennsylvania –

		Centralized	Decentralized
	Vehicles identified	PLANNING	CONTROL
	Identical vehicles		
Belta and Kumar, ASME, 2001			

- Each robot has a single sensor (omnicam)
- Task imposes constraints on relative positions (and orientations)
- Formation to maintain constraints

	Centralized	Decentralized
Vehicles identified		
Identical vehicles		

[Pereira, Kumar and Campos, IJRR 2004]

11

– University of Pennsylvania —

MARS 2020 Final Demonstration

Fort Benning McKenna MOUT Site December 1, 2004

University of Pennsylvania, Georgia Tech, USC, BBN, and Mobile Intelligence

Luiz Chaimowicz, Anthony Cowley, Ben Grocholsky, Ani Hsieh, Jim Keller Vijay Kumar, Camillo Taylor (University of Pennsylvania)

MARS 2020

Network-centric team of heterogeneous platforms

- Adapt to variations in communication performance and strive to maximize suitably defined network-centric measures for perception, control and communication
- Provide situational awareness for remotely-located humans in a wide range of conditions
- Integrate heterogeneous air-ground assets in support of continuous operations in urban environments

Network of UAVs and UGVs

GRASE

14

University of Pennsylvania

UGV Navigation with Uncertainty

- 1. Bearing control
 - Control θ
- 2. Velocity control
 - Control (v, ω)
- 3. Position control
 - Go to (x, y)
- 4. Path control
 - Stay within ε of path

16

University of Pennsylvania

Field Experiments

ICRA 2004, 2005, 2006

17

RASP

- University of Pennsylvania

Scaling up

Single operator tasking a heterogeneous team of robots for persistent surveillance

Network-centric approach to situational awareness

- Independent of who is where, and who sees what
- Fault tolerant

Decentralized control

But...

Robots are identified

 Control involves maintaining "proximity graph"

Robots are connected through a communication network

— University of Pennsylvania

Taxonomy of Approaches

	Centralized	Decentralized
Vehicles identified	1. Guarantees on performance	
	2. Optimality	alable
Identical vehicles	Anonymity, F	Robustnes
	- University of Pennsylvania –	GRASP 19

Cooperative search, identification, and localization

UAV search pattern

UGV identification and localization of potential targets

In theory, theory and practice are the same. In practice, they are not.

Yogi Berra Yankees catcher

– University of Pennsylvania -

GRASP

Taxonomy of Approaches

	Centralized	Decentralized
Vehicles identified		
Identical vehicles		 Shared information global knowledge of cost guarantees

GRASE

Scalable Approaches to Swarming

Abstractions of groups

Control of Shapes and Motion

Example

1. Abstraction is the bounding rectangle

- 2. Robot behaviors consistent with the abstraction
 - Controllers regulate the shape/orientation of the rectangle
 - Estimates estimate the shape/orientation of the rectangle

Abstract behavior

- 1. Plan trajectory $(g^{des}(t), s^{des}(t))$ to attain a desired formation and pose (g^{des}, s^{des})
- 2. Control on the abstraction manifold $u_{s} = \dot{s}^{des}(t) + K_{s}(s^{des}(t) - s(t))$ $u_{g} = \xi^{des}(t) + K_{g}(e_{g}(t)),$ $\dot{\xi}^{des}_{g}(t) = (g^{des}(t))^{-1} \dot{g}^{des}(t); \quad \hat{e}_{g}(t) = \log(g^{-1}(t)g^{des}(t))$
- 3. Robot behaviors $\dot{q} = \gamma(s)\omega X_q^{\omega} + \dot{\mu}X_q^{\mu} + \eta(s)\dot{s}X_q^s$

The closed loop system globally asymptotically converges to the submanifold $g = g^{des}$, $s = s^{des}$.

Extensions

Primitives and Composition of Groups

Split: Groups can dynamically split when faced with obstacles or other unforeseen situations.

Merge: Groups that are moving to the same goal will merge when both groups can are "close"

University of Pennsylvania ———

Global guarantees from local information

Extensions to higher dimensions

Nathan Michael, ICRA 2006, RSS (submitted), 2006.

More complex shapes

S(X, Y)

f(x, y)

Hsieh and Kumar, ICRA 2006

Shape Function

Given a desired shape, *S*, and its implicit function representation,

 $s(x, y) = 0_{I}$

the *shape function* is a map

$$f: \mathcal{R}^2 \to \mathcal{R} \quad f(x,y) = [s(x,y)]^2$$

Shape Discrepancy Function Given a formation of robots, the shape discrepancy function is the map

$$\phi_{\mathcal{S}}: Q \to \mathcal{R}, \ \phi_{\mathcal{S}}(\mathbf{q}) = \sum_{i} f(x_i, y_i)$$

- University of Pennsylvania

Synthesizing Implicit Functions

Example: letter 'P' with 41 constraints:

Chaimowicz, L., and Kumar, V. "Pattern Generation with a Swarm of Robots," IEEE Int. Conf Robotics Automation, Barcelona, 2005.

- University of Pennsylvania

Decentralized Control

Dynamics

Given N robots with the dynamics $\dot{q}_i = v_i, \ \dot{v}_i = u_i$

A desired shape s(x, y) = 0,

And the decentralized controller $u_{i} = -\nabla_{i} f(q_{i}) - Cv_{i} - \sum_{j} \nabla_{i} g_{ij}(q_{i}, q_{j})$ Convergence to pattern damping Interactions with neighbors <u>University of Pennsylvania</u> \longrightarrow 3

Pattern Generation

Result 1

For a system of N robots each with dynamics $\dot{q}_i = v_i, \; \dot{v}_i = u_i$

shape function, *f*, and control Symmetric! $u_i = -\nabla_i f(q_i) - Cv_i - \sum_j \nabla_i g_{ij}(q_i, q_j)$ the equilibrium points minimize the shape discrepancy function.

Pattern Generation

 Ω

 ∂S

Result 2

For the initial conditions given by

$$\begin{aligned} \boldsymbol{x}_{0} &\in \boldsymbol{\Omega}_{c}, \\ \boldsymbol{\Omega}_{c} &= \{ \boldsymbol{\chi} \in \boldsymbol{\chi} \mid V(\boldsymbol{q}, \boldsymbol{v}) \leq c \}, \end{aligned}$$

where

$$V(q, v) = \phi_{S} + \sum_{i} \sum_{j \in N_{i}} g_{ij} + \frac{1}{2} v^{T} v$$

the system converges to some invariant set, $\Omega_I \subset \Omega_c$, such that the points in Ω_I minimizes the shape discrepancy function. Also the set

$$\Omega_{S} \subset \Omega_{I} \subset \Omega_{c}$$

is a stable sub manifold.

Pattern Generation

Result 3

For any smooth star convex shape, S, the system of N robots converges asymptotically to Ω_{s} .

Union of star shapes

Beyond Pattern Formation and Navigation ...

- University of Pennsylvania

GRAS

Biological Models for Construction

Termites construct mounds as tall as 5 m to store food and house brood following 2 simple rules [Kugler 1990]

Heppner, F., & Grenander, U. A Stochastic Nonlinear Model for Coordinated Bird Flocks. In *The Ubiquity of Chaos.* AAAS, Washington DC, 1990.

Animal Groups in Three Dimensions: How Species Aggregate (1997) Ed. Julia K. Parish and William M. Hamner.

Biological Models (2)

Pack of wolves surrounds larger and more powerful moose.

Predator-prey model [Korf 1992] Moose: Moves to maximize its distance from nearest wolf

Wolves: Each wolf moves toward the moose and away from nearest wolf

University of Pennsylvania

Biological Models for Decision Making

Honey bees and ants scouting for nests

Three simple rules

- Explore
- Rate nests
- Recruit
 - Tandem run; or
 - Transport

Information gathering Evaluation Deliberation Consensus building

Franks et al, Trans. Royal Society, 2002

[Stephen Pratt, Princeton/ASU]

University of Pennsylvania -

No ants left behind! Y_2 8-Dimensional piece-wise smooth All ants at the system good nest mode Each mode is characterized by multi m_3 affine ordinary differential equations *mode* m_1 mode m_2 PARAMETERS $> Y_1$ Spring Berman University of Pennsylvania GRASP 51

Summary

Keys to scaling

- Decentralized behaviors
- Anonymity
- Derived from local information
- Simplicity

Our experimental systems

Decentralized, simple; but robots were identified

Control on abstraction manifold

- Patterns or shapes
- Group motion

Challenges

- Bottom-up design of behaviors
- Providing guarantees with anonymity
- Bio-inspired and not bio-mimicry

 — White the second second

— University of Pennsylvania