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Phases of matter

solid (crystal) liquid gas

crystal o4 liquid
liquid ~ gas
crystal o gas



Equivalence and non-equivalence

liquid ~ gas because there is a continuous path between the phases

(need to elaborate what
“continuous” means)

o0 a0 e oo

C T
Temperature (K)

crystal o4 liquid because there is no such path

Rather, there is an invariant that distinguishes the phases, namely,
the symmetry group:

— crystal has a discrete translational symmetry

— liquid has a continuous translational symmetry



Invariants in physics and mathematics

Perpetual motion

Won’t work:

E = const|, where
-2
m;v;
E = M2 3

(continuous)

The 15-puzzle

Challenge:

Switch 15 and 14 by

moving the pieces

inside the box

Impossible:
N
P I N | Define a permutation o by
™ [ [T the sequence of numbers
- | along the green line

o=1(1,2,3,4,8,7,6,5,9,10,11,12, 14,15, 13)

sgn(o) = const | (discrete)




Topology: discrete invariants of continuous objects

e Example: Winding number (the dergee of a map f: S' — S1)

~ # o

in this cases, deg f = —1 deg f=0

e Application: textures in liquid crystals
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defect
f: (plane — defects) — S*
winding number is defined ]
by restricting this map to nematic liquid crystal be-
a loop around the defect tween crossed polarizers
AN




Parameter space

e Potentially infinite number of parameters
(because we may consider arbitrary Hamiltonians)

Phases of 3He
in H — P — T coordinates

P
e We restrict our attention to zero temperature
(because quantum phases are fragile)
H

e Lifting this restriction may change the definition of a phase

T

Don’t take pieces
out of the box!
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phase 1 ph‘ase 2

parameter



Rules of the game

We consider arbitrary Hamiltonians for fermions (e.g. elec-
trons or 3He atoms) with local interactions at T = 0.

The ground state must be gapped. (By definition, a gapless
state indicates a phase boundary.)

The symmetry is fixed. In this talk:

— no U(1) symmetry (the particle number is not con-
served due to the presence of condensate),

— but there is a time-reversal symmetry 7.

We disallow any usual order parameter (i.e. spontaneous
symmetry breaking) or topological ordering.

Two variants of the game: the particles may or may not
interact.



Majorana formalism (for discrete systems)

e Hamiltonian in terms of creation and annihilation operators

H =Y hpalar+ Y (Audan + Afalal) spin (if any)

4.k gk is included
- in the index j

e Majorana operators:

site 1

e Complete problem in terms of the Majorana operators

N 1 L L . R ~
H = 1 E AjrCic where ¢.¢; + ¢iCr = 20k, cL = C,
gk




Majorana formalism for continuous systems

e Hamiltonian: dimensionality
. = of the physical space
A~ 1 T
H_Z/n ZIF#(?#—FM n dx
J:

(Any gapped free-fermion phase has a representative of this form)

I, is real symmetric, I',I', +T',I', = 20,,
M is real skew-symmetric
M? = —1

no loss of generality
MFM _ _Fu M for the topological classification

I'y,..., I, are fixed

Different phase are characterized by different M



Example: Majorana wire (n = 1)

. m m—1
. . ~ 1 ~ ~ A A
e Discrete version: H = 3 U E Coj_1C25 + v E CojCoj41
j=1 j=1

|o—of—o—of—jo—orje—or—jo—o|

C2j—1 C25 Coj41

e Continuum limit: wu=1—-w, v=14+w wherew <1
A_i T 0 1 ﬁ 0 w
A=y fn ((1 0) oz (—w 0))””
r M

In this equation, we may set w = £1 (because there is no lattice)

e Different phases

Trivial: w < 0; Nontrivial: w > 0.



Full classification is zero dimensions
(without symmetry)

e General form of matrix M (recall that M? = —1 w.l.o.g.)
0 1
1 S € 0(2m)
M=S s
0 1 M € O(2m)/U(m)
-1 0

e The set of M’s is a classifying space for 0-dimensional states:
A set that is homotopy equivalent to the set of
fofree O/U (

ground states of all gapped free-fermion Hamiltonians)

e Topological invariant: Pf M € Z,
(describes the connected components of F(f7ee))
Pt M =+1 — even number of particles }

counting particles
in the ground state

Pt M = —1 - odd number of particles



Full classification in all dimensions

(of gapped free-fermion systems without any symmetry)

n| FI | (Eﬁf Tee)) examples

0| O/U Zs even/odd number of particles
1 O Lo Majorana wire

2| BOXZ 7 Dy + ipy superconductor

3| U/O 0

4| Sp/U 0

5 Sp 0

6 | BOxZ Z

7| U/Sp 0




Time reversal symmetry

e General form: T(éj ) = Zk Tjkék for continuous systems,
T(G) = —i replace ¢; with 7;(x)
e Conventional TR symmetry: T? = -1
R Coj-1,1 00 1 0Y fé11
Taz) = aj, Gy | _ [0 00 1| [eyoay
T(@5,) = —aj Cajit -100 0 Cojt
éai, 0010 0/ \ éy,
T
e Unconventional TR symmetry: =1l

T(él) = él or T(él) = —él

(for spinless systems)



Application to 3D superconductors (finally!)

e General form of the Hamiltonian

. 3
A_Z T
H—Z/n (;FM(?M—FM)ndx

=0"®IxI, [y=0*RIRI, ['3 = (i0Y) ® (icY) @ [
M = (ic¥) ® (6 @m + 0* @ m/)

e TR symmetry: T=(ioV)Q@c*R1 (anticommutes with T',,)

T(M)=-TMT'| TM)=M = | M=(icV)Qc"@m

m is a real symmetric matrix with eigenvalues +1

e Topological invariant

v = (number of 41 eigenvalues) — (number of —1 eigenvalues)




Main question

Is v well-defined in the presence of interactions? In other words,

Can a v = 0 state be continuously changed into a v # 0 state?

(The intermediate states may include interparticle interactions,

but the energy gap must never close.)

Claim: In the presence of interaction, v is defined modulo 16.

e The v = 16 phase is connected to the trivial phase by a
continuous path. (Shown by explicit construction.)

e If v 0 (mod 16), then there is no continuous path.
— One has to consider all possible quantum states with
suitable restrictions: an exact definition is needed.

— The question can be reduced to the classification of
cross sections of a certain fibration up to homotopy (a
typical homotopy theory problem).




Acknowledgements

I thank:

John Morgan for helping me with the last problem and for
elaborating some arguments. We will, hopefully, write some
joint paper on this subject.

Ashvin Vishwanath and Xiaoliang Qi
for inspiring discussions.

Michael Freedman and Dennis Sullivan
for teaching me some relevant mathematics.



Related (somewhat simpler) question

The boundary between different phases supports gapless modes.

Can those modes be suppressed by suitable interactions without
breaking the TR symmetry or creating a topological order?

e Effective boundary theory

. 2 151
2 (4 V="r — 1
= Z/"T (;rua,) n dz "

Fl:O'I(X)[7 FQZO'Z(X)]
e Possible mass term

M = (ic¥) ® m, where m is a real symmetric v X v matrix

(more generally, a matrix of any size such that
(# of positive e.v.) — (# of negative e.v.) = 1)

If m # 0, then
the symmetry is broken

e However, T(m)=—m




Dynamic surface mass terms

e Key idea: Let m = m(z,t) fluctuate (as a quantum Bose field)

Ergodic, symmetry non-breaking dynamics
can be arranged (using a suitable o-model)
if there are no topological obstructions

e Claim:

e Example of a topological obstruction (for v = 1)

A
m>0/ m <0

gapless domain wall

If m > 0 then 7(m) < 0. There is no continuous path between
m and T (m) in the space of nondegenerate mass terms.



The second obstruction (for v = 2)

e Resolving the previous obstruction (now m is a 2 x 2 matrix)

Let m = 0* be an admissible value of the dynamic mass term.

Then 7(m) = —o?

Path from m to 7 (m):
p1(0) = (cosB) o® + (sinf) o”,
where 6 € [0, 7].

e New obstruction:

4 space of nondegenerate N\
real symmetric 2 X 2 matrices

b1

T (p1) J

o

No way to interpolate between p; and (7 (p1))~

In the real space: /

\ | gapless
/ vortex

1



Further steps

e For v = 4, the obstruction corresponds to a soft-core soliton

e For v = 8, one can define a o-model with the target space S®
4

4
m(x,t) = Zuk(x,t) my, where u€ S® e Zuz =1
k=1

k=1
m =011, me=0"QRIRI,
mg = (i0¥) ® (io¥) ® I, my = (i0¥) ® 0® ® (icY)
— The model is TR invariant if we assume that 7 (u) = —u
— m(x,t) is nondegenerate because m;my + mum; = 20,y

However, the system is gapless due to a nontrivial WZW term

e For v = 16, the WZW term vanishes, which can be shown by
extending the target space to S°. The system is fully gapped.



Nontriviality of the v = 8 phase

e There could be a different, gapped o-model for v = 8.

It would correspond to a map f from S° to the space of
nondegenerate real symmetric matrices of size 8 x 8 such that

f(=u) = = f(w).

e Reduction to a homotopy theory problem

Each value of v corresponds to a cross section of a certain fibration
over the classifying space of the symmetry group: BZy, = RP>.

e Algebraic tools
Atiah-Hirzebruch spectral sequence

e Result
The v = 0 and v = 8 sections are not fiber-wise homotopic.



More general claim: SRE = SPT

Short-range entangled states in dimension n form some topolog-
ical space B, (for bosons) or F,, (for fermions).

By=CP>* =K(Z,2), Fo=CP*® x Zy
B, and F,, are also known in dimensions n = 1, 2.
B and F are homotopy spectra, i.e. B, = Q(Bny1), Fn = QU Fni1)-

SPT states with symmetry group G are given by the generalized
cohomology H"(BG,B) orH"(BG, F). (For the TRS, we need

a twisted version.)
Approximations:

K(Z,n+2) — B, Driz = Fn
H™?(BG,Z) — H"(BG,B)  H™?(BG,D) — H"(BG, F)



What do we know about 737

Sp/U = {M : MT, = —T,M, M? = 1}

(free) JT_-S

e Begin with 7/ =
for p=1,2,3
e Consider the map F
b | (P | mu(F)
0 0 ?
1 Z Z
2 Zy Zs
3 Zy Zs
4 0 0
5 Z Z
6 0 0
7 0 0
8 0 0
9 Z 0

Connected components of Fj3
~ (Sp/U); (Postnikov truncation).




Fixed points of the symmetry group (discussion)

SPT phases of the time-
reversal symmetry are con-
nected components of the fixed

point space of a certain action

of G =7y on }"éfree) or Fs. 7

féfree)

e Idea: Reduce the fixed point problem to pure homotopy theory

e A priory, it might not work. Example: G acts of EG as well as
on a point: (no fixed points vs 1 fixed point). But EG ~ pt.

EG E7; —— S%

| I
BG BZ; —— RP™ v



Reductons

automatic

Fixed points > Homotopy fixed points

\_/

works for F (but not F(free))

(Homotopy fixed point in X) = (G-equivariant map f: EG — X)

e Alternative description of homotopy fixed points using the Borel
construction: X is replaced with X = (X x EG)/G.

X =(XxEG)/G

. f: EG = (X x EG)/G
p (defined by
the group ‘.f .
action on X) ,/' f(v) = (f(l)), U) mod G

’
-
-

BG=EG/G -~

This description is purely homotopic (does not use the group action)



From homotopy f.p. to actual f.p.

o Let f: EG — F, be a G-equivariant map. We try to define a
G-invariant quantum state as a uniform superposition over all
maps m : R” — EG (fluctuating order parameter).

W) = [ m) @ [u(s om) D

state of fermions that looks like
f(m(x)) € F,, near each point z € R”

R’n

e Issues:

— Too big a space to integrate over. (Need some cutoff.)
— Relative phase factors of |¢(f o m)).



Lattice regularization

Degrees of freedom: Spins g1, ¢s2,... € G on lattice sites and
continuous fermions in between.

We use Milnor’s model: EG = G % G % G * - - - (infinite join).
For each k, define X, = Gx---xG C EG.

k + 1 copies of G
Note that mo(X;) = mr—1(Xx) = 0.

For each n-simpex A with vertex spins g1 92 935 g4
Jsos---+0s, there is a standard map VAvAv
my A — X, (by the defini-

tion of the join). We construct a map AvAvA

Mg, ..gn - R" — X, from such local patches.

Finally: — [0) = > |g1,...,n) ® [$(f 0 myy..00))



Phase factors

Stepl: W fom! > U W fom
: \
/\. adiabatic evolution over path
, w: R" % [0,1] - Xp,41 € EG
m m

e New problem: Consider two paths, u and v’

Berry phase

Uu)~*U(u) = e>™®¥) Step 1 only works if ¢(u,u’) = 0.

To achieve that, we will modify U(u) with local counter-terms.

Step 2: Consider u, v/ : R x [0,1] — EG.

Since 7,41 (EG) = 0, there exists some w : R" x [0,1]*> - EG

0D T i S
, R”x[0,1]2
m m

— WZW action

u (2 is a G-invariant (n + 2)-form on F,.)



Cancelling the phase factors

Step 3: The WZW action is topologically trivial in this case because
we are working in the contractible space FG.

f*Qis an (n + 2)-form on EG, Q= dw

Recall that € is invariant under the group action. By averaging
w over (G, we can make it invariant too.

Step 4: Define |V (u) = U(u) - exp (—27m'/ u” (w))
R™x[0,1]




Conclusion

The classification of SPT phases splits into two problems:

e Find the spaces B,, and F,.

— Known for n =0, 1.
— Sort of known for n = 2.

— Solving the problem in higher dimensions (and proving the
answer for n = 2) requires some new methods.

e Twisted generalized cohomoly: Classify cross sections of a cer-
tain fiber bundle with fiber B, (or F,,) over BG.

— Can be solved using homotopy theory tools
(Atiyah-Hirzebruch spectral sequence).

— Requires advanced technical skills.



