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Motivation

TFT for topological defects

THEME .
w 2-d defects in 3-d TFT as models for line defects in topological phases

some overlap with Z. Wang’s talk — “approach quite different”
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Motivation

TFT for topological defects

THEMES :
w 2-d defects in 3-d TFT as models for line defects in topological phases (TFT as tool)

ww 3-d TFT with defects of any codimension

POSSIBLE MOTIVATIONS .
w= [opological line defects in topological phases

= Gapped interfaces between topological phases
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Motivation

TFT for topological defects

THEMES :
w 2-d defects in 3-d TFT as models for line defects in topological phases (TFT as tool)

ww 3-d TFT with defects of any codimension

POSSIBLE MOTIVATIONS .

w= Jopological line defects in topological phases
= Gapped interfaces between topological phases
= [FT with substructures / on stratified spaces

w= Extended TFT / higher categories

= Defects in general quantum field theory

== Applications to 2-d rational conformal field theory
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Defects in QFT

TFT for topological defects

= Codimension-1 defect QFT; | QFTo
= interface separating region supporting QFT; from region supporting QFT>
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Defects in QFT

TFT for topological defects

= Codimension-1 defect QFT; | QFTo
= interface separating region supporting QFT; from region supporting QFT>
~ ubiquitous in nature

~~ natural part of the structure of quantum field theory

~ physical boundaries as special case

QFT;
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Defects in QFT

TFT for topological defects

= Codimension-1 defect QFT; | QFTo
= interface separating region supporting QFT; from region supporting QFT>
~ ubiquitous in nature

~~ natural part of the structure of quantum field theory

~ physical boundaries as special case

s> [opological defect: correlators do not change when deforming the defect

without crossing other substructures

= Example: 2-d Ising model
~~ ferromagnetic nearest-neighbour interaction
~~ change coupling to anti-ferromagnetic on all bonds crossed by some line

~> topological defect line
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Defects in QFT

TFT for topological defects

= Codimension-1 defect QFT; | QFTo
= interface separating region supporting QFT; from region supporting QFT>
~ ubiquitous in nature

~~ natural part of the structure of quantum field theory

~ physical boundaries as special case

s> [opological defect: correlators do not change when deforming the defect

without crossing other substructures
== Some general features of topological defects::

-~ codimension-2 defects def; | defo eftc
~ transparent defect

- invert orientation ~» dual defect

~~ move two topological defects to coincidence ~- fusion product of defects
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Defects in QFT

TFT for topological defects

= Codimension-1 defect QFT; | QFTo
= interface separating region supporting QFT; from region supporting QFT>

~ ubiquitous in nature
~~ natural part of the structure of quantum field theory

~ physical boundaries as special case

s> [opological defect: correlators do not change when deforming the defect
without crossing other substructures

== Some general features of topological defects::

-~ codimension-2 defects def; | defo eftc
~ transparent defect
- invert orientation ~» dual defect

~~ move two topological defects to coincidence ~- fusion product of defects

w» Mathematical formulation: ~» higher categories
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Invertible defects and symmetries

TFT for topological defects

assume : defects form a rigid monoidal category
( proven for 2-d RCFT)
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Invertible defects and symmetries TFT for topological defects

assume : defects form a rigid monoidal category
( proven for 2-d RCFT)

D DY =21~ DVYR D

= Subclass: invertible topological defects :
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Invertible defects and symmetries

i Subclass: invertible topological defects : D DY 21 = DV® D

w= Basic property:

A
D

Y

D\/

TFT for topological defects

assume : defects form a rigid monoidal category
( proven for 2-d RCFT)

= dim(D) dim(D) = +1

\J
drawn for d =2

~> identity of correlators when applied locally in any configuration of fields & defects
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Invertible defects and symmetries

TFT for topological defects

assume : defects form a rigid monoidal category
( proven for 2-d RCFT)

i Subclass: invertible topological defects : D DY 21 = DV® D

w= Basic property: 5 QDV
Y

D DY

~> identity of correlators when applied locally in any configuration of fields & defects

~~ invertible defects form a group under fusion
~ act on all data of the theory as a symmetry group

~ e.g. critical 2-d Ising model: Z-
critical three-state Potts model: S5
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Invertible defects and symmetries

i Subclass: invertible topological defects : D DY 21 = DV® D

== Basic property :

A
D

Y

D\/

TFT for topological defects

assume : defects form a rigid monoidal category
( proven for 2-d RCFT)

= dim(D)

DQD\/
M

~> identity of correlators when applied locally in any configuration of fields & defects

~~ invertible defects form a group under fusion

~ act on all data of the theory as a symmetry group

~ Example: equalities for bulk field correlators on sphere:

= dim(D) (g° ) = 8 8
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Duality defects

TFT for topological defects

(continuingind=2)
= Wrapping of general topological defect around a bulk field :

D

intermediate
defects D;
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Duality defects

TFT for topological defects

(continuingind=2)
= Wrapping of general topological defect around a bulk field :

D

intermediate
defects D;

-~ bulk field turned into disorder field
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Duality defects

TFT for topological defects

(continuing in d =2)
= Wrapping of general topological defect around a bulk field :

D

I
]

intermediate
defects D;

-~ bulk field turned into disorder field

~~ wrapping with dual defect turns disorder field back to bulk field if and only if
D ® DV is direct sum of invertible defects

~~ in this case have an order-disorder duality

e.g. critical 2-d Ising model: remnant of Kramers-Wannier duality

~~ again action on all field theoretic quantities
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Duality defects

TFT for topological defects

(continuing in d =2)
= Wrapping of general topological defect around a bulk field :

D

2

intermediate
defects D;

<0

-~ bulk field turned into disorder field

~~ wrapping with dual defect turns disorder field back to bulk field if and only if
D ® DV is direct sum of invertible defects

= Example: correlator of two Ising spin fields on a torus:

o0 p p
_ 1 l N l
' Yo - 5 n I
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Plan TFT for topological defects

GoaL: Similar results for defects in 3-d TFT

TASKS

=

=

=

=

Achieve basic understanding of topological defects in 3-d TFT
Study consequences in relevant classes of models
Apply insight to topological phases

Construct 3-d TFT with topological defects mathematically
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Plan TFT for topological defects

GoaL: Similar results for defects in 3-d TFT

TASKS .

= Achieve basic understanding of topological defects in 3-d TFT
= Study consequences in relevant classes of models

= Apply insight to topological phases

w= Construct 3-d TFT with topological defects mathematically

PLAN :

== Codimension-1 defects in QFT
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Plan TFT for topological defects

GoaL: Similar results for defects in 3-d TFT

TASKS

=

=

=

=

Achieve basic understanding of topological defects in 3-d TFT
Study consequences in relevant classes of models
Apply insight to topological phases

Construct 3-d TFT with topological defects mathematically

PLAN :

=

=

=

=

Codimension-1 defects in QFT v
Topological defects in 3-d TFT of Reshetikhin-Turaev type
Application : Multi-layer systems

Appendix: Defects in Dijkgraaf-Witten theories
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Plan TFT for topological defects

GoaL: Similar results for defects in 3-d TFT

TASKS .

= Achieve basic understanding of topological defects in 3-d TFT
= Study consequences in relevant classes of models

= Apply insight to topological phases

w= Construct 3-d TFT with topological defects mathematically

PLAN :
= Codimension-1 defects in QFT
r= Jopological defects in 3-d TFT of Reshetikhin-Turaev type

= Application: Multi-layer systems

w= Appendix: Defects in Dijkgraaf-Witten theories

CoLLABORATORS : Jan Priel, Gregor Schaumann,
Christoph Schweigert, Alessandro Valentino
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RT-type TFT with defects

TFT for topological defects

s RT-type TFT: symmetric monoidal functor tfts, : Cobords > — Vect
resp. 2-functor tft£2’1 : Cobord3 21 — 2-Vect

~ input: a modular tensor category D
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RT-type TFT with defects

TFT for topological defects

s RT-type TFT: symmetric monoidal functor tfts, : Cobords > — Vect
resp. 2-functor tfté’iQ’1 : Cobord3 21 — 2-Vect
~ input: a modular tensor category D
~~ Wilson lines (ribbons) in three-manifolds labeled by objects of D
~ insertions on Wilson lines / junctions labeled by morphisms of D
~ 2-d cut-and-paste boundaries on which Wilson lines can end

~ state spaces for cut-and-paste boundaries = morphisms spaces Homp (X, 1)
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RT-type TFT with defects

TFT for topological defects

s RT-type TFT: symmetric monoidal functor tfts, : Cobords > — Vect
resp. 2-functor tft3?2,1 : Cobord3 21 — 2-Vect
~ input: a modular tensor category D
~~ Wilson lines (ribbons) in three-manifolds labeled by objects of D
~ insertions on Wilson lines / junctions labeled by morphisms of D
~ 2-d cut-and-paste boundaries on which Wilson lines can end

~ state spaces for cut-and-paste boundaries = morphisms spaces Homp (X, 1)

ww RT-type TFT with boundaries and defects:

~~ include in Cobord three-manifolds with physical boundary

~ include in Cobord three-manifolds with surface defects
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RT-type TFT with defects

TFT for topological defects

s RT-type TFT: symmetric monoidal functor tfts, : Cobords > — Vect
resp. 2-functor tft3?2,1 : Cobord3 21 — 2-Vect
~ input: a modular tensor category D
~~ Wilson lines (ribbons) in three-manifolds labeled by objects of D
~ insertions on Wilson lines / junctions labeled by morphisms of D
~ 2-d cut-and-paste boundaries on which Wilson lines can end

~ state spaces for cut-and-paste boundaries = morphisms spaces Homp (X, 1)

ww RT-type TFT with boundaries and defects:

~ include three-manifolds with physical boundary and/or surface defects

~ 3-d bulk regions labeled by modular tensor categories Dy, Do, ...
(bulk Wilson lines in such a region labeled by objects of D; )

~~ boundary Wilson lines and defect Wilson lines

~ several layers of insertions and of junctions
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RT-type TFT with defects

TFT for topological defects

s RT-type TFT: symmetric monoidal functor tfts, : Cobords > — Vect

resp. 2-functor tft3?2’1 : Cobords 2.1 — 2-Vect
~ input: a modular tensor category D
~~ Wilson lines (ribbons) in three-manifolds labeled by objects of D
~ insertions on Wilson lines / junctions labeled by morphisms of D
~ 2-d cut-and-paste boundaries on which Wilson lines can end

~ state spaces for cut-and-paste boundaries = morphisms spaces Homp (X, 1)

ww RT-type TFT with boundaries and defects:

Task: construct symmetric monoidal 2-functor  Cobordy, | — 2-Vect
for category of cobordisms with corners
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RT-type TFT with defects

TFT for topological defects

s RT-type TFT: symmetric monoidal functor tfts, : Cobords > — Vect
resp. 2-functor tft3?2,1 : Cobord3 21 — 2-Vect
~ input: a modular tensor category D
~~ Wilson lines (ribbons) in three-manifolds labeled by objects of D
~ insertions on Wilson lines / junctions labeled by morphisms of D
~ 2-d cut-and-paste boundaries on which Wilson lines can end

~ state spaces for cut-and-paste boundaries = morphisms spaces Homp (X, 1)

ww RT-type TFT with boundaries and defects:

Task: construct symmetric monoidal 2-functor  Cobordy, | — 2-Vect
for category of cobordisms with corners

In particular:
~ determine labels for physical boundaries / for surface defects
~ determine labels for boundary and defect Wilson lines and for insertions

Conjecture : Fit together to form bicategories of module categories
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Categories of boundary Wilson lines

TFT for topological defects

= Select boundary “a” to some bulk region labeled by a modular tensor cateory C
~~ can contain boundary Wilson lines
~~ Wilson line can contain insertions
~~ insertions can be composed

~» category W, of Wilson lines on boundary «
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Categories of boundary Wilson lines

TFT for topological defects

= Select boundary “a” to some bulk region labeled by a modular tensor cateory C
~~ can contain boundary Wilson lines
~~ Wilson line can contain insertions
~~ insertions can be composed

~~ boundary Wilson lines can be fused and can be deformed

~> rigid monoidal category W, of Wilson lines on boundary a
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Categories of boundary Wilson lines

TFT for topological defects

= Select boundary “a” to some bulk region labeled by a modular tensor cateory C
~~ can contain boundary Wilson lines
~~ Wilson line can contain insertions
~~ insertions can be composed
~~ boundary Wilson lines can be fused and can be deformed
~ also impose: finitely semisimple eic

~» spherical fusion category W, of Wilson lines on boundary a
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Categories of boundary Wilson lines

TFT for topological defects

= Select boundary “a” to some bulk region labeled by a modular tensor cateory C

~» fusion category W, of Wilson lines on boundary «

w= Postulate process of moving bulk Wilson lines to boundary

~» functor F,: C — W,
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Categories of boundary Wilson lines TP o fepellertes clefaai

= Select boundary “a” to some bulk region labeled by a modular tensor cateory C
~» fusion category W, of Wilson lines on boundary «

w= Postulate process of moving bulk Wilson lines to boundary
~» functor Fg: C — W,

= Impose compatibility of fusion in bulk and boundary

" Y4
Vs U
N Vs

A K

[

|

|

|
eURV i
| \/) |
VraU® Fa ()Y, . pg. . WFa(V)

()

~> monoidal structure  F,(U®cV) — F,(U) Rw, Fa (V)
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Categories of boundary Wilson lines

TFT for topological defects

= Select boundary “a” to some bulk region labeled by a modular tensor cateory C

~» fusion category W, of Wilson lines on boundary a

w= Postulate process of moving bulk Wilson lines to boundary
~» functor Fg: C — W,

= Impose compatibility of fusion in bulk and boundary
~» monoidal structure F,(U®cV) =, Fo(U) @w, Fa(V)

= Impose independence from details of bulk-to-boundary process

U Ue
7 X
P .
P ~
y N

24
p@((fy e X

~ central structure F,(U) @y, X = X Qw,, Fa(U)
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Categories of boundary Wilson lines

TFT for topological defects

= Select boundary “a” to some bulk region labeled by a modular tensor cateory C

~» fusion category W, of Wilson lines on boundary a
w= Postulate process of moving bulk Wilson lines to boundary

~» functor Fg: C — W,
= Impose compatibility of fusion in bulk and boundary

~» monoidal structure F,(U®cV) = Fo(U) @w, Fa(V)
= Impose independence from details of bulk-to-boundary process

~ central structure F,(U) @y, X = X Qw,, Fa(U)

equivalently: choice of lift Z(Wa)

N > to Drinfeld center of W,
Fo ,

)z forget
/ J

7/
CTWCL
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Categories of boundary Wilson lines

TFT for topological defects

[1 3]

= Select boundary “a” to some bulk region labeled by a modular tensor cateory C

~» fusion category W, of Wilson lines on boundary a
w= Postulate process of moving bulk Wilson lines to boundary

~» functor Fg: C — W,
= Impose compatibility of fusion in bulk and boundary

~» monoidal structure F,(U®cV) = Fo(U) @w, Fa(V)
= Impose independence from details of bulk-to-boundary process

~ central structure F,(U) @y, X = X Qw,, Fa(U)

= Postulate naturality :

only reason for being able to consistently move boundary Wilson line Y € W,
pastany X €W, should be that Y = F,,(U) forsome U €C

~- braided equivalence | C —— Z(W,)
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Categories of boundary Wilson lines

TFT for topological defects

= Select boundary “a” to some bulk region labeled by a modular tensor cateory C

~» fusion category W, of Wilson lines on boundary a
w= Postulate process of moving bulk Wilson lines to boundary

~» functor Fg: C — W,
= Impose compatibility of fusion in bulk and boundary

~» monoidal structure F,(U®cV) = Fo(U) @w, Fa(V)
= Impose independence from details of bulk-to-boundary process

~ central structure F,(U) @y, X = X Qw,, Fa(U)

= Postulate naturality :

only reason for being able to consistently move boundary Wilson line Y € W,
pastany X €W, should be that Y = F,,(U) forsome U €C

~- braided equivalence | C —— Z(W,)

In short: Compatible boundary condition for bulk region C

—  Witt trivialization F,: C — Z(W,) for some fusion category W,
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Bicategories of boundary conditions

TFT for topological defects

= Thus for single boundary condition a: | C — Z(W,)

~~ in particular obstruction: no compatible boundary condition unless [C] =0
in Witt group of modular tensor categories
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Bicategories of boundary conditions

TFT for topological defects

= Thus for single boundary condition a: | C — Z(W,)

~~ in particular obstruction: no compatible boundary condition unless [C] =0
in Witt group of modular tensor categories
w= Other boundary condition b:

other fusion category 1V, of Wilson lines in region b
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Bicategories of boundary conditions

= Thus for single boundary condition a: | C — Z(W,)

TFT for topological defects

~~ in particular obstruction: no compatible boundary condition unless [C] =0

in Witt group of modular tensor categories
w= Other boundary condition b:

~~ category W, s

of Wilson lines separating boundary region labeled a from region labeled b
~ fusion of Wilson lines in region a ~ functor Wy x Wy, — Wa s
~~ gives action of WW, on W, ;. W, ; Iis left module category over W,

- likewise: W, ; is right module category over W,
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Bicategories of boundary conditions

TFT for topological defects

= Thus for single boundary condition a: | C — Z(W,)

~~ in particular obstruction: no compatible boundary condition unless [C] =0
in Witt group of modular tensor categories

w= Other boundary condition b:
~~ category W, s

of Wilson lines separating boundary region labeled a from region labeled b

~ fusion of Wilson lines in region a ~ functor Wy x Wy, — Wa s

~~ gives action of WW, on W, ;. W, ; Iis left module category over W,

- likewise: W, ; is right module category over W,

~ butalso: W, ; isright module category over &ndyy, (Wa.b)

module endofunctors
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Bicategories of boundary conditions

= Thus for single boundary condition a: | C — Z(W,)

TFT for topological defects

~~ in particular obstruction: no compatible boundary condition unless [C] =0

in Witt group of modular tensor categories
w= Other boundary condition b:

~~ category W, s
of Wilson lines separating boundary region labeled a from region labeled b
~~ fusion of Wilson lines in region a ~» functor Wy, x W, 5, — Wa s
~~ gives action of WW, on W, ;. W, ; Iis left module category over W,
- likewise: W, ; is right module category over W,
~ butalso: W, ; isright module category over &ndyy, (Wa.b)
== Impose naturality : Endyy, Wa.p) = We

Consistency check: Z(&ndyy, (Wa b)) == Z(Wa) canonically
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Bicategories of boundary conditions

TFT for topological defects

= Thus for single boundary condition a: | C — Z(W,)

~~ in particular obstruction: no compatible boundary condition unless [C] =0
in Witt group of modular tensor categories
w= Other boundary condition b:

~~ category W, s
of Wilson lines separating boundary region labeled a from region labeled b
~~ fusion of Wilson lines in region a ~» functor Wy, x W, 5, — Wa s
~~ gives action of WW, on W, ;. W, ; Iis left module category over W,
- likewise: W, ; is right module category over W,
~ butalso: W, ; isright module category over &ndyy, (Wa.b)
= Impose naturality: Endyy, Wa.p) ~ W
—> can work with a single reference boundary condition a

w= Conjecture: Boundary conditions for C form the bicategory W,-Mod
of module categories over a fusion category W, satisfying Z(W,) ~C
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Bicategories of boundary conditions

TFT for topological defects

= Will assume : Boundary conditions given by W, -Mod

= Then W, . >~ Funyy, Wy, We) for any pair of boundary conditions b, ¢
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Bicategories of boundary conditions

TFT for topological defects

= Will assume : Boundary conditions given by W, -Mod

= Then W, . >~ Funyy, Wy, We) for any pair of boundary conditions b, ¢

= Warning:

via ¢ = 2(W,) et

Wa
any M eW,-Mod has natural structure of C-module category

But not every C-module category of a Witi-trivial C gives a boundary condition
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Bicategories of boundary conditions

TFT for topological defects

= Will assume : Boundary conditions given by W, -Mod

= Then W, . >~ Funyy, Wy, We) for any pair of boundary conditions b, ¢

= Warning:

forget

via C— Z(W,) Wa

any M eW,-Mod has natural structure of C-module category

But not every C-module category of a Witt-trivial C gives a boundary condition

lllustration: Toric code

~ 2 elementary boundary conditions
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Bicategories of boundary conditions

TFT for topological defects

= Will assume : Boundary conditions given by W, -Mod

= Then W, . >~ Funyy, Wy, We) for any pair of boundary conditions b, ¢

= Warning:
forget

via C— Z(W,) Wa
any M eW,-Mod has natural structure of C-module category

But not every C-module category of a Witt-trivial C gives a boundary condition

lllustration: Toric code

~ 2 elementary boundary conditions
w~ C=2Z(Vect(Z2))
~~ 6 inequivalent indecomposable module categories over C

~~ 2 inequivalent indecomposable module categories over W = Vect(Zs2)
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Bicategories of surface defects

TFT for topological defects

w= Parallel analysis for surface defects :
~ defect d separating bulk regions labeled by C; and Cs

~~ two monoidal functors C, =W, and C*V— )V, to fusion category W,

\ inverse braiding
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Bicategories of surface defects

TFT for topological defects

w= Parallel analysis for surface defects :
~ defect d separating bulk regions labeled by C; and Cs
~~ two monoidal functors C, =W, and C*V— )V, to fusion category W,

-~ combine to central functor C, XICS®V — Wy

AR Deligne product
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Bicategories of surface defects

w= Parallel analysis for surface defects :

S

™

S

defect d separating bulk regions labeled by C; and Cs

TFT for topological defects

two monoidal functors C; — W, and Ci*V— W, to fusion category Wy

combine to central functor C; XCI®V — Wy

naturality ~ braided equivalence | C, KCEY —— Z(W,)

obstruction : no defects between C; and Cy unless [Ci] = [C2]

in Witt group
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Bicategories of surface defects

TFT for topological defects

w= Parallel analysis for surface defects :
~ defect d separating bulk regions labeled by C; and Cs
~~ two monoidal functors C, =W, and C*V— )V, to fusion category W,

-~ combine to central functor C, XICS®V — Wy

« naturality ~» braided equivalence | C, XV — Z(W,)

ww Defects separating C1 from Co form the bicategory W,-Mod
of module categories over a fusion category W, satisfying Z(Wgy) ~ C; X C5°
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Bicategories of surface defects

TFT for topological defects

w= Parallel analysis for surface defects :
~ defect d separating bulk regions labeled by C; and Cs
~~ two monoidal functors C, =W, and C*V— )V, to fusion category W,

-~ combine to central functor C, XICS®V — Wy

« naturality ~» braided equivalence | C, XV — Z(W,)

ww Defects separating C1 from Co form the bicategory W,-Mod
of module categories over a fusion category Wy satisfying Z(Wgy) ~ C; X C3¢V

= Example: Canonical Witt trivialization CXcCrev — 2(C) (C modular)

~ defects separating C from itself = C-module catgeories
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Bicategories of surface defects

TFT for topological defects

w= Parallel analysis for surface defects :
~ defect d separating bulk regions labeled by C; and Cs
~~ two monoidal functors C, =W, and C*V— )V, to fusion category W,

-~ combine to central functor C, XICS®V — Wy

« naturality ~» braided equivalence | C, XV — Z(W,)

ww Defects separating C1 from Co form the bicategory W,-Mod
of module categories over a fusion category Wy satisfying Z(Wgy) ~ C; X C3¢V

= Canonical Witt trivialization CXC™ — Z(C)
~ defects separating C from itself = C-module catgeories

~~ regular C-module category (C,®) ~» transparent defect T

~~ serves as monoidal unit for fusion of surface defects

~ Wilson lines separating transparent defect from itself = ordinary Wilson lines
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Bicategories of surface defects

=

=

=

=

Parallel analysis for surface defects:
~ defect d separating bulk regions labeled by C; and Cs
~~ two monoidal functors C, =W, and C*V— )V, to fusion category W,

-~ combine to central functor C, XICS®V — Wy

« naturality ~» braided equivalence | C, XV — Z(W,)

Defects separating C1 from Co form the bicategory W,-Mod

TFT for topological defects

of module categories over a fusion category Wy satisfying Z(Wgy) ~ C; X C3¢V

Canonical Witt trivialization CXC™v — Z(C)
~ defects separating C from itself = C-module catgeories

~~ regular C-module category (C,®) ~» transparent defect T
Example: Turaev-Viro TFT: Ci; ~ Z(A;) and C2 ~ Z(As)
~ C; RKCEY ~ Z(A) K Z(AP) ~ Z(A; KAP)

~» defects separating C; from Co form bicategory A;-A>-Bimod
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Defects for multi-layer systems

TFT for topological defects

w= Classification of module categories over a general modular tensor category D
out of reach

(even finding any indecomposable D-module besides (D, ®) can be hard)

== Side remark:

bijection between indecomposable D-module categories and
modular invariant torus partition functions for the rational conformal field theory
based on D
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Defects for multi-layer systems

w= Classification of module categories over a general modular tensor category D
out of reach

= TFT for N-layer system: modular tensor category D = C¥N
with C modular tensor category for each single layer

TFT for topological defects
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Defects for multi-layer systems

TFT for topological defects

w= Classification of module categories over a general modular tensor category D
out of reach

= TFT for N-layer system: modular tensor category D = C¥N
== Generic non-trivial right D-module category: P = Pp = (C, <, o)
with W<I(U1& @UN) = WU ® - QUxN

and mixed associativity constraint
for N =2

W Uy Vi Uy Vo

W Ui Ug V7 Vo
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Defects for multi-layer systems

TFT for topological defects

w= Classification of module categories over a general modular tensor category D
out of reach

= TFT for N-layer system: modular tensor category D = C¥N

== Generic non-trivial right D-module category: P = Pp = (C, <, o)
with W<I(U1& &UN) = WU ® - QUxN

and mixed associativity constraint

for N =2
W Uy Vy Us Vo
T Weleelhov
= (W<1(U1®V1)) <](U2|X|V2)
/—i
braiding// = W« ((Ul XV1) @p (U2 &Vé))
in C = W< (U1®p U2) K (V1@ V2))

WU VI QUs® Vo

W Ui Ug V3 Vg/

categorification of fact that commutative ring R is R®z R-module
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Defects for multi-layer systems

TFT for topological defects

w= Classification of module categories over a general modular tensor category D
out of reach

= TFT for N-layer system: modular tensor category D = C¥N

== Generic non-trivial right D-module category: P = Pp = (C, <, o)
with W<I(U1& &UN) = WU ® - QUxN

= Generalization: a D-module category for every permutation of the N factors C
Side remark: corresponding to permutation modular invariants in RCFT
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with W<I(U1& &UN) = WU ® - QUxN

= Generalization: a D-module category for every permutation of the N factors C
Side remark: corresponding to permutation modular invariants in RCFT

= From now on restrict to two-layer system D = CKXC
~~ two generic D-module categories D =7 and P

~ right action P xD — P
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Defects for multi-layer systems

TFT for topological defects

w= Classification of module categories over a general modular tensor category D
out of reach

= TFT for N-layer system: modular tensor category D = C¥N

== Generic non-trivial right D-module category: P = Pp = (C, <, o)
with W<I(U1@ &UN) = WU ® - QUxN

= Generalization: a D-module category for every permutation of the N factors C
Side remark: corresponding to permutation modular invariants in RCFT

= From now on restrict to two-layer system D = CKXC
~~ two generic D-module categories D =7 and P
~ right action P xD — P
~ form part of a Zs-equivariant modular category
~~ thus further fusion functors DxP — P and P xP — D

~ derivable from a Zs-equivariant topological field theory
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The CXC-module P

TFT for topological defects

= D-module category P realizable as category Ap-mod of left Ap-modulesin D
w~ Ap = Dier, S/ XS, asobject
~ algebra structure determined by fusion of simple objects in C:

V S
Sy k

N, F /‘\
m = @ ; X e

i,j,k€lc a=1

T = ¢1R1<Ap
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The CXC-module P

TFT for topological defects

= D-module category P realizable as category Ap-mod of left Ap-modulesin D
=~ Ap = @iefc Si’ ®S;

~ symmetric special Frobenius algebra:

n = TAp%l&l
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The CXC-module P

TFT for topological defects

= D-module category P realizable as category Ap-mod of left Ap-modulesin D
=~ Ap = @iefc Si’ ®S;
~ symmeiric special Frobenius algebra
~ Azumaya algebra:

braided induction functors ajp : C — Ap-bimod are monoidal equivalences

U+r— (Ap®@U,m®idy,(m®idy)o(ida, ®CU,A7:)

resp. 02713 o)
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The CXC-module P

TFT for topological defects

= D-module category P realizable as category Ap-mod of left Ap-modulesin D
=~ Ap = @iefc Si’ ®S;
~ symmeiric special Frobenius Azumaya algebra
= Analogously
@7;1,7;2,...,7;]\7 cl; (Sil X Si, M-S )@Nzl’i2 """ N

for N > 2 Niyig,. _dlmHomC(SH ® Siy ® - ® Sy, 1)
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The CXC-module P

TFT for topological defects

= D-module category P realizable as category Ap-mod of left Ap-modulesin D
~ Sy v .
Ap @ZGIC Sy XS,
~ symmeiric special Frobenius Azumaya algebra
= For A Azumaya U, := (o) loay,
describes transmission of bulk Wilson lines through surface defect A-mod
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The CXC-module P

TFT for topological defects

= D-module category P realizable as category Ap-mod of left Ap-modulesin D
=~ Ap = @iefc Si’ ®S;

~ symmeiric special Frobenius Azumaya algebra

= For A Azumaya U, := (o) loay,
describes transmission of bulk Wilson lines through surface defect A-mod
-~ 04::73 (URV)=ay (VRU) by direct calculation

~> transmission of bulk Wilson lines through P permutes the layers
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The CXIC-module P

TFT for topological defects

= D-module category P realizable as category Ap-mod of left Ap-modulesin D
=~ Ap = @ielc Si’ ®S;
~ symmeiric special Frobenius Azumaya algebra
XA
describes transmission of bulk Wilson lines through surface defect A-mod
w~ o} (URV)=a, (VRU)

= For A Azumaya U, := (o) loay,

w= Braided induction for tensor products :

YA{®Aq

YA{®Aq

A1®A2 -bimod
R\§ //////////////h ﬁ\\\\\\\\\\\\\\ //22
A1-bimod > As-bimod

/ \ / '\
Aq Aq Ag Ag
C C C
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The CXIC-module P

TFT for topological defects

== D-module category P realizable as category Ap-mod of left Ap-modulesin D
~ — P. v .
Ap @ch Sy XS,
~ symmetric special Frobenius Azumaya algebra
= For A Azumaya W, := (o) ooy
describes transmission of bulk Wilson lines through surface defect A-mod
w~ o) (URV)=ay (VRU)
w= Braided induction for tensor products
w~ Wa 04, = Vu,0W¥,, asmonoidal functors if A; > Azumaya

~ Ap ®Ap Morita equivalentto 1p
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The CXIC-module P

TFT for topological defects

= D-module category P realizable as category Ap-mod of left Ap-modulesin D
~ = D. v .
AP @zEIC Sz 2 Sz
~ symmeiric special Frobenius Azumaya algebra
= For A Azumaya W, := (o) ooy
describes transmission of bulk Wilson lines through surface defect A-mod
-~ aj (URV)=a, (VRU)
w= Braided induction for tensor products
w~ Wa 04, = Vu,0W¥,, asmonoidal functors if A; > Azumaya
~ Ap ®Ap Morita equivalentto 1p
= Fusionrules: T XpP ~P
PXpP~T

w= Categories of defect Wilson lines::
Funp (T, P) =~ (1D ®Ap)-mod =2 Ap-mod = C
Funp(P,T) =~
Endp(T) >~ D ~ Endp(P)
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Relation with extended TFT

= More general Wilson lines :

""""

TFT for topological defects
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Relation with extended TFT

TFT for topological defects

= More general Wilson lines :

""""

= Via extended TFT tftg”’iQ,1 assign categories: Cobords o1 — 2-Vect
M — tft5y (M)

1-manifold cateqor
e.g. circle: tftQQ,l(S):D 9on
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Relation with extended TFT

TFT for topological defects

= More general Wilson lines :

""""

= Via extended TFT tftg”’iQ,1 assign categories: Cobords o1 — 2-Vect

M — tft5y (M)
w= Circle with defect points: use cover functor

M — two-sheeted cover M

2,1 2,7 2,1 2,7
R i -
ocally: M M e
: —_— 00—  —— o—
1,0 1,r 1,0 1,r
q q q q
M o M o

q7 adp
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Relation with extended TFT

TFT for topological defects

= More general Wilson lines :

""""

= Via extended TFT tftg”’iQ,1 assign categories: Cobords o1 — 2-Vect

M — tft5y (M)
w= Circle with defect points: use cover functor

M — two-sheeted cover M
Zo ;D
tft3% 1 (Snypnp)

c tftc (SUS) ~ tfte (S) X tfte(S) =CXC = D for ny even
= tft5 5 1 Snrinp) =
" tfte(S) = C for n., odd

reproducing the previous results for categories of defect Wilson lines
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Relation with extended TFT

TFT for topological defects

= More general Wilson lines :

------

= Via extended TFT tftg”’iQ,1 assign functors to 2-manifolds

= General surfaces with Wilson lines : N
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Relation with extended TFT

TFT for topological defects

= More general Wilson lines :

------

= Via extended TFT tftg”’iQ,1 assign functors to 2-manifolds

= General surfaces with Wilson lines :

functor tft§2,1(8_2L8+2) N
e.g. pair of pants ) =
Y — X: DxD—"D ‘/=
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Relation with extended TFT

TFT for topological defects

= More general Wilson lines :

""""

= Via extended TFT tftg”’iQ,1 assign functors to 2-manifolds

= General surfaces with Wilson lines :

functor tft§2,1(8_2L8+2) N
e.g. pair of pants ) =
Y — X: DxD—"D ‘/=

= General case:

' i X for ni1 + n2 even
e.g. via cover functor:  pair of pants Yy, ny ng — . o
(n1,n2,n3) P-defects on Y a4 for n1+mnz o0
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Spaces of conformal blocks = e e e e e

= Surface without defect lines with 943 =0 and g5 =0 and 7 (9X)=m

gives functor DE™ 5 Vect
U,X---XU,, — HomD(Ul Xp - XRp Um,lp)
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Spaces of conformal blocks = e e e e e

= Surface without defect lines with 943 =0 and g5 =0 and 7 (9X)=m
gives functor DE™ 5 Vect
U,X---XU,, — HomD(Ul Xp - XRp Um,lp)
= space of conformal blocks

— space of ground states of topologial phase
~~ generalizes to higher genus

~~ dimension computed by Verlinde formula
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Spaces of conformal blocks = e e e e e

= Surface without defect lines with 943 =0 and g5 =0 and 7 (9X)=m
gives functor DX s Vect
U,X---XU,, — HomD(Ul Xp - XRp Um,lp)
= General surface :

mo boundary circles (O with even number of P-defects
m1 boundary circles (O with odd number of P-defects
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Spaces of conformal blocks

TFT for topological defects

= Surface without defect lines with 943 =0 and g5 =0 and 7 (9X)=m
gives functor DE™ 5 Vect
UOX---XU,, — HomD(Ul Rp - Qp U, 1p)
= General surface:

mo boundary circles (O with even number of P-defects
m1 boundary circles (O with odd number of P-defects

gives functor DX™mo [ CX¥™Mm1 — Vect

~~ expressible as a composite of functors in pair-of-pants decomposition of %
~ glue Zs>-covers of pairs of pants ~+ branched twofold cover b3
~~ compatible with gluing of surfaces with defects
Zio ;D —
w tft5% ] (%) = tft§ 5 , (¥)
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Spaces of conformal blocks

TFT for topological defects

= Surface without defect lines with 943 =0 and g5 =0 and 7 (9X)=m
gives functor DE™ 5 Vect
U,X---XU,, — HomD(Ul Xp - XRp Um,lp)
= General surface:

mo boundary circles (O with even number of P-defects
m1 boundary circles (O with odd number of P-defects

gives functor DX™mo [ CX¥™Mm1 — Vect

== Generalized Verlinde formula via ordinary Verlinde formula for tftg’m(i’)

— boundary circle with even number of P-defects labeledby UK U € D = CKXC
(pre-image on X' consisting of two circles)

~~ boundary circle with odd number of P-defects labeled by V €C
(pre-image on X’ consisting of one circle)
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Spaces of conformal blocks

TFT for topological defects

= Surface without defect lines with 943 =0 and g5 =0 and 7 (9X)=m
gives functor DE™ 5 Vect
UOX---XU,, — HomD(Ul Rp - Qp U, 1p)
= General surface:

mo boundary circles (O with even number of P-defects
m1 boundary circles (O with odd number of P-defects

gives functor DX™mo [ CX¥™Mm1 — Vect

== Generalized Verlinde formula via ordinary Verlinde formula for tftg’Q’l(E’)

— boundary circle with even number of P-defects labeled by simple U; X U; € D
~~ boundary circle with odd number of P-defects labeled by simple V; €C

c D & 2X—mlm0 SUZ,’)’L SU%?” 1 SVJ,’)’L
dim¢ (t£6P(Z; {U;RU0;},{V;}) = § : (So.n) H S S S
n€le — 0o,n 0o,n j=1 0,n
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Spaces of conformal blocks

TFT for topological defects

= Surface without defect lines with 943 =0 and g5 =0 and 7 (9X)=m
gives functor DE™ 5 Vect
U,X---XU,, — HomD(Ul Xp - XRp Um,lp)
= General surface:

mo boundary circles (O with even number of P-defects
m1 boundary circles (O with odd number of P-defects

gives functor DX™mo [ CX¥™Mm1 — Vect

== Generalized Verlinde formula via ordinary Verlinde formula for tftg’m(i’)
— boundary circle with even number of P-defects labeled by simple U; X U; € D
~~ boundary circle with odd number of P-defects labeled by simple V; €C

eg.  dimg(tftP(S% 0,{V,V,...,V})) = D (Son)* > (Sy
nEIc

)™

Y
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Spaces of conformal blocks

TFT for topological defects

= Surface without defect lines with 943 =0 and g5 =0 and 7 (9X)=m
gives functor DE™ 5 Vect
U,X---XU,, — HomD(Ul Xp - XRp Um,lp)
= General surface:

mo boundary circles (O with even number of P-defects
m1 boundary circles (O with odd number of P-defects

gives functor DX™mo [ CX¥™Mm1 — Vect

== Generalized Verlinde formula via ordinary Verlinde formula for tftg’m(i’)
— boundary circle with even number of P-defects labeled by simple U; X U; € D
~~ boundary circle with odd number of P-defects labeled by simple V; €C

eg. dimg(tftP(S% 0,{V,V,...,V})) = D (Son)* > (Sy
nEIc

)™

Y

~~ depends on genon type V modular S-matrix of C
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TFT for topological defects

APPENDIX
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Defects in Dijkgraaf-Witten theories

TFT for topological defects

ww Dijkgraaf-Witten theories
~ input data: finite group G and cocycle w e Z3(G,CX)
~ C = D¥(G)-mod ~ Z(Vect(G)“) Turaev-Viro type
~ w gives holonomy on closed three-manifolds ~~ topological bulk Lagrangian

~ two-step gauge-theoretic construction :

Bun [—,Vect]” : . L
Cobordz 2 1 — SpanGrp » 2-Vect twisted linearization

groupoid cocycle T € H?(G//G,C*) obtained by transgression
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Defects in Dijkgraaf-Witten theories

TFT for topological defects

w= Dijkgraaf-Witten theories
~ input data: finite group G and cocycle w e Z3(G,CX)
~ C = D¥(G)-mod ~ Z(Vect(G)“) Turaev-Viro type
~ w gives holonomy on closed three-manifolds ~~ topological bulk Lagrangian

~ two-step gauge-theoretic construction :

Bun [—Vect]” : , L
Cobord3 2.1 ——— SpanGrp » 2-Vect twisted linearization

i extends to TFT with boundaries and defects
via (bi)relative manifolds and (bi)relative bundles
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Defects in Dijkgraaf-Witten theories

TFT for topological defects

w= Dijkgraaf-Witten theories
~ input data: finite group G and cocycle w e Z3(G,CX)
~ C = D¥(G)-mod ~ Z(Vect(G)“) Turaev-Viro type
~ w gives holonomy on closed three-manifolds ~~ topological bulk Lagrangian

~ two-step gauge-theoretic construction :

Bun [—,Vect]” . . . .
Cobord3 2.1 ——— SpanGrp » 2-Vect twisted linearization

i extends to TFT with boundaries and defects

~ category of relative bundles for smoothmap j: Y— X
and group homomorphism .: H— G
objects: G-bundle P — X and H-bundle Py —Y
with isomorphism «: Indg(PH)ij*PG

morphisms: bundle morphisms .
P, f<, pr Ind% (B, )%] F,

P, —> P, st Ind%(soH)J Jj*SDG

(03

Ind% (Py) —— j* P
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Defects in Dijkgraaf-Witten theories

w= Dijkgraaf-Witten theories

TFT for topological defects

~ input data: finite group G and cocycle w e Z3(G,CX)
~ C = D¥(G)-mod ~ Z(Vect(G)“) Turaev-Viro type
~ w gives holonomy on closed three-manifolds ~~ topological bulk Lagrangian

~ two-step gauge-theoretic construction :

o
Cobords 2.1 — SpanGrp

[—,Vect]™ i ) . i
s 2-Vect twisted linearization

i extends to TFT with boundaries and defects

= Example: category for circle S with one defect point p

to interval S\{p} assign group G with cocycle w

to p assign homomorphism 2: H — G xG with cochain 0 € C?(H,C*)

Bun gives action groupoid G\ G x G//,—H

twisted linearization gives | G\ G x G/, H, Vect | "-?

h')) = [6(r', b))~

()] w(g’ gy (h) "l ()7 (R), 01 (h))

L

L

L

flnd Tw,e((’717’72);(g7h)7(g/a

w(g',9,7) lw(g’, gy (h)
[w(gla g, 72)]_1("}(9/7 gvot2 (h)

—1
y 12

(h)) [w(g’grar2(h) " taz(R) 1 22 (h'), 02(h))] ™"
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Defects in Dijkgraaf-Witten theories

TFT for topological defects

w= Dijkgraaf-Witten theories
~ input data: finite group G and cocycle w e Z3(G,CX)
~ C = D¥(G)-mod ~ Z(Vect(G)“) Turaev-Viro type
~ w gives holonomy on closed three-manifolds ~~ topological bulk Lagrangian

~ two-step gauge-theoretic construction :

Bun [—Vect]” : , L
Cobord3 2.1 ——— SpanGrp » 2-Vect twisted linearization

i extends to TFT with boundaries and defects

= Example: category for circle S with one defect point p
~ tointerval S\{p} assign group G with cocycle w
~ to p assign homomorphism 2: H — G'xG with cochain 6 € C?(H,C*)
« Bun gives action groupoid G\ G x G//,_H
~ twisted linearization gives |G\ G x G/, H, Vect | «-¢
~~ thus equivalent to category of G'xG-graded vector spaces B, ,.ccV(g,.0,)
with 7, g-twisted GxH-action 7y n: Vig 4.0 = Vigg, gg,)e(h)-1

~~ equivalent to category of Ac ;. -Ap g-bimodulesin Vect(G)* X Vect(G)*
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Further developments TFT for topological defects

i A few other available results : O

~~ transmission functors for invertible defects realize bijection
invertible .A-bimodule categories «<— braided auto-equivalences of Z(.A

“"'I..
p T N

~~ gauge-theoretic description of symmetries of abelian Dijkgraaf-Witten theories

O4,(A®GA*) generated by
0@ (")~ with o€ Aut(A)
(g, x)+ (g, x + B(g,—)) with 5 alternating bicharacter ( B-field)

electric-magnetic dualities
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Further developments

TFT for topological defects

i A few other available results : O

~~ transmission functors for invertible defects realize bijection

“"'I..
p T N

invertible .A-bimodule categories «<— braided auto-equivalences of Z(.A
~~ gauge-theoretic description of symmetries of abelian Dijkgraaf-Witten theories
~~ simplicial constructions a la TV/BW
~~ deconfining of twist defects

~~ interpretation of categories arising as tft?’?(;f‘f (S) as category-valued trace &

for 1-morphisms in the tricategory of finite tensor categories

= Among next steps:

~ formulation of Dijkgraaf-Witten results in terms of relative Deligne product and ®
so as to extend to all Turaev-Viro TFTs
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