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Outline

Why swarms?
Overview of approaches

Field Experiments
Heterogeneous network of robots (UGVs, UAVs)

Abstractions for control of large teams
Decentralized control with local information
Design of simple behaviors
Design of simple estimators
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1. Motivation

Why Swarms?
 Robot networks - applications with large numbers of

networked robots, embedded computers, high data rate
sensors (cameras)
 ¥20 Trillion industry*  by 2013, Network robot forum

 n ↑ (1-10 to 10’s to 100’s)?

Research problems: Communication, control and perception
 Self aware, localize, organize
 Navigation/mobility with local sensing/communication
 Integrate information
*Japanese Ministry of Internal Affairs and Communications, “Toward the
Realization of Network Robots”, 2003.
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Swarming in Nature
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(with David Skelly, Yale Univ.)
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Swarming in the Military

•

Mongols, “the ultimate swarmers” vs. Eastern Europeans, Battle of
Liegnitz, 1241

 Decentralizated command and control

 Communication for  situational awareness

 Emphasis on mobility

German U-boats use “wolfpack tactics” versus British convoys, Battle
of the Atlantic, 1939-1945

 Use of “radio tactics” for “self-organization”

Scythians vs. Macedonians, Central Asian Campaign, 329-327 B.C.
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Approaches to Control/Planning: Taxonomy

Identical
vehicles

(anonymous)

Vehicles
identified

DecentralizedCentralized
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Approach 1
Centralized planning 

Exponential growth in complexity!

Identical
vehicles

Vehicles
identified

DecentralizedCentralized

Zhang, H., Kumar, V., and Ostrowski, J.,
“Motion Planning under Uncertainty,” IEEE
International Conference on Robotics and
Automation, Leuven, Belgium, May 16-21, 1998
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Approach 2

 Centralized planning in
“smaller” space

 Decentralized control

Zefran, Kumar and Croke, ITRA, 1996
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Approach 2

Identical vehicles

CONTROLPLANNINGVehicles identified

DecentralizedCentralized

Belta and Kumar, ASME, 2001
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 Each robot has a single sensor
(omnicam)

 Task imposes constraints on
relative positions (and
orientations)

 Formation to maintain
constraints

Identical
vehicles

Vehicles
identified

DecentralizedCentralized

[Pereira, Kumar and Campos, IJRR 2004]
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MARS 2020 Final
Demonstration

Fort Benning McKenna MOUT Site
December 1, 2004

Luiz Chaimowicz, Anthony Cowley, Ben Grocholsky,  Ani Hsieh, Jim Keller
Vijay Kumar, Camillo Taylor (University of Pennsylvania)

University of Pennsylvania, Georgia Tech, USC,
BBN, and Mobile Intelligence



University of Pennsylvania 13GRASP

MARS 2020

Network-centric team of heterogeneous platforms
 Adapt to variations in communication performance and

strive to maximize suitably defined network-centric
measures for perception, control and communication

 Provide situational awareness for remotely-located humans
in a wide range of conditions

 Integrate heterogeneous air-ground assets in support of
continuous operations in urban environments
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Network of UAVs
and UGVs
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ε

UGV Navigation with Uncertainty

1. Bearing control

2. Velocity control

3. Position control

4. Path control

 Control θ

 Control (v, ω)

 Go to (x, y)

 Stay within ε of path
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Field Experiments

ICRA 2004, 2005, 2006
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Scaling up
Single operator tasking a heterogeneous team of robots for persistent
surveillance

Network-centric approach to situational awareness
 Independent of who is where, and who sees what
 Fault tolerant

Decentralized control

But…
Robots are identified
 Control involves maintaining

“proximity graph”

Robots are connected through a
communication network
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Taxonomy of Approaches

Identical
vehicles

1. Guarantees
on performance
2. Optimality

Vehicles
identified

DecentralizedCentralized

Anonymity, RobustnessSc
al

ab
le
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Cooperative search,
identification, and localization

With
anonymous
robots
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Information Model: Shared
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Confidence Ellipsoids
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UGV Trajectory
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uk
* = argmin logYk+1( )
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UAV search pattern
UGV identification and localization
of potential targets

Grocholsky et al,  ISER 2004, Singapore
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In theory, theory and practice are the same.
In practice, they are not. 

Yogi Berra
Yankees catcher



University of Pennsylvania 26GRASP

Things do go wrong …
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Taxonomy of Approaches

Shared information
• global knowledge

of cost
• guarantees

Identical
vehicles

Vehicles
identified

DecentralizedCentralized
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Scalable Approaches to
Swarming

Abstractions of groups
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Abstraction
X

A

1. dim(A) << dim(X)
2. dim(A) is independent of N

Formulate behavior on A!



University of Pennsylvania 30GRASP

Control of Shapes and Motion

Example
1. Abstraction is the

bounding rectangle

2. Robot behaviors consistent with the abstraction
 Controllers regulate the shape/orientation of the

rectangle
 Estimates estimate the shape/orientation of the

rectangle
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Behavior TQXQ ∈ q

qX

Q

iq
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1. φ is a submersion
2. dim(A) << dim(Q)
   & independent of N

Abstractions for Swarms

φ a
AQ→:φAbstraction: A

Abstract behavior TAYA∈

qdφ
aY

Inverse Problem: Given desired YA find XQ
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Properties: Abstraction & Controller

Probabilistic guarantees
- e.g., 99% of the team
will stay within ellipsoid

Belta, C., and Kumar, V. “Abstractions and Control Policies for a
Swarm of Robots,” IEEE Transactions on Robotics, vol.20, no.5,
2004: 865-875.

Geometric properties
(e.g., colinearity,
parallelism) are preserved

Left invariance

Orthogonality

gg =φ
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Product structure,
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Abstract behavior

1.Plan trajectory (gdes(t), sdes (t)) to attain a desired
formation and pose (gdes, sdes)

2. Control on the abstraction manifold

3. Robot behaviors

The closed loop system globally asymptotically
converges to the submanifold g= gdes, s= sdes.
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Extensions
Primitives and Composition of Groups

Split: Groups can dynamically split when faced with
obstacles or other unforeseen situations.

Merge: Groups that are moving to the same goal
will merge when both groups can are “close”

Global guarantees from local information

Extensions to higher dimensions

Nathan Michael, ICRA 2006, RSS (submitted), 2006.
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More complex shapes
Shape Function

Given a desired shape, S, and its implicit
function representation,

s(x, y) = 0,
the shape function is a map

Shape Discrepancy Function
Given a formation of robots, the shape
discrepancy function is the map

s(x, y) = 0

f(x, y)

Hsieh and Kumar, ICRA 2006



University of Pennsylvania 36GRASP

Synthesizing
Implicit Functions
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Example: letter ‘P’ with 41 constraints:

Chaimowicz, L., and Kumar, V. “Pattern Generation with a Swarm
of Robots,” IEEE Int. Conf Robotics Automation, Barcelona, 2005.



University of Pennsylvania 37GRASP

Decentralized Control
Dynamics

Given N robots with the dynamics

A desired shape
s(x, y) = 0,

And the decentralized controller

Convergence to pattern damping Interactions with neighbors
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Pattern Generation
Result 1

For a system of N robots each with dynamics

shape function, f, and control

the equilibrium points minimize the shape
discrepancy function.

Symmetric!
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Pattern Generation

Result 2
For the initial conditions given by

x0 ∈ Ωc,
Ωc = {x ∈ X | V(q, v) ≤ c},

where

the system converges to some invariant set, ΩI ⊂ Ωc,
such that the points in ΩI minimizes the shape
discrepancy function. Also the set

ΩS ⊂ ΩI ⊂ Ωc

is a stable sub manifold.
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Simulations
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Simulations
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Experiments
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Experiments
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Pattern Generation

Result 3
For any smooth star convex shape, S, the
system of N robots converges asymptotically
to ΩS.
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Beyond Pattern Formation
 and Navigation …
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Biological Models for
Construction

Termites construct mounds as tall
as 5 m to store food and house
brood following 2 simple rules
[Kugler 1990]

Animal Groups in Three Dimensions: How Species
Aggregate (1997)  Ed. Julia K. Parish and William M.
Hamner.

Heppner, F., & Grenander, U. A Stochastic Nonlinear
Model for Coordinated Bird Flocks. In The Ubiquity of
Chaos. AAAS, Washington DC, 1990.
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Biological Models (2)

Predator-prey model [Korf 1992]
Moose:  Moves to maximize its distance from

nearest wolf
Wolves:  Each wolf moves toward the moose and

away from nearest wolf

Pack of wolves surrounds larger
and  more powerful moose.
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Biological Models for Decision Making

Three simple rules
 Explore
 Rate nests
 Recruit

 Tandem run; or
 Transport

Franks et al, Trans. Royal Society, 2002

Information gathering
Evaluation

Deliberation
Consensus building

Honey bees and ants scouting for nests

[Stephen Pratt, Princeton/ASU]
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No ants left behind!

Y1

Y2

mode m1
mode m2

mode 
m3

8-Dimensional piece-wise smooth
system

Each mode is characterized by multi-
affine ordinary differential equations

PARAMETERS

Spring Berman

All ants at the
good nest
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Summary
Keys to scaling

 Decentralized behaviors
 Anonymity
 Derived from local information
 Simplicity

Our experimental systems
 Decentralized, simple; but robots were identified

Control on abstraction manifold
 Patterns or shapes
 Group motion

Challenges
 Bottom-up design of behaviors
 Providing guarantees with anonymity
 Bio-inspired and not bio-mimicry


