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Large-scale Cooperative Robotics: Swarm engineering
• Large groups of animals often exhibit sophisticated collective behaviors, 

arising from the local interaction of “agents” with individual goals, and 
limited ability to exchange information.

- The emergence of complex collective behaviors from local interactions is a fascinating 
research topic. 

- Today large-scale teams or “swarms” of robots are becoming increasingly feasible; growing 
interest in motion coordination algorithms, scalable to large groups.

• Substantial efforts devoted to understanding HOW to

- Design local interaction rules to recreate natural-looking large-scale swarm 
dynamics, in simulation and, more recently, in experimental demonstrations. 

- Design decentralized algorithms to achieve certain basic tasks (formation 
flight, rendez-vous, deployment, etc.), in such a way that they are scalable to 
large-scale systems. 
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Why swarms?
• Little effort has been devoted to understand WHY we should design large-

scale systems, and develop “swarming” technology. 

- If it is done by biological systems, it must be good somehow (?)

- Large-scale systems offer redundancy, graceful performance degradation, etc. 

• Should we design/field “large” robotic teams, and WHY? Are there any 
fundamental benefits associated to large-scale networks? 

- Are there any tasks that are better suited to large teams?

- What are the advantages of numbers? Are there any (fundamental) disadvantages 
to numbers? What are the tradeoffs? 

- Given a task, can we determine what is the most appropriate size of a robotic team 
for best efficiency?

• There is a need for the development of models and tools for the 
Algorithmic Analysis of Multi-Agent Mobile Systems. 
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The multi-PACMAN™ problem
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• Targets are generated within a convex set Q on the plane. Targets may represent 
locations of:

- “Service requests” (Dynamic Traveling Repairperson Problem);

- “Food items” (Foraging);

- “Threats to investigate” (UAV Routing)

- “Information packets” (Data harvesting, communication relays)

• Target generation is modeled as a stochastic (Poisson) point process               :

- Static/Dynamic generation: n0 targets present at the initial time; afterwards, λ targets 
generated, on average, per unit time.

- Uniform/Non-uniform spatial p.d.f. φ0 and φ (resp. for the static/dynamic 
distributions). 

- In other words, the expected number N of events generated over time [0, t] in
           is 

Problem Formulation 1/2

E[N(S , t)] = λt ·ϕ(S)
S ⊆ Q

Π(λ, ϕ)
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• Mobile Agents: a team of m non-holonomic vehicles,

- Bounded speed, non-integrable constraints on the direction of the velocity. Dubins’ 
car, Reeds-Shepp’s car, Differential Drive robots, etc. (good models for UAV’s, 
wheeled/threaded vehicles).

- All vehicles are identical and have unlimited target-servicing capacity.

• Objective: Devise a control policy μ to 

- make the target queue stable, and

- minimize the exp. waiting time Tμ (max. QoS). Little’s formula: nμ= λ Tμ.

• The policy μ can be split into: 

- a task assignment policy.

- a path-optimization policy, which determines the best sequence in which assigned 
targets must be serviced, and the best path to do so. 

• The policy does not have access to future events, but may use a model of the stochastic 

process Π(λ,ϕ).

Problem Formulation 2/2
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A roadmap to the analysis & design process
Stochastic Area 
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• The earliest study on a similar class of problems, considering holonomic 
vehicles with bounded speed, is due to Psaraftis (1988). A thorough 
discussion and important results are given in a sequence of papers by 
Bertsimas and coworkers (DTRP, 1990-’93). 

- Bertsimas et al. established the following lower bounds on the waiting time 
(assuming a uniform density): 

-  In the case of light load               : 

 
where Hm is the continuous Weber function, or multi-median function, 
and                                                  is the Voronoi partition of the 
set Q  generated by the points p. 

- In the case of heavy load                 :

Previous work: the Euclidean case

(λ → 0+)

T ∗ ≥ min
p∈Qm

Hm(p) = min
p∈Qm

m∑
i=1

∫
Vi(p)

‖q − pi‖ dq = Θ(1/
√

m)

V(p) = {V1(p),V2(p), . . . ,Vm(p)}

(λ → +∞) T ∗ ≥ γ2λ
m2

=
2
9π

λ
m2
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The single holonomic agent case
• Consider a single holonomic vehicle, moving with bounded velocity on the plane.

• NN strategy: greedily visit the nearest target
- Static case: log n approximation to the TSP

- Dynamic case: constant factor approximation to min. expected waiting time.
(No formal proof available.) 

• sRH strategy [Frazzoli, Bullo CDC’04]: pick the densest cluster including at least 

a fraction η of all outstanding targets, visit all targets in the cluster in min time 
(solve a “local TSP”). Repeat. If there are no targets, move to the median.

- Static case: same as TSP (choose η = 1)

- Dynamic case: Optimal in light load, in heavy load recovers (as η ↓ 0) the performance of the best 
known policy, conjectured to be in fact optimal. Min. expected waiting time approx. 37% lower 
than NN policy.

TsRH ≤
β2

TSP

2 − η

Aλ

v2
max

< TNN = γ2
NN

Aλ

v2
max

, for η < 0.7
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Simulation Examples

Nearest neighbor sRH (“densest cluster”)
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The multiple-vehicle case
• Associate to each agent a virtual generator gi, i=1, ..., m.

• Let             be the Voronoi cell generated by the i-th generator.

• The mRH/VG policy is the composition of the following:

• Remark: The gradients appearing in the mRH policy can be computed in a 
spatially decentralized way [Cortes et al., 02], and the sRH relies only on 
local information: the mRH/VG policy is spatially decentralized.

ġi=






−k
∂

∂gi
Hm(g,Q) if D ∩ Vi(g,Q) = ∅

−k
∂

∂gi

m∑

i=1

Area[Vi(g,Q)]3 otherwise

ṗi=sRH(pi, D ∩ Vi(g,Q))

Vi(g,Q)
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mRH/VG performance
• Theorem: The mRH/VG policy is (locally) optimal in the light load case

• Theorem: The mRH/VG policy (locally) recovers the performance of the best 
known algorithms, that is, 

• Expected waiting time in heavy load for fixed generators:

• Since                             , the expected waiting time is minimized when 
all regions have equal area, i.e., 

TmRH/VG →
β2

(2− η)γ2
T ∗, as λ→ +∞

m∑

i=1

Area[Vi(g,Q)] = A

T ∗
mRH/VG =

β2λ

(2− η)m2
A

T ∗
mRH/VG =

β2λ

(2− η)

m∑

i=1

Area[Vi(g,Q)]3

A2
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• The proposed decentralized, scalable algorithms achieve (locally) the 
same performance as the best known centralized algorithms

Simulation Results

What happens if the vehicles’ dynamics are subject to 
non-holonomic constraints?
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The single-vehicle problem in heavy load
• The solution of the heavy-load case requires an understanding of the asymptotic cost of 

Traveling Salesperson Problems with differential constraints on the path.

- NP-hardness a consequence of the NP-hardness of the Euclidean TSP.

• Any reasonable algorithm will yield feasible paths of length O(n).

- If the cost of the path increases linearly with n, the average cost per target is a 

constant. There is a threshold value for λ beyond which stability is no longer 
guaranteed.   

• Does the cost of the TSP with diff. constraints increase SUBLINEARLY with n?

• Is there a polynomial-time algorithm that returns a tour of length < O(n)?  
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ETSP vs. DTSP
• The Euclidean TSP (ETSP) is one of the prototypical “hard” combinatorial 

optimization problems. 

- The exact solution is extremely hard to compute. 

- Good approximations are “easy” to obtain. 

• Stochastic ETSP [Beardwood et al., ‘59]: let ETSP(n) be a random variable 
representing the minimum length of a tour through n points sampled from a 
uniform distribution in a d-dimensional set of measure 1. 

• The Dubins TSP (DTSP) is fundamentally different: 

- Non-metric problem: might not be even approximable.

- No known reduction to a problem on a finite graph.

- Open problem, present in all UAV routing applications. 

lim
n→∞

ETSP(n)

n1−1/d
= βd, a.s.
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A nearest-neighbor lower bound
• The area of the set of points reachable with a path 

of length δ by a Dubins’ car with turning radius >= 

ρ is

• The expected distance to the nearest target, out of 
n uniformly-distributed targets is 

• The length of the tour cannot be less than n times 
such a distance, hence:

Area[Rδ] =
δ3

3ρ
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The Bead Tiling Algorithm 1/2
• Basic geometric construction: the “Bead”

• Properties of a bead of length l:
- A path of length l+o(l2) always exists between the end points and an arbitrary 

point in the bead.

- The “width” of the bead is l2 + o(l3).

ρ

   2l

p− p+
Bρ(l)
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The Bead Tiling Algorithm 2/2

• Tile the region of interest with beads such that:
Sweep the bead rows, visiting one target per non-empty bead.

• Iterate, using at the i-th phase a “meta-bead” composed of 2i-1 original beads.

• After log n phases, visit the outstanding targets in any arbitrary order, e.g., 
with a greedy strategy. 

Area[Bρ(l)] =
Area[Q]

2n

Phase 1 Phase 2 Phase 3
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Analysis of the BTA
• Theorem: The cost of stochastic DTSP satisfies the following inequalities, with 

high probability 

• Outline of the proof:

- Let vi be the number of non-empty beads at the inception of the i-th phase.

- Show (by induction) that vi ≤ 21-i n w.h.p., for all i ≤ i* ≤ log2 n.

- Show that at the end of the i*-th phase, almost all (i.e., n-O(log n))  targets have 
been visited. The cost of visiting the O(log n) leftovers is negligible.

- Show that the cost of the first i* phases is a constant time the cost of the first 
phase, which in turn is O(n2/3)

β−(ρ) :=
3

4
(3ρ)1/3 ≤

≤ lim
n→∞

DTSPρ(n)

n2/3
≤

≤ 9.88 3
√

ρWH

(

1 +
7

3
π

ρ

W

)

=: β+(ρ)
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Numerical Experiment Results
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The dynamic case
• The static DTSP results can be directly applied to the dynamic case, 

using a receding horizon strategy
- Take a snapshot of outstanding targets at time ti, and visit them using the BTA.

- Meanwhile, new targets accumulate, until ti+1 ≤ ti + DTSP(n(ti)).

- Is there an “invariant set”, in which E[n(ti+1)] ≤ n(ti)?

• Theorem: 

• Notes:
- First result showing the stability of area services with Dubins vehicles.

- Stronger dependency on λ (quadratic) than in the Euclidean case (linear).

- Unlike the Euclidean case, such stability cannot be maintained for an adversarial target 
selection.

β−(ρ)3 ≤ lim
λ→∞

T ∗

λ2
≤ β+(ρ)3
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Cooperative policy design
• For an environment bounded by a W x H rectangle, the bead-tiling algorithm provides an upper 

bound of the form: 

- The area of the region is not the only important factor: the shape plays a major role

- The “non-STLC” penalty decreases as W/ρ increases (for constant WH).

• If m agents share the same region, the most efficient policy assigns distinct rows to each agent. 
The agent move roughly along parallel paths.

- max{W,H} is unchanged, min{W,H} and λ scale down by m: 

• For non-holonomic vehicles, the benefits of multiple-vehicle cooperation are even stronger 
than in the Euclidean case. 

• Implications for behavioral ecology? 

lim
λ→∞

T ∗

λ2
≤ 9.883ρWH

(

1 +
7

3
π

ρ

max{W, H}

)3

lim
λ→∞

T ∗

λ2
≤ 9.883 ρWH

m3

(

1 +
7

3
π

ρ

max{W, H}

)3

=

(

β+(ρ)

m

)3
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• Let m agents share the 
environment. 

• Is a greedy policy any good? 

- Let Δij(t) be the distance between 
agents i and j at time t. If all agents 
execute the NN policy, then we 
conjecture that 

- Moreover, the rate of convergence 
increases as the density of targets 
decreases.

The multi- holonomic agent case

lim
t→∞

E[∆ij(t)] = 0,∀i, j
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• In other words, if all agents greedily pursue the nearest targets, the diameter of the 
team will collapse to zero. 

- A mechanism for swarm cohesion that is independent of inter-agent interactions.

- Each agent will get its fair share of targets, i.e., each agent gets, on average, E[Ui]= n/m 
targets. 

- However, it will take a long time to clear a static point distribution, and the exp. waiting time 
in the dynamic case is the same as the single-vehicle case!!! 

• Introduce another policy:

- Voronoi-NN policy: each agent pursues the nearest target within its own Voronoi region. 
(An agent moves to the centroid of its own Voronoi region while no targets are available.)

- There will be no overlaps with others: once an agents decides to pursue a target, no other 
agent will be able to “steal” it.

- Note: there is no need to compute the Voronoi region explicitly. A target at distance r is in 
an agent’s Voronoi region if there are no other agents within a circle of radius r from the 
target.

The multi- holonomic agent case
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A static policy (mRH)
• A simpler version of the mRH/VG policy, with no virtual generators:

ṗi =






−k
∂

∂pi
Hm(p,Q) if D ∩ Vi(p,Q) = ∅

sRH(pi, D ∩ Vi(p,Q)) otherwise

- The mRH/VG policy is optimal in 
light load.

- Simulation experiments show that 
mRH performs at least as well as 
mRH/VG in heavy load.
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• Assume that mv agents execute the Voronoi-NN policy; then the expected payoff is 
(assuming at least one agent is executing the NN policy)

- E[Ui] ≥ n/(mv+1) for an agent executing the Voronoi-NN policy.

- E[Ui] ≤ n/(mv+1)/(m-mv) for an agent executing the NN policy.

• In other words, all agents executing the Voronoi-NN policy is a (pure strategy) Nash 
equilibrium. 

- The individual payoff at equilibrium  is no better than the “fair share”

- However, the distance traveled/time needed to clear a static instance is decreased, as is the 
min. expected waiting time

- Note that the waiting time decreases with the square of the number of vehicles!

A non-cooperative game view

in the 2-agent case... 2: NN 2: Voronoi-NN

1: NN n/2, n/2 < n/2, > n/2

1: Voronoi-NN > n/2, < n/2 n/2, n/2

TVoronoi−NN = γ2
NN

Aλ

v2
maxm

2
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Greedy policy for non-holonomic agents
• For non-holonomic agents, if the average inter-

target distance is small enough with respect to 

the the “turning radius” (i.e., if δ*/ρ << 1) the 
probability of two agents sharing the same 
nearest neighbor vanishes---for any distance 
between the agents.

- “Swarms” of non-holonomic agents 
executing a NN policy do not collapse, if 
the target density is high enough. 

- No inefficiencies occur with respect to 
the single-agent NN rule!

• Numerical evidence suggests that a pure NN rule 
provides a constant-factor approximation to 
optimal performance.

• What if δ*/ρ is not very small? 
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The light-load case: summary
• Lower bound for individual territory:

• Upper bound: The Offset Median policy

- Loiter around the multi-median points 

with radius ~ 2.9 ρ

• Lower bound with l teams of m/l agents 
each (“wolf packs”):

T ∗ ≥ H∗

m
(Q) + ρ

(

π

2
−

2

π

)

≈ H∗

m
(Q) + 0.9342ρ
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Figure 3. (Performance of the OM policy in light load, as a function of the minimum turning radius (left) and
environment size (right), compared to the bounds derived in the text.

IV. The heavy load limit

In this section, we turn our attention to the heavy-load limit, in which λ →∞. In the heavy load case,
the nature of optimal control policies is related to the well-known Traveling Salesperson Problem (TSP). We
will first discuss some well-known results for the Euclidean version of the TSP, then derive a lower bound on
the asymptotic cost of TSP problems for bounded-curvature vehicles. Based on this result, we will provide
a lower bound on the system time in the heavy load limit.

A. The Euclidean Traveling Salesperson Problem

The Euclidean TSP (ETSP) is formulated as follows: given a set D of n points in Rd, find the minimum-
length tour of D. Let ETSP(D) denote the minimum length of a tour through all the points in D; by
convention, ETSP(∅) = 0. The asymptotic behavior of stochastic ETSP problems for large n exhibits the
following interesting property. Assume that the locations of the n targets are independent random variables,
uniformly distributed in a compact set Q; in [20] it is shown that there exists a constant βTSP,2 such that,
almost surely,

lim
n→+∞

TSP(D)√
n

= βTSP,2. (13)

In other words, the optimal cost of stochastic ETSP tours approaches a deterministic limit, and grows
as the square root of the number of points in D; the current best estimate of the constant in (13) is
βTSP,2 = 0.7120± 0.0002, see [21,22].

B. The Traveling Salesperson Problem for a Dubins vehicle

While the ETSP has attracted a great deal of interest from the scientific community, its bounded-curvature
counterpart (which we will call DTSP) has not been studied extensively. In [23] we did some initial work,
mainly in terms of upper bounds for worst-case tours. Here we extend to the multiple-vehicle case a result
from [7], which can be seen as a first step in the search of deterministic bounds similar to those available for
the ETSP.

Theorem 10 (From [7]) The expected cost of a stochastic DTSP visiting a set D of n randomly-generated
points in Q satisfies the following inequality:

lim
n→∞

DTSP(D, ρ)
n2/3

≥ 3
4
(3ρ)1/3 (14)

9 of 15

American Institute of Aeronautics and Astronautics

T ∗ ≤ H∗

m
(Q) + 3.756ρ

Proof: Let us consider the i-th target, generated at time ti, at a random position ei ∈ Q. The time
necessary to service the i-th target is lower bounded by minimum time taken by the vehicle to move from
its configuration at time ti to the target’s position ei. The configuration of the vehicle at time ti is in
general unknown, since it depends on the chosen control policy, and on the history of generated targets. If
we assumed that the vehicle is always in such a location that it minimizes the a priori expected Euclidean
distance to a randomly-generated target, we would get a lower bound on the expected service time: such a
point is the median of the set Q. In other words,

T ∗ ≥ min
g∈SE(2)m

E
[

min
i∈{1,...,m}

DubinsDistance(gi, q)
]
≥ min

p∈Qm
E

[
min

i∈{1,...,m}
‖pi − q‖

]
= H∗

m(Q).

Theorem 7 holds for any policy, and any value of λ. However, it is most useful in the light-load case
and as such it is reported in this section. However, the theorem provides little insight into the specifics of
the routing problem in light load for Dubins vehicles. In particular, Dubins vehicles cannot wait for the
generation of targets at a single location. As a consequence, we need to characterize the configuration of
the agents at the appearance of new targets in terms of Dubins paths, that we will call loitering patterns.
In general, optimal loitering patterns will have to be computed based on the shape of the region assigned
to a certain agent. However, we will concentrate on circular loitering patterns; the rationale for doing so is
that this allows us to provide algorithms and bounds that are independent of the particular shape of the
environment. Furthermore, it seems unlikely that UAVs in the field will be able to compute optimal loitering
patterns as their assigned regions change in real time; on the other hand, determining the location of the
center, and the radius of a circular loitering patterns are much easier tasks.

We will also consider the case in which the agents group into l ≤ m teams, that share Voronoi regions. In
other words, to each team we associate a single generator pi, i ∈ {1, . . . ,m}. Each team will be composed of
m/l agents; for simplicity, we assume that such a number is an integer. Non-integer values can be understood
in a time-averaged sense, as agents join different teams over time.

We have the following:

Theorem 8 Under the assumption that the m agents are grouped into l teams of m/l agents each, and all
agents execute circular loitering patterns while waiting for targets, the system time T ∗ for the problem stated
in Section II satisfies:

T ∗ ≥ H∗
l (Q) + ρ

(
πl

2m
+

m

πl

(
cos

πl

m
− 1

))
. (10)

In particular, if we impose the constraint that m = l (no teaming up allowed), the bound takes the form:

T ∗ ≥ H∗
m(Q) + ρ

(
π

2
− 2

π

)
≈ H∗

m(Q) + 0.9342ρ. (11)

Proof: The proof of this theorem is similar to the proof of Theorem 7, with the difference that now we
use a non-trivial bound for the Dubins distance. More specifically, we use the lower bound in Proposition
5. In other words, while we assume that the position of each vehicle is such that it minimizes the expected
Euclidean distance to a random target, we model the fact that the heading must change over time in order to
maintain the agents close to the desired point. The assumption of circular loitering patterns lets us consider
a uniform distribution of the agents’ heading over time. We get:

T ∗ ≥ min
g∈SE(2)m

E
[

min
i∈{1,...,m}

DubinsDistance(gi, q)
]

≥ min
p∈Ql

E
[

min
i∈{1,...,l}

‖pi − q‖
]

+ E
[

min
j∈{1,...,m/l}

(|θj(q)|− sin |θj(q)|)
]

≥ H∗
m(Q) +

m

πl

∫ πl/m

0
θ − sin θ dθ,

which yields the stated result upon integration.
Some comments are in order at this point. The lower bound shows that when ρ is very small, compared to

H∗
l (Q), the result for the holonomic case (Theorem 7) is recovered, according to intuition. However, should

ρ be large compared to H∗
l (Q), which can happen when many agents are available, and acting in separate

teams, it might be advantageous to group agents to reduce the cost penalties induced by non-holonomic
constraints.

7 of 15
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Light load: results
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Traffic congestion in robotic networks
• So far we have seen that in area service applications, the 

system times always decreases with the number of agents:

- As            in the light load case 

- As           in the heavy load case

- As          (!) in the heavy load case, with non-holonomic constraints.

• We have not modeled conflicts (i.e., collisions/near misses) 
between agent: What happens if we do? 

• Let us consider a simpler problem, in which origin and 
destination points are given a priori, for each agent.  

1/
√

m

1/m2

1/m3
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Safe decentralized mobile systems 
• Consider a system composed on n independent mobile agents

- Automotive traffic

- Air Traffic Control (Free Flight concept)

- Uninhabited + human-piloted aircraft operations 

- Robotic swarms

- Factory automation systems

• Safety concerns:

- An agent does not know the intentions of nearby agents.

- Delays and uncertainties in sensing/estimating own and others’ motion

- Need a safety buffer; The dimension of the safety buffer depend, among other things, on the 
vehicle’s velocity 
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Traffic congestion analysis

• As n increases, how do safety  (collision-avoidance) constraints affect 
the performance of the system? 

- Traffic throughput

- Transportation efficiency

- Quality of service in point-to-point tasks

• We need a precise characterization of how much the traffic volume 
affects the achievable performance:

- Benchmark for traffic control infrastructure/protocol/algorithms.

- Quantitative analysis and design of large-scale robotic systems.

• Formally determine fundamental limitations on performance of large-
scale, decentralized, mobile systems.  



Aerospace Robotics and Embedded Systems Laboratory

 Sensor-based Vehicle Routing
• Consider a compact, path-connected set Q 

in the plane.

• Let us consider n mobile agents, each 

assigned a pair of Source-Destination (SD) 

points in Q.

• Each agent can move in any direction with 
bounded speed. 

• Velocity-dependent exclusion region:

What is the minimum time needed to transfer all agents from 
their sources to the respective destination, maintaining openly 
disjoint exclusion regions?

Ci(t) = {z ∈ R2 : |z − xi(t)| ≤ r(n) + κ|vi(t)|}
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(Some) Related work
• Classic work in robotics:

- “Piano movers’ problem”  [Reif ‘79, Schwarz & Sharir ‘83]

- “Warehousemen’s problem” [Schwarz & Sharir ‘83]

-  PSPACE-hard problems

• Solution techniques

- Canny’s algorithm

- Path coordination (e.g., Laumond et al., 02, Akella et al ‘02)

- Roadmaps (e.g., LaValle ‘98 -- present)

- Pareto optima (LaValle, Ghrist et al., ‘04)

• Beyond computational complexity

- Comm. and time complexity of robotic tasks (Klavins ‘02, Martinez et. al, ‘05)  

• Physics/Operations Research/Air Traffic /Wireless networks

- Analysis of transportation networks, air traffic control algorithms (Tomlin et al. ‘03, Feron et al. ‘98---), 
Capacity of wireless networks (Gupta & Kumar, 2000).

- “Fundamental traffic law” (on a ring)
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A simplifying “trick” 
• Deciding the feasibility of the  warehousemen’s problem is 

extremely hard.

• We make the following assumption:

- A vehicle enters the environment, at its source point, only upon activation

- Vehicles are removed from the environment (deactivated) as soon as they 
reach their destination. 

• Justification:

- Airports, hangars, parking facilities, etc. are “safe havens” for mobile 
agents.

• Benefit:

- All vehicle routing problems are feasible.
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Preliminary results
• Proposition: The minimum transfer time T* is O(n) 

- That is, we can always activate and deliver agents in turn

• Proposition: If                            the minimum transfer time T* is Ω(n)

- If the size of the excl. region is finite, there is a limit to the constant number of 
agents active at the same time. 

• An intuitive constraint:  

- Assume 

- Analyze the interplay between traffic volume and achievable average velocity.

• Will show that as long as the m vehicles physically fit in the environment, their physical 
dimensions are not consequential in determining congestion! 

- Air traffic control: exclusion region (5 nm) >> aircraft dimensions

- Automotive traffic: “comfort” buffer from a lead vehicle approx. 2 s, approx. 30 
meters

r(n) ≥ r0 > 0

r(n) = O(1/
√

n)
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Lower bound - Arbitrary case

• Lemma: The minimum time to transfer m agents is              , where L is the 
average distance between origin and destination points.

- Break down the path followed by the agents in a sequence of straight-line 

segments traversed at constant speed on a time schedule of length h. Each 
time interval has duration τ. Clearly,

- The velocity of the agents must be such that the sum of the areas of all 
exclusion regions is no more than:

- Applying Jensen’s inequality, and with a little more algebra, we get

T ∗ = hτ ≥ L

2

√
k(πk + 2τ )n

Ω(L
√

n)

n∑

i=1

h∑

j=1

rj
i ≥ nL

n∑

i=1

Aj
i =

κ(πκ + 2τ )

τ 2

n∑

i=1

(rj
i )

2 ≤ 4
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Upper bound (“best case”)

• Lemma: There exists a selection of 
source-destination pairs such that 

Theorem: The minimum time to 

transfer n agents between the 
respective source and destination 
points is 

In other words, the average velocity decreases at least as 1/√n

T ∗ = cL
√

n

Θ(L
√

n)
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Worst case
• In addition to the “best” case, there are “worst”-case choices: 

- Choose source-destination pairs in such a way that all sources are colocated at 
the same point S. 

- Activation times are in a strictly increasing sequence.

- The time needed for the last agent to exit a disk of radius d centered at S is  Ω(d 
n); the time complexity of the problem is then Ω(n).
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Random (S,D) pairs
• Three phases:

- Initialization (spread-out):                                        (w.h.p.)

✦ Uniform convergence in the weak law of large numbers. 

- Main phase (mesh routing)

✦ Permutation routing with small queues. 

- Termination (reverse spread-out)                              (w.h.p.)

O((log n)2/3)

O((log n)2/3)

O(
√

n)

l
m

l f

O
i O'

i

l
c

l m
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Simulation Example - 100 agents
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Generalizations 
• Similar results hold in the following cases:

- Convex environments.

- Absolutely continuous prob. distributions (wrt area)

✦ Singular probability distributions require sequential 
activation. 

- Non-convex, path-connected environments

✦ Simple polygons.

✦ Simple polygons with holes. 

• The time complexity of sensor-based vehicle routing scales as the 

The average velocity of individual agents, in any sensor-based 
vehicle routing problem, decreases as the inverse square root of 
the number of agents. 
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Decentralized path coverage
• Consider m agents, each carrying a sensor with a circular 

footprint of radius δ
• It is desired that the agents follow paths in such a way that the 

union of their footprints over time covers a region of interest.

- Minefield clearing

- Search and Rescue 

- Autonomous vacuuming/painting

• Desired features:

- Simple robots: minimal sensing and comm.
abilities, no GPS, no “pheromones.”

- Efficiency and robustness to navigation 
errors and individual failures
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A variation on cyclic pursuit
• In cyclic pursuit, agents are arranged on a ring; each agent moves towards the 

agent immediately preceding it [Marshall, Broucke, Francis 2004-’05; Paley, 
Leonard, Sepulchre ’05].

• Cyclic pursuit with an offset angle α, i.e., 

• If all αi are equal, then 

- if α = π/n : Robots converge to a regular configuration on a circle, i.e., a 
simple regular polygon (the radius depends on initial conditions)

- if α < π/n : Robots converge to a point (the center of mass)

- if α > π/n : Robots converge to a regular polygonal configuration, but they 
describe diverging logarithmic spirals.

• Proofs based on spectral analysis of certain circulant matrices.

ẋi = R(αi)(xi+1 − xi)
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Path coverage by Archimede’s spirals
• A curve that is not found in nature, but was known by the ancient Greeks. 

• The following selection of the offset angle provides locally ``stable” 
tracking of an Archimede’s spiral providing path coverage:

• Local estimate of π/n computed via 
consensus

• Time needed for coverage is inversely
proportional to the number of agents.

ρ(θ) =
nδ

2π
θ

αi =
π

n
+ arctan

(
δ

‖xi+1 − xi‖
sin(π/n)

π/n

)
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Conclusions
• The algorithmic analysis of mobile robotic networks requires new tools 

combining combinatorial optimization, optimal control, differential geometry, 
systems theory, probability and stochastic systems.

• Designed algorithms for the solution of foraging/area services with provable 
performance, for important classes of vehicles with non-holonomic constraints.

- Multiple-vehicle cooperation can greatly enhance performance, esp. in the heavy-load, 
non-holonomic case.

- (Individual/team) There are natural incentives on the formation of teams (or “swarms”) 
sharing the same region of interest, depending on the scale of the network and and on the 
agents’ dynamics. 

• Derived sharp bounds on the average velocity of independent agents under 
collision-avoidance constraints: 

- Traffic congestion can severely decrease the efficiency of large-scale systems, by 
reducing the average motion speed and traffic throughput.

- Look for trade-offs between teamwork and congestion in order to figure out the 


