TOPOLOGICAL FIELD THEORY FOR DEFECTS IN TOPOLOGICAL PHASES
Theme:

2-d defects in 3-d TFT as models for line defects in topological phases

some overlap with Z. Wang’s talk — “approach quite different”
Motivation

Themes:

- 2-d defects in 3-d TFT as models for line defects in topological phases (TFT as tool)
- 3-d TFT with defects of any codimension
Motivation

TFT for topological defects

Themes:
- 2-d defects in 3-d TFT as models for line defects in topological phases (TFT as tool)
- 3-d TFT with defects of any codimension

Possible motivations:
- Topological line defects in topological phases
- Gapped interfaces between topological phases
Motivation

TFT for topological defects

Themes:
- 2-d defects in 3-d TFT as models for line defects in topological phases (TFT as tool)
- 3-d TFT with defects of any codimension

Possible motivations:
- Topological line defects in topological phases
- Gapped interfaces between topological phases
- TFT with substructures / on stratified spaces
- Extended TFT / higher categories
- Defects in general quantum field theory
- Applications to 2-d rational conformal field theory
Defects in QFT

TFT for topological defects

- Codimension-1 defect $\boxed{\text{QFT}_1 | \text{QFT}_2}$
 - interface separating region supporting QFT_1 from region supporting QFT_2
Defects in QFT

TFT for topological defects

- Codimension-1 defect $\text{QFT}_1 \ \parallel \ \text{QFT}_2$
 - interface separating region supporting QFT_1 from region supporting QFT_2
 - ubiquitous in nature
 - natural part of the structure of quantum field theory
 - *physical boundaries* as special case
Defects in QFT

- Codimension-1 defect $QFT_1 \mid QFT_2$
 = interface separating region supporting QFT_1 from region supporting QFT_2
 - ubiquitous in nature
 - natural part of the structure of quantum field theory
 - physical boundaries as special case

- Topological defect: correlators do not change when deforming the defect without crossing other substructures

- Example: 2-d Ising model
 - ferromagnetic nearest-neighbour interaction
 - change coupling to anti-ferromagnetic on all bonds crossed by some line
 \leadsto topological defect line
Defects in QFT

- **Codimension-1 defect** $\text{QFT}_1 \mid \text{QFT}_2$
 - interface separating region supporting QFT_1 from region supporting QFT_2
 - ubiquitous in nature
 - natural part of the structure of quantum field theory
 - *physical boundaries* as special case

- **Topological defect**: correlators do not change when deforming the defect without crossing other substructures

- Some general features of topological defects:
 - codimension-2 defects $\text{def}_1 \mid \text{def}_2$ etc
 - transparent defect
 - invert orientation \sim dual defect
 - move two topological defects to coincidence \sim fusion product of defects
Defects in QFT

TFT for topological defects

- Codimension-1 defect $\text{QFT}_1 \parallel \text{QFT}_2$

 \[\text{interface separating region supporting } \text{QFT}_1 \text{ from region supporting } \text{QFT}_2 \]

 - ubiquitous in nature
 - natural part of the structure of quantum field theory
 - \textit{physical boundaries} as special case

- \textit{Topological defect}: correlators do not change when deforming the defect without crossing other substructures

- Some general features of topological defects:
 - codimension-2 defects $\text{def}_1 \parallel \text{def}_2$ etc
 - transparent defect
 - invert orientation \rightsquigarrow dual defect
 - move two topological defects to coincidence \rightsquigarrow fusion product of defects

- \textit{Mathematical formulation}: \rightsquigarrow higher categories
assume: defects form a rigid monoidal category (proven for 2-d RCFT)

Fjelstad-F-Runkel-Schweigert 2008

Fröhlich-F-Runkel-Schweigert 2007

Kapustin-Saulina 2011
Invertible defects and symmetries

TFT for topological defects

assume: defects form a rigid monoidal category
(proven for 2-d RCFT)

Subclass: invertible topological defects:

\[D \otimes D^\vee \cong 1 \cong D^\vee \otimes D \]
assume: defects form a rigid monoidal category
(proven for 2-d RCFT)

- Subclass: \textit{invertible} topological defects:
 \[
 D \otimes D^\vee \cong \mathbb{1} \cong D^\vee \otimes D
 \]

- Basic property:
 \[
 D \rightarrow D^\vee = \text{dim}(D) \rightarrow D^\vee
 \]
 drawn for $d = 2$
 \[
 \text{dim}(D) = \pm 1
 \]

\[\leadsto\] identity of correlators when applied locally in any configuration of fields & defects
Invertible defects and symmetries

TFT for topological defects

assume: defects form a rigid monoidal category
(proven for 2-d RCFT)

Subclass: invertible topological defects:

\[
D \otimes D^\vee \cong 1 \cong D^\vee \otimes D
\]

Basic property:

\[
D \quad D^\vee
\]

\[= \dim(D)\]

\[= \text{identity of correlators when applied locally in any configuration of fields & defects}\]

\[= \text{invertible defects form a group under fusion}\]

\[= \text{act on all data of the theory as a symmetry group}\]

\[= \text{e.g. critical 2-d Ising model: } \mathbb{Z}_2\]

\[= \text{critical three-state Potts model: } \mathbb{S}_3\]
invertible defects and symmetries

TFT for topological defects

assume: defects form a rigid monoidal category
(proven for 2-d RCFT)

Subclass: invertible topological defects:

\[D \otimes D^\vee \cong 1 \cong D^\vee \otimes D \]

Basic property:

\[\text{identity of correlators when applied locally in any configuration of fields } \& \text{ defects} \]

invertible defects form a group under fusion

act on all data of the theory as a symmetry group

Example: equalities for bulk field correlators on sphere:

\[\text{identity of correlators when applied locally in any configuration of fields } \& \text{ defects} \]

invertible defects form a group under fusion

act on all data of the theory as a symmetry group

Example: equalities for bulk field correlators on sphere:
Wrapping of general topological defect around a bulk field:

\[\phi_D = \sum \text{intermediate defects } D_i \]
Wrapping of general topological defect around a bulk field:

\[\phi_D = \sum \text{intermediate defects } D_i \]

bulk field turned into disorder field
Wrapping of general topological defect around a bulk field:

\[\phi_D = \sum_{\text{intermediate defects } D_i} \phi \]

- bulk field turned into disorder field
- wrapping with dual defect turns disorder field back to bulk field if and only if \(D \otimes D^\vee \) is direct sum of invertible defects
- in this case have an order-disorder duality
 - e.g., critical 2-d Ising model: remnant of Kramers-Wannier duality
- again action on all field theoretic quantities
Duality defects

Wrapping of general topological defect around a bulk field:

\[\phi D = \sum \text{intermediate defects } D_i \]

- bulk field turned into disorder field

- wrapping with dual defect turns disorder field back to bulk field if and only if \(D \otimes D^\vee \) is direct sum of invertible defects

Example: correlator of two Ising spin fields on a torus:

\[
\begin{align*}
\sigma \sigma = & \quad \frac{1}{2} \quad \epsilon_{\mu}^\mu + \frac{1}{2} \\
& \quad + \frac{1}{2} \quad \epsilon_{\mu}^\mu + \frac{1}{2}
\end{align*}
\]
Plan

TFT for topological defects

Goal: Similar results for defects in 3-d TFT

Tasks:
- Achieve basic understanding of topological defects in 3-d TFT
- Study consequences in relevant classes of models
- Apply insight to topological phases
- Construct 3-d TFT with topological defects mathematically
Plan

TFT for topological defects

Goal: Similar results for defects in 3-d TFT

Tasks:

- Achieve basic understanding of topological defects in 3-d TFT
- Study consequences in relevant classes of models
- Apply insight to topological phases
- Construct 3-d TFT with topological defects mathematically

Plan:

- Codimension-1 defects in QFT ✓
Plan

TFT for topological defects

Goal: Similar results for defects in 3-d TFT

Tasks:
- Achieve basic understanding of topological defects in 3-d TFT
- Study consequences in relevant classes of models
- Apply insight to topological phases
- Construct 3-d TFT with topological defects mathematically

Plan:
- Codimension-1 defects in QFT ✓
- Topological defects in 3-d TFT of Reshetikhin-Turaev type
- Application: Multi-layer systems
- Appendix: Defects in Dijkgraaf-Witten theories
Plan

TFT for topological defects

Goal: Similar results for defects in 3-d TFT

Tasks:
- Achieve basic understanding of topological defects in 3-d TFT
- Study consequences in relevant classes of models
- Apply insight to topological phases
- Construct 3-d TFT with topological defects mathematically

Plan:
- Codimension-1 defects in QFT ✓
- Topological defects in 3-d TFT of Reshetikhin-Turaev type
- Application: Multi-layer systems
- Appendix: Defects in Dijkgraaf-Witten theories

Collaborators: Jan Priel, Gregor Schaumann, Christoph Schweigert, Alessandro Valentino
RT-type TFT with defects

- **RT-type TFT**: symmetric monoidal functor
 \[
 \text{tft}^D_{3,2}: \text{Cobord}_{3,2} \to \text{Vect}
 \]
 resp.
 \[
 \text{tft}^D_{3,2,1}: \text{Cobord}_{3,2,1} \to 2\text{-Vect}
 \]

 - **input**: a modular tensor category \(\mathcal{D} \)
RT-type TFT with defects

RT-type TFT: symmetric monoidal functor \(tft_{3,2}^D : \text{Cobord}_{3,2} \to \text{Vect} \)

resp. 2-functor \(tft_{3,2,1}^D : \text{Cobord}_{3,2,1} \to 2\text{-Vect} \)

- input: a modular tensor category \(\mathcal{D} \)
- Wilson lines (ribbons) in three-manifolds labeled by objects of \(\mathcal{D} \)
- insertions on Wilson lines / junctions labeled by morphisms of \(\mathcal{D} \)
- 2-d cut-and-paste boundaries on which Wilson lines can end
- state spaces for cut-and-paste boundaries = morphisms spaces \(\text{Hom}_\mathcal{D}(X, 1) \)
RT-type TFT with defects

RT-type TFT: symmetric monoidal functor
\[\text{tft}_{3,2}^D : \text{Cobord}_{3,2} \rightarrow \text{Vect} \]
resp. 2-functor
\[\text{tft}_{3,2,1}^D : \text{Cobord}_{3,2,1} \rightarrow \text{2-Vect} \]

- input: a modular tensor category \(D \)
- Wilson lines (ribbons) in three-manifolds labeled by objects of \(D \)
- insertions on Wilson lines / junctions labeled by morphisms of \(D \)
- 2-d cut-and-paste boundaries on which Wilson lines can end
- state spaces for cut-and-paste boundaries = morphisms spaces \(\text{Hom}_D(X,1) \)

RT-type TFT with boundaries and defects:

- include in \(\text{Cobord} \) three-manifolds with physical boundary
- include in \(\text{Cobord} \) three-manifolds with surface defects
RT-type TFT with defects

- **RT-type TFT**: symmetric monoidal functor $\text{tft}^{D}_{3,2} : \text{Cobord}_{3,2} \rightarrow \text{Vect}$

 resp. 2-functor $\text{tft}^{D}_{3,2,1} : \text{Cobord}_{3,2,1} \rightarrow 2\text{-Vect}$

 - input: a modular tensor category D
 - Wilson lines (ribbons) in three-manifolds labeled by objects of D
 - insertions on Wilson lines / junctions labeled by morphisms of D
 - 2-d cut-and-paste boundaries on which Wilson lines can end
 - state spaces for cut-and-paste boundaries = morphisms spaces $\text{Hom}_D(X, 1)$

- **RT-type TFT with boundaries and defects**:
 - include three-manifolds with physical boundary and/or surface defects
 - 3-d bulk regions labeled by modular tensor categories D_1, D_2, \ldots
 (bulk Wilson lines in such a region labeled by objects of D_i)
 - boundary Wilson lines and defect Wilson lines
 - several layers of insertions and of junctions
RT-type TFT with defects

- RT-type TFT: symmetric monoidal functor $\text{tft}^{D}_{3,2} : \text{Cobord}_{3,2} \to \text{Vect}$
 - resp. 2-functor $\text{tft}^{D}_{3,2,1} : \text{Cobord}_{3,2,1} \to 2\text{-Vect}$

 - input: a modular tensor category D

 - Wilson lines (ribbons) in three-manifolds labeled by objects of D

 - insertions on Wilson lines / junctions labeled by morphisms of D

 - 2-d cut-and-paste boundaries on which Wilson lines can end

 - state spaces for cut-and-paste boundaries = morphisms spaces $\text{Hom}_D(X, 1)$

- RT-type TFT with boundaries and defects:

 - Task: construct symmetric monoidal 2-functor $\text{Cobord}^{\partial}_{3,2,1} \to 2\text{-Vect}$
 - for category of cobordisms with corners
RT-type TFT with defects

- RT-type TFT: symmetric monoidal functor \(\text{tft}^{D}_{3,2} : \text{Cobord}_{3,2} \rightarrow \text{Vect} \)

 resp.

 2-functor \(\text{tft}^{D}_{3,2,1} : \text{Cobord}_{3,2,1} \rightarrow 2\text{-Vect} \)

- input: a modular tensor category \(D \)

- Wilson lines (ribbons) in three-manifolds labeled by objects of \(D \)

- insertions on Wilson lines / junctions labeled by morphisms of \(D \)

- 2-d cut-and-paste boundaries on which Wilson lines can end

- state spaces for cut-and-paste boundaries = morphisms spaces \(\text{Hom}_D(X, 1) \)

- RT-type TFT with boundaries and defects:

 Task: construct symmetric monoidal 2-functor \(\text{Cobord}_{3,2,1}^\partial \rightarrow 2\text{-Vect} \) for category of cobordisms with corners

 In particular:

 - determine labels for physical boundaries / for surface defects
 - determine labels for boundary and defect Wilson lines and for insertions

 Conjecture: Fit together to form bicategories of module categories
Select boundary “a” to some bulk region labeled by a modular tensor category C can contain boundary Wilson lines. Wilson line can contain insertions. Insertions can be composed.

\rightsquigarrow category \mathcal{W}_a of Wilson lines on boundary a.
Select boundary “a” to some bulk region labeled by a modular tensor category C can contain boundary Wilson lines. Wilson line can contain insertions. Insertions can be composed. Boundary Wilson lines can be fused and can be deformed.

\leadsto rigid monoidal category \mathcal{W}_a of Wilson lines on boundary a
Select boundary “a” to some bulk region labeled by a modular tensor category C
- can contain boundary Wilson lines
- Wilson line can contain insertions
- insertions can be composed
- boundary Wilson lines can be fused and can be deformed
- also impose: finitely semisimple etc

$spherical$ fusion category \mathcal{W}_a of Wilson lines on boundary a
Select boundary “a” to some bulk region labeled by a modular tensor category \mathcal{C}

- fusion category \mathcal{W}_a of Wilson lines on boundary a

Postulate process of moving bulk Wilson lines to boundary

- functor $F_a : \mathcal{C} \to \mathcal{W}_a$
Select boundary “a” to some bulk region labeled by a modular tensor category \mathcal{C}

\rightsquigarrow fusion category \mathcal{W}_a of Wilson lines on boundary a

Postulate process of moving bulk Wilson lines to boundary

\rightsquigarrow functor $F_a : \mathcal{C} \to \mathcal{W}_a$

Impose compatibility of fusion in bulk and boundary

\rightsquigarrow monoidal structure $F_a(U \otimes_C V) \xrightarrow{\sim} F_a(U) \otimes \mathcal{W}_a F_a(V)$
Select boundary “a” to some bulk region labeled by a modular tensor category \(\mathcal{C} \)

- fusion category \(\mathcal{W}_a \) of Wilson lines on boundary \(a \)

Postulate process of moving bulk Wilson lines to boundary

- functor \(F_a : \mathcal{C} \rightarrow \mathcal{W}_a \)

Impose compatibility of fusion in bulk and boundary

- monoidal structure \(F_a(U \otimes \mathcal{C} V) \cong F_a(U) \otimes \mathcal{W}_a F_a(V) \)

Impose independence from details of bulk-to-boundary process

- central structure \(F_a(U) \otimes \mathcal{W}_a X \cong X \otimes \mathcal{W}_a F_a(U) \)
Select boundary \("a" \) to some bulk region labeled by a modular tensor category \(\mathcal{C} \)

\(\rightsquigarrow \) fusion category \(\mathcal{W}_a \) of Wilson lines on boundary \(a \)

Postulate process of moving bulk Wilson lines to boundary

\(\rightsquigarrow \) functor \(F_a : \mathcal{C} \to \mathcal{W}_a \)

Impose compatibility of fusion in bulk and boundary

\(\rightsquigarrow \) monoidal structure

\[F_a(U \otimes_C V) \xrightarrow{\simeq} F_a(U) \otimes \mathcal{W}_a F_a(V) \]

Impose independence from details of bulk-to-boundary process

\(\rightsquigarrow \) central structure

\[F_a(U) \otimes \mathcal{W}_a X \xrightarrow{\simeq} X \otimes \mathcal{W}_a F_a(U) \]

equivalently: choice of lift to Drinfeld center of \(\mathcal{W}_a \)
Select boundary "a" to some bulk region labeled by a modular tensor category C

\[\rightsquigarrow \text{fusion category } \mathcal{W}_a \text{ of Wilson lines on boundary } a \]

Postulate process of moving bulk Wilson lines to boundary

\[\rightsquigarrow \text{functor } F_a : C \to \mathcal{W}_a \]

Impose compatibility of fusion in bulk and boundary

\[\rightsquigarrow \text{monoidal structure } F_a(U \otimes_C V) \congrightarrow F_a(U) \otimes_{\mathcal{W}_a} F_a(V) \]

Impose independence from details of bulk-to-boundary process

\[\rightsquigarrow \text{central structure } F_a(U) \otimes_{\mathcal{W}_a} X \congrightarrow X \otimes_{\mathcal{W}_a} F_a(U) \]

Postulate naturality:

only reason for being able to consistently move boundary Wilson line $Y \in \mathcal{W}_a$
past any $X \in \mathcal{W}_a$ should be that $Y = F_a(U)$ for some $U \in C$

\[\rightsquigarrow \text{braided equivalence } C \congrightarrow \mathcal{Z}(\mathcal{W}_a) \]
Categories of boundary Wilson lines

- Select boundary “a” to some bulk region labeled by a modular tensor category C
 - fusion category \mathcal{W}_a of Wilson lines on boundary a
- Postulate process of moving bulk Wilson lines to boundary
 - functor $F_a : C \to \mathcal{W}_a$
- Impose compatibility of fusion in bulk and boundary
 - monoidal structure $F_a(U \otimes_C V) \cong F_a(U) \otimes \mathcal{W}_a F_a(V)$
- Impose independence from details of bulk-to-boundary process
 - central structure $F_a(U) \otimes \mathcal{W}_a X \cong X \otimes \mathcal{W}_a F_a(U)$
- Postulate naturality:
 - only reason for being able to consistently move boundary Wilson line $Y \in \mathcal{W}_a$
 past any $X \in \mathcal{W}_a$ should be that $Y = F_a(U)$ for some $U \in C$
 - braided equivalence $C \cong \mathcal{Z}(\mathcal{W}_a)$

In short: Compatible boundary condition for bulk region C

$= Witt$ trivialization $\tilde{F}_a : C \cong \mathcal{Z}(\mathcal{W}_a)$ for some fusion category \mathcal{W}_a
Thus for single boundary condition a:

$\mathcal{C} \xrightarrow{\simeq} \mathcal{Z}(\mathcal{W}_a)$

In particular, obstruction: no compatible boundary condition unless $[\mathcal{C}] = 0$ in Witt group of modular tensor categories.
Thus for single boundary condition a:

\[C \xrightarrow{\sim} \mathbb{Z}(W_a) \]

- in particular, obstruction: no compatible boundary condition unless \([C] = 0\) in Witt group of modular tensor categories

Other boundary condition b:

- other fusion category \mathcal{W}_b of Wilson lines in region b
Thus for single boundary condition a:

\[C \xrightarrow{\sim} \mathbb{Z}(\mathcal{W}_a) \]

in particular obstruction: no compatible boundary condition unless $[C] = 0$

in Witt group of modular tensor categories.

Other boundary condition b:

- category $\mathcal{W}_{a,b}$
 - of Wilson lines separating boundary region labeled a from region labeled b
 - fusion of Wilson lines in region a \(\sim \) functor $\mathcal{W}_a \times \mathcal{W}_{a,b} \rightarrow \mathcal{W}_{a,b}$
 - gives action of \mathcal{W}_a on $\mathcal{W}_{a,b}$: $\mathcal{W}_{a,b}$ is left module category over \mathcal{W}_a
 - likewise: $\mathcal{W}_{a,b}$ is right module category over \mathcal{W}_b
Thus for single boundary condition a:

\[C \xrightarrow{\sim} \mathbb{Z}(\mathcal{W}_a) \]

in particular obstruction: no compatible boundary condition unless $[C] = 0$ in Witt group of modular tensor categories

Other boundary condition b:

- category $\mathcal{W}_{a,b}$ of Wilson lines separating boundary region labeled a from region labeled b
- fusion of Wilson lines in region $a \leadsto$ functor $\mathcal{W}_a \times \mathcal{W}_{a,b} \rightarrow \mathcal{W}_{a,b}$
- gives action of \mathcal{W}_a on $\mathcal{W}_{a,b}$: $\mathcal{W}_{a,b}$ is left module category over \mathcal{W}_a
- likewise: $\mathcal{W}_{a,b}$ is right module category over \mathcal{W}_b
- but also: $\mathcal{W}_{a,b}$ is right module category over $\text{End}_{\mathcal{W}_a}(\mathcal{W}_{a,b})$
Thus for single boundary condition a:

\[C \xrightarrow{\sim} \mathbb{Z}(\mathcal{W}_a) \]

in particular obstruction: no compatible boundary condition unless $[C] = 0$

in Witt group of modular tensor categories

Other boundary condition b:

- category $\mathcal{W}_{a,b}$
 - of Wilson lines separating boundary region labeled a from region labeled b
 - fusion of Wilson lines in region a \leadsto functor $\mathcal{W}_a \times \mathcal{W}_{a,b} \rightarrow \mathcal{W}_{a,b}$
 - gives action of \mathcal{W}_a on $\mathcal{W}_{a,b}$: $\mathcal{W}_{a,b}$ is left module category over \mathcal{W}_a
 - likewise: $\mathcal{W}_{a,b}$ is right module category over \mathcal{W}_b
 - but also: $\mathcal{W}_{a,b}$ is right module category over $\mathcal{E}_{\text{nd}} \mathcal{W}_a(\mathcal{W}_{a,b})$

Impose naturality: $\mathcal{E}_{\text{nd}} \mathcal{W}_a(\mathcal{W}_{a,b}) \simeq \mathcal{W}_b$

Consistency check: $\mathbb{Z}(\mathcal{E}_{\text{nd}} \mathcal{W}_a(\mathcal{W}_{a,b})) \simeq \mathbb{Z}(\mathcal{W}_a)$ canonically

Schauenburg 2001
Bicategories of boundary conditions

Thus for single boundary condition a: $\mathcal{C} \xrightarrow{\sim} \mathbb{Z}(\mathcal{W}_a)$

- in particular obstruction: no compatible boundary condition unless $[\mathcal{C}] = 0$ in Witt group of modular tensor categories

Other boundary condition b:
- category $\mathcal{W}_{a,b}$ of Wilson lines separating boundary region labeled a from region labeled b
- fusion of Wilson lines in region $a \rightsquigarrow$ functor $\mathcal{W}_a \times \mathcal{W}_{a,b} \rightarrow \mathcal{W}_{a,b}$
- gives action of \mathcal{W}_a on $\mathcal{W}_{a,b}$: $\mathcal{W}_{a,b}$ is left module category over \mathcal{W}_a
- likewise: $\mathcal{W}_{a,b}$ is right module category over \mathcal{W}_b
- but also: $\mathcal{W}_{a,b}$ is right module category over $\mathcal{E}nd_{\mathcal{W}_a}(\mathcal{W}_{a,b})$

Impose naturality: $\mathcal{E}nd_{\mathcal{W}_a}(\mathcal{W}_{a,b}) \simeq \mathcal{W}_b$

\implies can work with a single reference boundary condition a

Conjecture: Boundary conditions for \mathcal{C} form the bicategory \mathcal{W}_a-Mod of module categories over a fusion category \mathcal{W}_a satisfying $\mathbb{Z}(\mathcal{W}_a) \simeq \mathcal{C}$
Will assume: Boundary conditions given by \mathcal{W}_a-Mod.

Then $\mathcal{W}_{b,c} \simeq \mathcal{F}un_{\mathcal{W}_a}(\mathcal{W}_b, \mathcal{W}_c)$ for any pair of boundary conditions b, c.
Will assume: Boundary conditions given by \mathcal{W}_a-Mod

Then $\mathcal{W}_{b,c} \simeq \text{Fun}_{\mathcal{W}_a}(\mathcal{W}_b, \mathcal{W}_c)$ for any pair of boundary conditions b, c

Warning:
via $\mathcal{C} \xrightarrow{\simeq} \mathcal{Z}($$\mathcal{W}_a$$)$ forget \mathcal{W}_a

any $\mathcal{M} \in \mathcal{W}_a$-$\text{Mod}$ has natural structure of \mathcal{C}-module category

But not every \mathcal{C}-module category of a Witt-trivial \mathcal{C} gives a boundary condition
Will assume: Boundary conditions given by \mathcal{W}_a-Mod

Then $\mathcal{W}_{b,c} \simeq \mathcal{F}_{\mathcal{W}_a}(\mathcal{W}_b, \mathcal{W}_c)$ for any pair of boundary conditions b, c

Warning:

via $\mathcal{C} \xrightarrow{\simeq} \mathbb{Z}(\mathcal{W}_a) \xrightarrow{\text{forget}} \mathcal{W}_a$

any $\mathcal{M} \in \mathcal{W}_a$-$\text{Mod}$ has natural structure of \mathcal{C}-module category

But not every \mathcal{C}-module category of a Witt-trivial \mathcal{C} gives a boundary condition

Illustration: Toric code

\sim 2 elementary boundary conditions

BRAVYI-KITAEV 2001
Will assume: Boundary conditions given by \(\mathcal{W}_a\text{-}\text{Mod} \)

Then \(\mathcal{W}_{b,c} \simeq \mathcal{F}un_{\mathcal{W}_a}(\mathcal{W}_b, \mathcal{W}_c) \) for any pair of boundary conditions \(b, c \)

Warning:

via \(C \xrightarrow{\simeq} \mathbb{Z}(\mathcal{W}_a) \xrightarrow{\text{forget}} \mathcal{W}_a \)

any \(\mathcal{M} \in \mathcal{W}_a\text{-}\text{Mod} \) has natural structure of \(C\)-module category

But not every \(C\)-module category of a Witt-trivial \(C \) gives a boundary condition

Illustration: Toric code

- 2 elementary boundary conditions

- \(C = \mathbb{Z}(\text{Vect}(\mathbb{Z}_2)) \)

- 6 inequivalent indecomposable module categories over \(C \)

- 2 inequivalent indecomposable module categories over \(\mathcal{W} = \text{Vect}(\mathbb{Z}_2) \)
Parallel analysis for **surface defects**:

- defect d separating bulk regions labeled by C_1 and C_2
- two monoidal functors $C_1 \to \mathcal{W}_d$ and $C_2^{rev} \to \mathcal{W}_d$ to fusion category \mathcal{W}_d
Parallel analysis for surface defects:

- defect d separating bulk regions labeled by C_1 and C_2
- two monoidal functors $C_1 \rightarrow \mathcal{W}_d$ and $C_2^{\text{rev}} \rightarrow \mathcal{W}_d$ to fusion category \mathcal{W}_d
- combine to central functor $C_1 \boxtimes C_2^{\text{rev}} \rightarrow \mathcal{W}_d$

Deligne product
Parallel analysis for surface defects:

- defect d separating bulk regions labeled by C_1 and C_2.
- two monoidal functors $C_1 \to \mathcal{W}_d$ and $C_2^{\text{rev}} \to \mathcal{W}_d$ to fusion category \mathcal{W}_d.
- combine to central functor $C_1 \boxtimes C_2^{\text{rev}} \to \mathcal{W}_d$.
- naturality \sim braided equivalence $C_1 \boxtimes C_2^{\text{rev}} \sim \mathbb{Z}(\mathcal{W}_a)$.
- obstruction: no defects between C_1 and C_2 unless $[C_1] = [C_2]$ in Witt group.
Parallel analysis for surface defects:

- defect d separating bulk regions labeled by C_1 and C_2
- two monoidal functors $C_1 \to \mathcal{W}_d$ and $C_2^{\text{rev}} \to \mathcal{W}_d$ to fusion category \mathcal{W}_d
- combine to central functor $C_1 \boxtimes C_2^{\text{rev}} \to \mathcal{W}_d$
- naturality \sim braided equivalence $C_1 \boxtimes C_2^{\text{rev}} \xrightarrow{\simeq} \mathcal{Z}(\mathcal{W}_a)$

Defects separating C_1 from C_2 form the bicategory \mathcal{W}_d-Mod of module categories over a fusion category \mathcal{W}_d satisfying $\mathcal{Z}(\mathcal{W}_d) \simeq C_1 \boxtimes C_2^{\text{rev}}$
Parallel analysis for surface defects:

- defect d separating bulk regions labeled by C_1 and C_2
- two monoidal functors $C_1 \to \mathcal{W}_d$ and $C_2^{\text{rev}} \to \mathcal{W}_d$ to fusion category \mathcal{W}_d
- combine to central functor $C_1 \boxtimes C_2^{\text{rev}} \to \mathcal{W}_d$
- naturality \sim braided equivalence

Defects separating C_1 from C_2 form the bicategory \mathcal{W}_d-Mod of module categories over a fusion category \mathcal{W}_d satisfying $\mathbb{Z}(\mathcal{W}_d) \simeq C_1 \boxtimes C_2^{\text{rev}}$

Example: Canonical Witt trivialization $C \boxtimes C^{\text{rev}} \sim \mathbb{Z}(C)$ (C modular)

- defects separating C from itself $=$ C-module categories
Parallel analysis for surface defects:
- defect d separating bulk regions labeled by C_1 and C_2
- two monoidal functors $C_1 \to \mathcal{W}_d$ and $C_{2}^{\text{rev}} \to \mathcal{W}_d$ to fusion category \mathcal{W}_d
- combine to central functor $C_1 \boxtimes C_{2}^{\text{rev}} \to \mathcal{W}_d$
- naturality \sim braided equivalence

\[
C_1 \boxtimes C_{2}^{\text{rev}} \simeq \mathcal{Z}(\mathcal{W}_d)
\]

Defects separating C_1 from C_2 form the bicategory $\mathcal{W}_d\text{-Mod}$ of module categories over a fusion category \mathcal{W}_d satisfying $\mathcal{Z}(\mathcal{W}_d) \simeq C_1 \boxtimes C_{2}^{\text{rev}}$

Canonical Witt trivialization $C \boxtimes C^{\text{rev}} \simeq \mathcal{Z}(C)$
- defects separating C from itself = C-module categories
- regular C-module category $(C, \otimes) \sim$ transparent defect \mathcal{T}
- serves as monoidal unit for fusion of surface defects
- Wilson lines separating transparent defect from itself = ordinary Wilson lines
Bicategories of surface defects

- Parallel analysis for surface defects:
 - defect \(d \) separating bulk regions labeled by \(C_1 \) and \(C_2 \)
 - two monoidal functors \(C_1 \to \mathcal{W}_d \) and \(C_2^{\text{rev}} \to \mathcal{W}_d \) to fusion category \(\mathcal{W}_d \)
 - combine to central functor \(C_1 \boxtimes C_2^{\text{rev}} \to \mathcal{W}_d \)
 - naturality \(\sim \) braided equivalence

- Defects separating \(C_1 \) from \(C_2 \) form the bicategory \(\mathcal{W}_d\text{-Mod} \)
 - of module categories over a fusion category \(\mathcal{W}_d \) satisfying \(\mathcal{Z}(\mathcal{W}_d) \simeq C_1 \boxtimes C_2^{\text{rev}} \)

- Canonical Witt trivialization \(C \boxtimes C^{\text{rev}} \sim \mathcal{Z}(C) \)
 - defects separating \(C \) from itself \(= C\)-module categories
 - regular \(C\)-module category \((C, \otimes) \sim \) transparent defect \(T \)

- Example: Turaev-Viro TFT: \(C_1 \simeq \mathcal{Z}(A_1) \) and \(C_2 \simeq \mathcal{Z}(A_2) \)
 \(\sim \) \(C_1 \boxtimes C_2^{\text{rev}} \simeq \mathcal{Z}(A_1) \otimes \mathcal{Z}(A_2^{\text{op}}) \simeq \mathcal{Z}(A_1 \boxtimes A_2^{\text{op}}) \)
 \(\sim \) defects separating \(C_1 \) from \(C_2 \) form bicategory \(A_1\text{-}A_2\text{-Bimod} \)

- Defects separating \(C_1 \) from \(C_2 \) form the bicategory \(\mathcal{W}_d\text{-Mod} \)
 - of module categories over a fusion category \(\mathcal{W}_d \) satisfying \(\mathcal{Z}(\mathcal{W}_d) \simeq C_1 \boxtimes C_2^{\text{rev}} \)

- Canonical Witt trivialization \(C \boxtimes C^{\text{rev}} \sim \mathcal{Z}(C) \)
 - defects separating \(C \) from itself \(= C\)-module categories
 - regular \(C\)-module category \((C, \otimes) \sim \) transparent defect \(T \)

- Example: Turaev-Viro TFT: \(C_1 \simeq \mathcal{Z}(A_1) \) and \(C_2 \simeq \mathcal{Z}(A_2) \)
 \(\sim \) \(C_1 \boxtimes C_2^{\text{rev}} \simeq \mathcal{Z}(A_1) \otimes \mathcal{Z}(A_2^{\text{op}}) \simeq \mathcal{Z}(A_1 \boxtimes A_2^{\text{op}}) \)
 \(\sim \) defects separating \(C_1 \) from \(C_2 \) form bicategory \(A_1\text{-}A_2\text{-Bimod} \)
Defects for multi-layer systems

TFT for topological defects

- Classification of module categories over a general modular tensor category \(\mathcal{D} \) out of reach

 (even finding any indecomposable \(\mathcal{D} \)-module besides \((\mathcal{D}, \otimes) \) can be hard)

- Side remark:

 bijection between indecomposable \(\mathcal{D} \)-module categories and modular invariant torus partition functions for the rational conformal field theory based on \(\mathcal{D} \)
Defects for multi-layer systems

- Classification of module categories over a general modular tensor category \mathcal{D} out of reach
- TFT for N-layer system: modular tensor category $\mathcal{D} = \mathcal{C} \boxtimes N$
 with \mathcal{C} modular tensor category for each single layer
Defects for multi-layer systems

Classification of module categories over a general modular tensor category \(\mathcal{D} \) out of reach

TFT for \(N \)-layer system: modular tensor category \(\mathcal{D} = \mathcal{C} \boxtimes N \)

Generic non-trivial right \(\mathcal{D} \)-module category: \(\mathcal{P} \equiv \mathcal{P}_D := (\mathcal{C}, \triangleleft, \alpha) \)

with \(W \triangleleft (U_1 \boxtimes \cdots \boxtimes U_N) = W \otimes U_1 \otimes \cdots \otimes U_N \)

and mixed associativity constraint for \(N = 2 \)

\[\begin{array}{cccc}
 W & U_1 & V_1 & U_2 & V_2 \\
 W & U_1 & U_2 & V_1 & V_2 \\
\end{array} \]
Defects for multi-layer systems

- Classification of module categories over a general modular tensor category \mathcal{D} out of reach
- TFT for N-layer system: modular tensor category $\mathcal{D} = \mathcal{C} \boxtimes N$
- Generic non-trivial right \mathcal{D}-module category: $\mathcal{P} \equiv \mathcal{P}_\mathcal{D} := (\mathcal{C}, \triangleleft, \alpha)$

 with $W \triangleleft (U_1 \boxtimes \cdots \boxtimes U_N) = W \otimes U_1 \otimes \cdots \otimes U_N$

 and mixed associativity constraint for $N = 2$

 $W \otimes U_1 \otimes V_1 \otimes U_2 \otimes V_2$

 $= (W \triangleleft (U_1 \boxtimes V_1)) \triangleleft (U_2 \boxtimes V_2)$

 $= W \triangleleft ((U_1 \boxtimes V_1) \otimes_\mathcal{D} (U_2 \boxtimes V_2))$

 $= W \triangleleft ((U_1 \otimes_\mathcal{D} U_2) \boxtimes (V_1 \otimes_\mathcal{D} V_2))$

 braiding in \mathcal{C}

 categorification of fact that commutative ring R is $R \otimes_\mathcal{Z} R$-module
Defects for multi-layer systems

- Classification of module categories over a general modular tensor category \mathcal{D} out of reach
- TFT for N-layer system: modular tensor category $\mathcal{D} = \mathcal{C} \boxtimes N$
- Generic non-trivial right \mathcal{D}-module category: $\mathcal{P} \equiv \mathcal{P}_\mathcal{D} := (\mathcal{C}, \triangleleft, \alpha)$ with $W \triangleleft (U_1 \boxtimes \cdots \boxtimes U_N) = W \otimes U_1 \otimes \cdots \otimes U_N$
- Generalization: a \mathcal{D}-module category for every permutation of the N factors \mathcal{C}
 - Side remark: corresponding to permutation modular invariants in RCFT
Defects for multi-layer systems

TFT for topological defects

- Classification of module categories over a general modular tensor category \mathcal{D} out of reach
- TFT for N-layer system: modular tensor category $\mathcal{D} = C^\otimes N$
- Generic non-trivial right \mathcal{D}-module category: $\mathcal{P} \equiv \mathcal{P}_\mathcal{D} := (C, \prec, \alpha)$ with $W \prec (U_1 \otimes \cdots \otimes U_N) = W \otimes U_1 \otimes \cdots \otimes U_N$
- Generalization: a \mathcal{D}-module category for every permutation of the N factors C
- Side remark: corresponding to permutation modular invariants in RCFT
- From now on restrict to two-layer system $\mathcal{D} = C \otimes C$
 - two generic \mathcal{D}-module categories $\mathcal{D} \equiv \mathcal{T}$ and \mathcal{P}
 - right action $\mathcal{P} \times \mathcal{D} \rightarrow \mathcal{P}$
Defects for multi-layer systems

- Classification of module categories over a general modular tensor category \mathcal{D} out of reach

- TFT for N-layer system: modular tensor category $\mathcal{D} = \mathcal{C} \boxtimes N$

- Generic non-trivial right \mathcal{D}-module category: $\mathcal{P} \equiv \mathcal{P}_\mathcal{D} := (\mathcal{C}, \triangleleft, \alpha)$
 with $W \triangleleft (U_1 \boxtimes \cdots \boxtimes U_N) = W \otimes U_1 \otimes \cdots \otimes U_N$

- Generalization: a \mathcal{D}-module category for every permutation of the N factors \mathcal{C}

 Side remark: corresponding to permutation modular invariants in RCFT

- From now on restrict to two-layer system $\mathcal{D} = \mathcal{C} \boxtimes \mathcal{C}$

 - two generic \mathcal{D}-module categories $\mathcal{D} \equiv \mathcal{T}$ and \mathcal{P}
 - right action $\mathcal{P} \times \mathcal{D} \rightarrow \mathcal{P}$
 - form part of a \mathbb{Z}_2-equivariant modular category
 - thus further fusion functors $\mathcal{D} \times \mathcal{P} \rightarrow \mathcal{P}$ and $\mathcal{P} \times \mathcal{P} \rightarrow \mathcal{D}$
 - derivable from a \mathbb{Z}_2-equivariant topological field theory
The $C\boxtimes C$-module \mathcal{P}

- \mathcal{D}-module category \mathcal{P} realizable as category $A_{\mathcal{P}}\text{-mod}$ of left $A_{\mathcal{P}}$-modules in \mathcal{D}
 - $A_{\mathcal{P}} = \bigoplus_{i \in I_C} S_i^\vee \boxtimes S_i$ as object
 - algebra structure determined by fusion of simple objects in \mathcal{C}:

\[
m = \bigoplus_{i,j,k \in I_C} \sum_{\alpha=1}^{N_{i,j}^k} \overline{e_i^\alpha \boxtimes e_j^\alpha \boxtimes e_k^\alpha} \]

\[
\eta = \overline{e_1^\alpha \boxtimes 1_{\mathcal{CP}}} \]

References:

BARMEIER-J-F-RUNKEL-SCHWEIGERT 2010
BARMEIER-SCHWEIGERT 2011
The $\mathcal{C} \boxtimes \mathcal{C}$-module \mathcal{P}

\mathcal{D}-module category \mathcal{P} realizable as category $A_{\mathcal{P}}$-mod of left $A_{\mathcal{P}}$-modules in \mathcal{D}

$A_{\mathcal{P}} = \bigoplus_{i \in I_C} S_i^\vee \boxtimes S_i$

symmetric special Frobenius algebra:

$$\Delta = \bigoplus_{i,j,k \in I_C} \frac{\dim(S_i) \dim(S_j)}{\text{Dim}(\mathcal{C}) \dim(S_k)} \sum_{\alpha} f_\alpha$$

$$\eta = r_{A_{\mathcal{P}}} \triangleright 1 \otimes 1$$
The $C \otimes C$-module \mathcal{P}

- \mathcal{P} realizable as category $A_{\mathcal{P}}$-mod of left $A_{\mathcal{P}}$-modules in \mathcal{D}
 - $A_{\mathcal{P}} = \bigoplus_{i \in I_C} S_i^{\vee} \otimes S_i$
 - symmetric special Frobenius algebra
 - Azumaya algebra:
 - braided induction functors $\alpha_{A_{\mathcal{P}}}^\pm : \mathcal{C} \to A_{\mathcal{P}}$-$\text{bimod}$ are monoidal equivalences
 $$U \mapsto (A_{\mathcal{P}} \otimes U, m \otimes \text{id}_U, (m \otimes \text{id}_U) \circ (\text{id}_{A_{\mathcal{P}}} \otimes c_{U,A_{\mathcal{P}}}), c_{A_{\mathcal{P}},U}^{-1})$$
The $C \boxtimes C$-module \mathcal{P}

- D-module category \mathcal{P} realizable as category $A_\mathcal{P}$-mod of left $A_\mathcal{P}$-modules in D
 - $A_\mathcal{P} = \bigoplus_{i \in I_C} S_i^\vee \boxtimes S_i$

- symmetric special Frobenius Azumaya algebra

- Analogously
 \[
 \bigoplus_{i_1, i_2, \ldots, i_N \in I_C} (S_{i_1} \boxtimes S_{i_2} \boxtimes \cdots \boxtimes S_{i_N})^\oplus \bigoplus_{i_1, i_2, \ldots, i_N} \text{for } N > 2
 \]
 \[
 N_{i_1, i_2, \ldots, i_N} = \dim \text{Hom}_C(S_{i_1} \otimes S_{i_2} \otimes \cdots \otimes S_{i_N}, 1)
 \]
The $\mathcal{C} \boxtimes \mathcal{C}$-module \mathcal{P}

TFT for topological defects

- \mathcal{D}-module category \mathcal{P} realizable as category $A_\mathcal{P}$-mod of left $A_\mathcal{P}$-modules in \mathcal{D}

 - $A_\mathcal{P} = \bigoplus_{i \in I_C} S_i^V \boxtimes S_i$

 - symmetric special Frobenius Azumaya algebra

- For A Azumaya $\Psi_A := (\alpha_A^+)^{-1} \circ \alpha_A^-$

 describes transmission of bulk Wilson lines through surface defect A-mod
The $\mathcal{C} \otimes \mathcal{C}$-module \mathcal{P}

TFT for topological defects

- \mathcal{D}-module category \mathcal{P} realizable as category $A_{\mathcal{P}}$-mod of left $A_{\mathcal{P}}$-modules in \mathcal{D}
 - $A_{\mathcal{P}} = \bigoplus_{i \in I_C} S_i^\vee \otimes S_i$
 - symmetric special Frobenius Azumaya algebra

- For Azumaya $\Psi_A := (\alpha_A^+)^{-1} \circ \alpha_A^-$
 describes transmission of bulk Wilson lines through surface defect A-mod
 - $\alpha_{A_{\mathcal{P}}}^+(U \otimes V) \cong \alpha_{A_{\mathcal{P}}}^-(V \otimes U)$ by direct calculation
 - transmission of bulk Wilson lines through \mathcal{P} permutes the layers
The $C \boxtimes C$-module \mathcal{P}

- **D-module category** \mathcal{P} realizable as category $A_{\mathcal{P}}$-mod of left $A_{\mathcal{P}}$-modules in D
 - $A_{\mathcal{P}} = \bigoplus_{i \in I_C} S_i^\vee \boxtimes S_i$
 - symmetric special Frobenius Azumaya algebra

- For A Azumaya $\Psi_A := (\alpha_A^+)^{-1} \circ \alpha_A^-$ describes transmission of bulk Wilson lines through surface defect A-mod
 - $\alpha^+_A(U \boxtimes V) \cong \alpha^-_A(V \boxtimes U)$

- Braided induction for tensor products:

$$\begin{align*}
\alpha^-_{A_1 \otimes A_2} & \Rightarrow \nu \Rightarrow \beta^- \\
\beta^- & \Rightarrow \bar{\nu} \Rightarrow \beta^+ \\
\beta^+ & \Rightarrow \text{Id} \Rightarrow \alpha^+_A_{A_1 \otimes A_2}
\end{align*}$$
The $C \otimes C$-module \mathcal{P}

- \mathcal{D}-module category \mathcal{P} realizable as category $A_{\mathcal{P}}\text{-mod}$ of left $A_{\mathcal{P}}$-modules in \mathcal{D}
 - $A_{\mathcal{P}} = \bigoplus_{i \in I_C} S_i^v \boxtimes S_i$
 - symmetric special Frobenius Azumaya algebra
- For Azumaya A, $\Psi_A := (\alpha_A^+)^{-1} \circ \alpha_A^-$
describes transmission of bulk Wilson lines through surface defect $A\text{-mod}$
 - $\alpha_{A_{\mathcal{P}}}^+ (U \boxtimes V) \cong \alpha_{A_{\mathcal{P}}}^- (V \boxtimes U)$
- Braided induction for tensor products
 - $\Psi_{A_1 \otimes A_2} = \Psi_{A_1} \circ \Psi_{A_2}$ as monoidal functors if $A_{1,2}$ Azumaya
 - $A_{\mathcal{P}} \otimes A_{\mathcal{P}}$ Morita equivalent to $1_{\mathcal{D}}$
The $C \Box C$-module \mathcal{P}

TFT for topological defects

- \mathcal{D}-module category \mathcal{P} realizable as category $A_{\mathcal{P}}$-mod of left $A_{\mathcal{P}}$-modules in \mathcal{D}
 - $A_{\mathcal{P}} = \bigoplus_{i \in I_C} S_i^V \boxtimes S_i$
 - symmetric special Frobenius Azumaya algebra
- For A Azumaya $\Psi_A := (\alpha_A^+)^{-1} \circ \alpha_A^-$ describes transmission of bulk Wilson lines through surface defect A-mod
 - $\alpha_A^+ (U \boxtimes V) \cong \alpha_A^- (V \boxtimes U)$
- Braided induction for tensor products
 - $\Psi_{A_1} \otimes A_2 = \Psi_{A_1} \circ \Psi_{A_2}$ as monoidal functors if $A_{1,2}$ Azumaya
 - $A_{\mathcal{P}} \otimes A_{\mathcal{P}}$ Morita equivalent to $1_{\mathcal{D}}$
- Fusion rules:
 - $\mathcal{T} \boxtimes_{\mathcal{D}} \mathcal{P} \cong \mathcal{P}$
 - $\mathcal{P} \boxtimes_{\mathcal{D}} \mathcal{P} \cong \mathcal{T}$
- Categories of defect Wilson lines:
 - $\mathcal{F}un_{\mathcal{D}}(\mathcal{T}, \mathcal{P}) \cong (1_{\mathcal{D}} \otimes A_{\mathcal{P}})$-$\text{mod} \cong A_{\mathcal{P}}$-$\text{mod} \cong \mathcal{C}$
 - $\mathcal{F}un_{\mathcal{D}}(\mathcal{P}, \mathcal{T}) \cong \mathcal{C}$
 - $\mathcal{E}nd_{\mathcal{D}}(\mathcal{T}) \cong \mathcal{D} \cong \mathcal{E}nd_{\mathcal{D}}(\mathcal{P})$
Relation with extended TFT

More general Wilson lines:

\[\text{Diagram of more general Wilson lines} \]
Relation with extended TFT

More general Wilson lines:

Via extended TFT $\text{tft}^D_{3,2,1}$ assign categories:

$$\text{Cobord}_{3,2,1} \rightarrow 2\text{-Vect}$$

$$M \mapsto \text{tft}^D_{3,2,1}(M)$$

1-manifold category

e.g. circle: $\text{tft}^D_{3,2,1}(\mathbb{S}) = \mathcal{D}$
Relation with extended TFT

More general Wilson lines:

Via extended TFT $tft_{3,2,1}^D$ assign categories: \[\text{Cobord}_{3,2,1} \rightarrow 2\text{-Vect} \]

Circle with defect points: use cover functor \[M \mapsto \text{two-sheeted cover } \tilde{M} \]

locally:

M \tilde{M}
Relation with extended TFT

More general Wilson lines:

Via extended TFT $\text{tft}^D_{3,2,1}$ assign categories:

\[\text{Cobord}_{3,2,1} \longrightarrow \text{2-Vect} \]

\[M \mapsto \text{tft}^D_{3,2,1}(M) \]

Circle with defect points: use cover functor

$M \mapsto$ two-sheeted cover $\tilde{M}

\begin{align*}
\text{tft}^{\mathbb{Z}_2;D}_{3,2,1}(\mathbb{S}_{n_T},n_P) \\
= \text{tft}^C_{3,2,1}(\mathbb{S}_{n_T},n_P) \\
= \begin{cases}
\text{tft}_C(\mathbb{S} \sqcup \mathbb{S}) \simeq \text{tft}_C(\mathbb{S}) \boxtimes \text{tft}_C(\mathbb{S}) = C \boxtimes C = D & \text{for } n_P \text{ even} \\
\text{tft}_C(\mathbb{S}) = C & \text{for } n_P \text{ odd}
\end{cases}
\end{align*}

reproducing the previous results for categories of defect Wilson lines
Relation with extended TFT

More general Wilson lines:

Via extended TFT $\text{tft}_{3,2,1}^D$ assign functors to 2-manifolds

General surfaces with Wilson lines:
More general Wilson lines:

Via extended TFT $\text{tft}_{3,2,1}^D$ assign functors to 2-manifolds

General surfaces with Wilson lines:
functor $\text{tft}_{3,2,1}^D(\partial_+ \Sigma \xrightarrow{\Sigma} \partial_- \Sigma)$
e.g. pair of pants
$Y \leftrightarrow \boxtimes : \mathcal{D} \times \mathcal{D} \rightarrow \mathcal{D}$
Relation with extended TFT

More general Wilson lines:

Via extended TFT $tft^{D}_{3,2,1}$ assign functors to 2-manifolds

General surfaces with Wilson lines:

functor $tft^{D}_{3,2,1}(\partial_\Sigma \xrightarrow{\Sigma} \partial_+ \Sigma)$

e.g. pair of pants

$Y \mapsto \bigstar : D \times D \to D$

General case:

e.g. via cover functor: pair of pants (n_1, n_2, n_3) \mathcal{P}-defects on ∂Y

$Y_{n_1, n_2, n_3} \mapsto \begin{cases} \bigstar & \text{for } n_1 + n_2 \text{ even} \\ < & \text{for } n_1 + n_2 \text{ odd} \end{cases}$
Spaces of conformal blocks

Surface without defect lines with $\partial_+ \Sigma = \emptyset$ and $g_{\Sigma} = 0$ and $\pi_0(\partial \Sigma) = m$ gives functor

$$\mathcal{D} \boxtimes m \to \text{Vect}$$

$$U_1 \boxtimes \cdots \boxtimes U_m \mapsto \text{Hom}_\mathcal{D}(U_1 \otimes_{\mathcal{D}} \cdots \otimes_{\mathcal{D}} U_m, 1_{\mathcal{D}})$$
Surface without defect lines with \(\partial_+ \Sigma = \emptyset \) and \(g_\Sigma = 0 \) and \(\pi_0(\partial \Sigma) = m \) gives functor

\[
\mathcal{D}^\otimes m \longrightarrow \text{Vect}
\]

\[
U_1 \otimes \cdots \otimes U_m \longmapsto \text{Hom}_D(U_1 \otimes_D \cdots \otimes_D U_m, 1_D)
\]

= space of conformal blocks

= space of ground states of topological phase

generalizes to higher genus

dimension computed by Verlinde formula
Surface without defect lines with $\partial^+ \Sigma = \emptyset$ and $g_\Sigma = 0$ and $\pi_0(\partial \Sigma) = m$
gives functor $\mathcal{D}^m \longrightarrow \text{Vect}$
$U_1 \boxtimes \cdots \boxtimes U_m \longmapsto \text{Hom}_\mathcal{D}(U_1 \otimes_\mathcal{D} \cdots \otimes_\mathcal{D} U_m, \mathbf{1}_\mathcal{D})$

General surface:
- m_0 boundary circles \bigcirc with even number of \mathcal{P}-defects
- m_1 boundary circles \bigcirc with odd number of \mathcal{P}-defects
Spaces of conformal blocks

Surface without defect lines with $\partial_+ \Sigma = \emptyset$ and $g_\Sigma = 0$ and $\pi_0(\partial \Sigma) = m$

gives functor

$$D \boxtimes m \longrightarrow \text{Vect}$$

$$U_1 \boxtimes \cdots \boxtimes U_m \longmapsto \text{Hom}_D(U_1 \otimes_D \cdots \otimes_D U_m, 1_D)$$

General surface:

m_0 boundary circles \bigcirc with even number of \mathcal{P}-defects

m_1 boundary circles \bigcirc with odd number of \mathcal{P}-defects

gives functor

$$D \boxtimes m_0 \boxtimes C \boxtimes m_1 \longrightarrow \text{Vect}$$

expressible as a composite of functors in pair-of-pants decomposition of Σ

glue \mathbb{Z}_2-covers of pairs of pants \leadsto branched twofold cover $\tilde{\Sigma}$

compatible with gluing of surfaces with defects

$tft^{\mathbb{Z}_2;D}_{3,2,1}(\Sigma) = tft^C_{3,2,1}(\tilde{\Sigma})$
Spaces of conformal blocks

TFT for topological defects

- Surface without defect lines with \(\partial_+ \Sigma = \emptyset \) and \(g_\Sigma = 0 \) and \(\pi_0(\partial \Sigma) = m \) gives functor \(\mathcal{D} \boxtimes m \longrightarrow \text{Vect} \)

\[
U_1 \boxtimes \cdots \boxtimes U_m \longmapsto \text{Hom}_\mathcal{D}(U_1 \otimes_\mathcal{D} \cdots \otimes_\mathcal{D} U_m, 1_\mathcal{D})
\]

- General surface:
 - \(m_0 \) boundary circles \(\bigcirc \) with even number of \(\mathcal{P} \)-defects
 - \(m_1 \) boundary circles \(\bigcirc \) with odd number of \(\mathcal{P} \)-defects

 gives functor \(\mathcal{D} \boxtimes m_0 \boxtimes \mathcal{C} \boxtimes m_1 \longrightarrow \text{Vect} \)

- Generalized Verlinde formula via ordinary Verlinde formula for \(\text{tft}^C_{3,2,1}(\tilde{\Sigma}) \)
 - boundary circle with even number of \(\mathcal{P} \)-defects labeled by \(U \boxtimes \tilde{U} \in \mathcal{D} = \mathcal{C} \boxtimes \mathcal{C} \)
 (pre-image on \(\tilde{\Sigma} \) consisting of two circles)
 - boundary circle with odd number of \(\mathcal{P} \)-defects labeled by \(V \in \mathcal{C} \)
 (pre-image on \(\tilde{\Sigma} \) consisting of one circle)
Spaces of conformal blocks

TFT for topological defects

- Surface without defect lines with $\partial_+ \Sigma = \emptyset$ and $g_\Sigma = 0$ and $\pi_0(\partial \Sigma) = m$
 gives functor $\mathcal{D} \boxtimes m \longrightarrow \text{Vect}$
 $U_1 \boxtimes \cdots \boxtimes U_m \longmapsto \text{Hom}_\mathcal{D}(U_1 \otimes_\mathcal{D} \cdots \otimes_\mathcal{D} U_m, 1_\mathcal{D})$

- General surface:
 m_0 boundary circles \bigcirc with even number of \mathcal{P}-defects
 m_1 boundary circles \bigcirc with odd number of \mathcal{P}-defects
 gives functor $\mathcal{D} \boxtimes m_0 \boxtimes C \boxtimes m_1 \longrightarrow \text{Vect}$

- Generalized Verlinde formula via ordinary Verlinde formula for $\text{tft}_3,2,1^C(\tilde{\Sigma})$
 boundary circle with even number of \mathcal{P}-defects labeled by simple $U_i \boxtimes \tilde{U}_i \in \mathcal{D}$
 boundary circle with odd number of \mathcal{P}-defects labeled by simple $V_j \in \mathcal{C}$

$$\dim_C(\text{tft}_3^\mathcal{D}(\Sigma; \{U_i \boxtimes \tilde{U}_i\}, \{V_j\})) = \sum_{n \in I_\mathcal{C}} (S_{0,n})^{2\chi-m_1} \prod_{i=1}^{m_0} \frac{S_{U_i,n}}{S_{0,n}} \frac{S_{\tilde{U}_i,n}}{S_{0,n}} \prod_{j=1}^{m_1} \frac{S_{V_j,n}}{S_{0,n}}$$
Spaces of conformal blocks

- Surface without defect lines with $\partial_+ \Sigma = \emptyset$ and $g_\Sigma = 0$ and $\pi_0(\partial \Sigma) = m$

 gives functor

 $\mathcal{D} \boxtimes m \rightarrow \text{Vect}$

 $U_1 \boxtimes \cdots \boxtimes U_m \mapsto \text{Hom}_D(U_1 \otimes_D \cdots \otimes_D U_m, 1_D)$

- General surface:

 - m_0 boundary circles \bigcirc with even number of \mathcal{P}-defects
 - m_1 boundary circles \bigcirc with odd number of \mathcal{P}-defects

 gives functor

 $\mathcal{D} \boxtimes m_0 \boxtimes \mathcal{C} \boxtimes m_1 \rightarrow \text{Vect}$

- **Generalized Verlinde formula** via ordinary Verlinde formula for $\text{tft}_{3,2,1}^C(\tilde{\Sigma})$

 - boundary circle with even number of \mathcal{P}-defects labeled by simple $U_i \boxtimes \tilde{U}_i \in \mathcal{D}$
 - boundary circle with odd number of \mathcal{P}-defects labeled by simple $V_j \in \mathcal{C}$

 e.g. $\dim_{\mathbb{C}}(\text{tft}_D^D(S^2; \emptyset, \{V, V, \ldots, V\})) = \sum_{n \in I_C} (S_{0,n})^{4-2m_1} (S_V,n)^{m_1}$
Spaces of conformal blocks

TFT for topological defects

Surface without defect lines with $\partial_+ \Sigma = \emptyset$ and $g_\Sigma = 0$ and $\pi_0(\partial \Sigma) = m$
gives functor

$$D \boxtimes m \longrightarrow \text{Vect}$$

$$U_1 \boxtimes \cdots \boxtimes U_m \longmapsto \text{Hom}_D(U_1 \otimes \cdots \otimes U_m, 1_D)$$

General surface:

m_0 boundary circles \bigcirc with even number of P-defects
m_1 boundary circles \bigcirc with odd number of P-defects

gives functor

$$D \boxtimes m_0 \boxtimes C \boxtimes m_1 \longrightarrow \text{Vect}$$

Generalized Verlinde formula via ordinary Verlinde formula for $\text{tft}_3,2,1^{C}(\tilde{\Sigma})$

boundary circle with even number of P-defects labeled by simple $U_i \boxtimes \tilde{U}_i \in D$
boundary circle with odd number of P-defects labeled by simple $V_j \in C$

e.g.

$$\dim_C(\text{tft}_D(S^2; \emptyset, \{V, V, \ldots, V\})) = \sum_{n \in I_C} (S_{0,n})^{4-2m_1} (S_{V,n})^{m_1}$$
depends on genus type V

modular S-matrix of C
APPENDIX
Defects in Dijkgraaf-Witten theories

Dijkgraaf-Witten theories

- input data: finite group G and cocycle $\omega \in Z^3(G, \mathbb{C}^\times)$
- $\mathcal{C} = D^\omega(G)-\text{mod} \cong \mathbb{Z}(\text{Vect}(G)^\omega)$, Turaev-Viro type
- ω gives holonomy on closed three-manifolds \sim topological bulk Lagrangian
- two-step gauge-theoretic construction:

\[
\text{Cobord}_{3,2,1} \xrightarrow{\text{Bun}} \text{SpanGrp} \xrightarrow{[-,\text{Vect}^\tau]} 2\text{-Vect}
\]

- twisted linearization

\[
\tau \in H^2(G//G, \mathbb{C}^\times) \quad \text{obtained by transgression}
\]

FREED 1995
MORTON 2013

WILLERTON 2008
Dijkgraaf-Witten theories

- input data: finite group G and cocycle $\omega \in Z^3(G, \mathbb{C}^\times)$
- $\mathcal{C} = D\omega(G)\text{-mod} \cong Z(\text{Vect}(G)\omega)$ Turaev-Viro type
- ω gives holonomy on closed three-manifolds \rightsquigarrow topological bulk Lagrangian
- two-step gauge-theoretic construction:

\[
\begin{array}{ccc}
\text{Cobord}_{3,2,1} & \xrightarrow{\text{Bun}} & \text{SpanGrp} \\
\xrightarrow{[-,\text{Vect}]^\tau} & & \xrightarrow{} \text{2-Vect}
\end{array}
\]
twisted linearization

- extends to TFT with boundaries and defects via (bi)relative manifolds and (bi)relative bundles
Dijkgraaf-Witten theories

- input data: finite group G and cocycle $\omega \in Z^3(G, \mathbb{C}^\times)$
- $\mathcal{C} = D^\omega(G)\text{-mod} \simeq Z(\text{Vect}(G)^\omega)$ Turaev-Viro type
- ω gives holonomy on closed three-manifolds \leadsto topological bulk Lagrangian
- two-step gauge-theoretic construction:
 \[
 \text{Cobord}_{3,2,1} \overset{\text{Bun}}{\longrightarrow} \text{SpanGrp} \overset{[-,\text{Vect}]^\tau}{\longrightarrow} 2\text{-Vect}
 \]
 twisted linearization
- extends to TFT with boundaries and defects
 - category of relative bundles for smooth map $j: Y \to X$ and group homomorphism $\iota: H \to G$
 - objects: G-bundle $P_G \to X$ and H-bundle $P_H \to Y$
 - with isomorphism $\alpha: \text{Ind}_H^G(P_H) \cong j^*P_G$
 - morphisms: bundle morphisms

\[
\begin{align*}
 P_G \overset{\varphi_G}{\longrightarrow} P'_G \\
 P_H \overset{\varphi_H}{\longrightarrow} P'_H \\
 \text{Ind}_H^G(P_H) \overset{\alpha}{\longrightarrow} j^*P_G \\
 \text{Ind}_H^G(P_H) \overset{\alpha'}{\longrightarrow} j^*P'_G
\end{align*}
\] s.t.

\[
\begin{align*}
 \text{Ind}_H^G(\varphi_H) \downarrow \\
 \text{Ind}_H^G(P'_H) \overset{\alpha'}{\longrightarrow} j^*P'_G
\end{align*}
\]
Dijkgraaf-Witten theories

- input data: finite group G and cocycle $\omega \in Z^3(G, \mathbb{C}^\times)$
- $\mathcal{C} = D^\omega(G)\text{-mod} \simeq Z(\text{Vect}(G)^\omega)$ Turaev-Viro type
- ω gives holonomy on closed three-manifolds \sim topological bulk Lagrangian
- two-step gauge-theoretic construction:
 \[
 \text{Cobord}_{3,2,1} \xrightarrow{\text{Bun}} \text{SpanGrp} \xrightarrow{[-, \text{Vect}]^\tau} 2\text{-Vect}
 \] twisted linearization
- extends to TFT with boundaries and defects

Example: category for circle S with one defect point p
- to interval $S\setminus\{p\}$ assign group G with cocycle ω
- to p assign homomorphism $\iota: H \to G \times G$ with cochain $\theta \in C^2(H, \mathbb{C}^\times)$
- Bun gives action groupoid $G\backslash G \times G/\sim H$
- twisted linearization gives $[G \backslash G \times G/\sim H, \text{Vect}]^{\tau, \omega, \theta}$

find $\tau_{\omega, \theta}((\gamma_1, \gamma_2); (g, h), (g', h')) = [\theta(h', h)]^{-1}$

\[
\omega(g', g, \gamma_1) [\omega(g', g\gamma_1\iota_1(h)^{-1}, \iota_1(h))]^{-1}\omega(g'g\gamma_1\iota_1(h)^{-1}\iota_1(h')^{-1}, \iota_1(h'), \iota_1(h))
\]

\[
[\omega(g', g, \gamma_2)]^{-1}\omega(g', g\gamma_2\iota_2(h)^{-1}, \iota_2(h)) [\omega(g'g\gamma_2\iota_2(h)^{-1}\iota_2(h')^{-1}, \iota_2(h'), \iota_2(h))^{-1}
\]
Defects in Dijkgraaf-Witten theories

Dijkgraaf-Witten theories

- input data: finite group G and cocycle $\omega \in Z^3(G, \mathbb{C}^\times)$

- $\mathcal{C} = D^\omega(G)\text{-mod} \simeq Z(\operatorname{Vect}(G)^\omega)$ Turaev-Viro type

- ω gives holonomy on closed three-manifolds \sim topological bulk Lagrangian

- two-step gauge-theoretic construction:
 \[
 \text{Cobord}_{3,2,1} \xrightarrow{\widetilde{\text{Bun}}} \text{SpanGrp} \xrightarrow{[-,\operatorname{Vect}]^\tau} 2\text{-Vect}
 \]
 twisted linearization

extends to TFT with boundaries and defects

Example: category for circle \mathbb{S} with one defect point p

- to interval $\mathbb{S}\setminus\{p\}$ assign group G with cocycle ω

- to p assign homomorphism $\iota: H \to G \times G$ with cochain $\theta \in C^2(H, \mathbb{C}^\times)$

- $\widetilde{\text{Bun}}$ gives action groupoid $G \backslash G \times G \backslash_{H} H$

- twisted linearization gives $[G \backslash G \times G \backslash_{H} H, \operatorname{Vect}]^{\tau_{\omega,\theta}}$

- thus equivalent to category of $G \times G$-graded vector spaces $\bigoplus_{g_1,g_2 \in G} V(g_1,g_2)$

- with $\tau_{\omega,\theta}$-twisted $G \times H$-action $\pi_{g,h}: V(g_1,g_2) \to V(gg_1,gg_2)\iota(h)^{-1}$

- equivalent to category of $A_{G_{\text{diag}}}-A_{H,\theta}$-bimodules in $\operatorname{Vect}(G)^\omega \boxtimes \operatorname{Vect}(G)^{\omega^{-1}}$
Further developments

A few other available results:

- Transmission functors for invertible defects realize bijection invertible \mathcal{A}-bimodule categories \leftrightarrow braided auto-equivalences of $\mathcal{Z}(\mathcal{A})$

- Gauge-theoretic description of symmetries of abelian Dijkgraaf-Witten theories $O_q(A \oplus A^\ast)$ generated by

\[
\varphi \oplus (\varphi^\ast)^{-1} \quad \text{with} \quad \varphi \in \text{Aut}(A)
\]

\[
(g, \chi) \mapsto (g, \chi + \beta(g, -)) \quad \text{with} \quad \beta \text{ alternating bicharacter (}B\text{-field)}
\]

Electric-magnetic dualities
Further developments

- A few other available results:
 - transmission functors for invertible defects realize bijection invertible \mathcal{A}-bimodule categories \leftrightarrow braided auto-equivalences of $\mathbb{Z}(\mathcal{A})$
 - gauge-theoretic description of symmetries of abelian Dijkgraaf-Witten theories
 - simplicial constructions à la TV/BW
 - deconfining of twist defects
 - interpretation of categories arising as $\text{tft}_{3,2,1}^{\mathbb{Z}(\mathcal{A})}(\mathcal{S})$ as category-valued trace \otimes for 1-morphisms in the tricategory of finite tensor categories

- Among next steps:
 - formulation of Dijkgraaf-Witten results in terms of relative Deligne product and \otimes so as to extend to all Turaev-Viro TFTs