TOPOLOGICAL FIELD THEORY FOR DEFECTS IN TOPOLOGICAL PHASES

TOPOLOGICAL FIELD THEORY

JF IPAM 28_1_15 - p. 1/19

•																										
•																										
•		Тне	ME	:																						
•																										
•		2-d defects in 3-d TFT as models for line defects in topological phases																								
•			son	ne c	ver	lan	with	7	Wa	na' «	s ta	l k .		" <i>a</i> l	nnra	าลด	h a	u iti	o di	ff⊖r	'n	<i>t</i> "				
•			0011			ιαp	vvitii	۷.	vva	ing t	5 10						'' Y								<u> </u>	1 /
•														D	ARK	ESF			IDER	501	N-C	HEI	NG-V	VANC	a 20	14
•																										
•																										
•																										
•																										
•																										
•																										
•																										
•																										
•																										
•																										
•																										
•	•	• •	•	•	•	•	• •	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			

- THEMES:
 - 2-d defects in 3-d TFT as models for line defects in topological phases (TFT as tool)
 - 3-d TFT with defects of any codimension
 - POSSIBLE MOTIVATIONS :
 - Topological line defects in topological phases
 - Image: Second Secon

- THEMES:
 - 2-d defects in 3-d TFT as models for line defects in topological phases (TFT as tool)
 - Image: Solution in the second sec

POSSIBLE MOTIVATIONS :

- Topological line defects in topological phases
- Image: Second Secon
- IFT with substructures / on stratified spaces
- Extended TFT / higher categories
- Defects in general quantum field theory
- Replications to 2-d rational conformal field theory

- rightarrow Codimension-1 defect QFT₁ QFT₂
 - = interface separating region supporting QFT_1 from region supporting QFT_2

- \blacksquare Codimension-1 defect QFT₁ QFT₂
 - = interface separating region supporting QFT₁ from region supporting QFT₂
 - ubiquitous in nature
 - natural part of the structure of quantum field theory
 - physical boundaries as special case

QFT₁

- \blacksquare Codimension-1 defect QFT₁ QFT₂
 - = interface separating region supporting QFT₁ from region supporting QFT₂
 - 🛶 ubiquitous in nature
 - natural part of the structure of quantum field theory
 - so physical boundaries as special case
- Topological defect: correlators do not change when deforming the defect

without crossing other substructures

- Example: 2-d Ising model
 - so ferromagnetic nearest-neighbour interaction
 - change coupling to *anti*-ferromagnetic on all bonds crossed by some line

 \rightarrow topological defect line

- \blacksquare Codimension-1 defect QFT₁ QFT₂
 - = interface separating region supporting QFT₁ from region supporting QFT₂
 - 🛶 ubiquitous in nature
 - natural part of the structure of quantum field theory
 - physical boundaries as special case
- Topological defect: correlators do not change when deforming the defect

without crossing other substructures

- Some general features of topological defects :
 - **\sim** codimension-2 defects def₁ def₂ etc
 - 🔹 transparent defect
 - \checkmark invert orientation \rightsquigarrow dual defect
 - \sim move two topological defects to coincidence \rightarrow fusion product of defects

- \blacksquare Codimension-1 defect QFT₁ QFT₂
 - = interface separating region supporting QFT₁ from region supporting QFT₂
 - 🛶 ubiquitous in nature
 - natural part of the structure of quantum field theory
 - physical boundaries as special case
- Topological defect: correlators do not change when deforming the defect

without crossing other substructures

- Some general features of topological defects :
 - **•••** codimension-2 defects def_1 def_2 etc
 - ➡ transparent defect
 - \checkmark invert orientation \rightsquigarrow dual defect
 - move two topological defects to coincidence \rightsquigarrow fusion product of defects
- Image Mathematical formulation : \rightarrow higher categories

Invertible defects and symmetries

TFT for topological defects

assume: defects form a rigid monoidal category (proven for 2-d RCFT)

Subclass: *invertible* topological defects:

 $D \otimes D^{\vee} \cong \mathbf{1} \cong D^{\vee} \otimes D$

assume : defects form a rigid monoidal category (proven for 2-d RCFT)

Image: Subclass : invertible topological defects :
$$D \otimes D^{\vee} \cong \mathbf{1} \cong D^{\vee} \otimes D$$
Image: Basic property : $D \longrightarrow D^{\vee} = \dim(D)$ $D \longrightarrow D^{\vee} = \dim(D)$ Image: D \longrightarrow D^{\vee} = \dim(D) $D \longrightarrow D^{\vee} = \dim(D)$ $D \longrightarrow D^{\vee} = \dim(D)$

 \rightarrow identity of correlators when applied locally in any configuration of fields & defects

assume: defects form a rigid monoidal category (proven for 2-d RCFT)

- Subclass: *invertible* topological defects:
- $D \otimes D^{\vee} \cong \mathbf{1} \cong D^{\vee} \otimes D$

Basic property :

 \rightarrow identity of correlators when applied locally in any configuration of fields & defects

 $D^{\vee} = \dim(D)$

- invertible defects form a group under fusion
- ➡ act on all data of the theory as a symmetry group
- ⊷ e.g. critical 2-d Ising model: Z₂ critical three-state Potts model: G₃

assume: defects form a rigid monoidal category (proven for 2-d RCFT)

- Subclass: *invertible* topological defects:
- $D \otimes D^{\vee} \cong \mathbf{1} \cong D^{\vee} \otimes D$

Basic property :

 \rightarrow identity of correlators when applied locally in any configuration of fields & defects

 $D = \dim(D)$

- invertible defects form a group under fusion
- act on all data of the theory as a symmetry group
- Example : equalities for bulk field correlators on sphere :

$$(\cdot \cdot) = \dim(D) \quad (\cdot \cdot) = (\bigcirc \circ) \\ (\circ \circ) \\ ($$

Duality defects

(continuing in d=2)

Wrapping of general topological defect around a bulk field :

(continuing in d=2)

Wrapping of general topological defect around a bulk field :

🛶 bulk field turned into disorder field

(continuing in d=2)

Wrapping of general topological defect around a bulk field :

- bulk field turned into disorder field
- wrapping with dual defect turns disorder field back to bulk field if and only if

 $D \otimes D^{\vee}$ is direct sum of invertible defects

in this case have an order-disorder duality

e.g. critical 2-d Ising model: remnant of Kramers-Wannier duality

🛶 again action on all field theoretic quantities

(continuing in d=2)

Wrapping of general topological defect around a bulk field :

- so bulk field turned into disorder field
- wrapping with dual defect turns disorder field back to bulk field if and only if $D \otimes D^{\vee}$ is direct sum of invertible defects
- Example : correlator of two Ising spin fields on a torus :

JF IPAM 28_1_15 - p. 5/19

TASKS:

- Achieve basic understanding of topological defects in 3-d TFT
- Study consequences in relevant classes of models
- Apply insight to topological phases
- Construct 3-d TFT with topological defects mathematically

TASKS:

- Achieve basic understanding of topological defects in 3-d TFT
- Study consequences in relevant classes of models
- Apply insight to topological phases
- Image: Second struct 3-d TFT with topological defects mathematically

PLAN:

 $\scriptstyle \hbox{\scriptsize Implies of the sector of the sector$

TASKS:

- Achieve basic understanding of topological defects in 3-d TFT
- Study consequences in relevant classes of models
- Apply insight to topological phases
- Image: Second teacher is a construct 3-d TFT with topological defects mathematically

PLAN:

- $\scriptstyle \rm Implementer Reference relation of the second second$
- Image: Topological defects in 3-d TFT of Reshetikhin-Turaev type
- Application : Multi-layer systems
- Appendix : Defects in Dijkgraaf-Witten theories

TASKS:

- Achieve basic understanding of topological defects in 3-d TFT
- Study consequences in relevant classes of models
- Apply insight to topological phases
- Construct 3-d TFT with topological defects mathematically

PLAN:

- $\scriptstyle \rm Implementer Schwarz Relation Schwa$
- Image: Topological defects in 3-d TFT of Reshetikhin-Turaev type
- Application : Multi-layer systems
- Appendix : Defects in Dijkgraaf-Witten theories

COLLABORATORS: Jan Priel, Gregor Schaumann,

Christoph Schweigert, Alessandro Valentino

 \sim input: a modular tensor category \mathcal{D}

- \blacksquare input: a modular tensor category \mathcal{D}
- Wilson lines (ribbons) in three-manifolds labeled by objects of \mathcal{D}
- \checkmark insertions on Wilson lines / junctions labeled by morphisms of ${\cal D}$
- 2-d cut-and-paste boundaries on which Wilson lines can end
- state spaces for cut-and-paste boundaries = morphisms spaces $\operatorname{Hom}_{\mathcal{D}}(X, 1)$

 $\label{eq:resp} \texttt{RT-type TFT: symmetric monoidal functor } \texttt{tft}_{3,2}^{\mathcal{D}}: \textit{Cobord}_{3,2} \longrightarrow \textit{Vect}} \\ \texttt{resp.} \qquad \texttt{2-functor } \texttt{tft}_{3,2,1}^{\mathcal{D}}: \textit{Cobord}_{3,2,1} \longrightarrow \texttt{2-Vect}} \end{cases}$

- \blacksquare input: a modular tensor category \mathcal{D}
- Wilson lines (ribbons) in three-manifolds labeled by objects of \mathcal{D}
- \checkmark insertions on Wilson lines / junctions labeled by morphisms of ${\cal D}$
- 2-d cut-and-paste boundaries on which Wilson lines can end
- state spaces for cut-and-paste boundaries = morphisms spaces $\operatorname{Hom}_{\mathcal{D}}(X, 1)$
- RT-type TFT with boundaries and defects :
 - include in *Cobord* three-manifolds with physical boundary
 - include in *Cobord* three-manifolds with surface defects

 $\label{eq:resp} \texttt{RT-type TFT: symmetric monoidal functor } \texttt{tft}_{3,2}^{\mathcal{D}}: \textit{Cobord}_{3,2} \longrightarrow \textit{Vect}} \\ \texttt{resp.} \qquad \texttt{2-functor } \texttt{tft}_{3,2,1}^{\mathcal{D}}: \textit{Cobord}_{3,2,1} \longrightarrow \texttt{2-Vect}} \end{cases}$

- \blacksquare input: a modular tensor category \mathcal{D}
- Wilson lines (ribbons) in three-manifolds labeled by objects of \mathcal{D}
- \checkmark insertions on Wilson lines / junctions labeled by morphisms of ${\cal D}$
- Section 2-d cut-and-paste boundaries on which Wilson lines can end
- state spaces for cut-and-paste boundaries = morphisms spaces $Hom_{\mathcal{D}}(X, \mathbf{1})$
- RT-type TFT with boundaries and defects :
 - include three-manifolds with physical boundary and/or surface defects
 - → 3-d bulk regions labeled by modular tensor categories $\mathcal{D}_1, \mathcal{D}_2, \dots$ (bulk Wilson lines in such a region labeled by objects of \mathcal{D}_i)
 - boundary Wilson lines and defect Wilson lines
 - several layers of insertions and of junctions

RT-type TFT : symmetric monoidal functor $\mathbf{tft}_{3,2}^{\mathcal{D}}$: Cobord_{3,2} $\longrightarrow \mathcal{V}ect$ $\text{2-functor} \quad \textbf{tft}_{3,2,1}^{\mathcal{D}}: \quad \textit{Cobord}_{3,2,1} \longrightarrow 2\text{-}\textit{Vect} \\$ resp.

- \sim input: a modular tensor category \mathcal{D}
- \sim Wilson lines (ribbons) in three-manifolds labeled by objects of \mathcal{D}
- \sim insertions on Wilson lines / junctions labeled by morphisms of \mathcal{D}
- 2-d cut-and-paste boundaries on which Wilson lines can end
- state spaces for cut-and-paste boundaries = morphisms spaces $\operatorname{Hom}_{\mathcal{D}}(X, 1)$
- RT-type TFT with boundaries and defects : R
 - Task: construct symmetric monoidal 2-functor Cobord $_{3,2,1}^{\partial} \longrightarrow 2-\mathcal{V}ect$ for category of cobordisms with corners

 $\label{eq:resp} \texttt{RT-type TFT}: \ \texttt{symmetric monoidal functor} \ \ \texttt{tft}_{3,2}^{\mathcal{D}}: \ \ \textit{Cobord}_{3,2} \longrightarrow \textit{Vect} \\ \texttt{resp.} \qquad \texttt{2-functor} \ \ \texttt{tft}_{3,2,1}^{\mathcal{D}}: \ \textit{Cobord}_{3,2,1} \longrightarrow \texttt{2-Vect} \end{cases}$

- \blacksquare input: a modular tensor category \mathcal{D}
- Wilson lines (ribbons) in three-manifolds labeled by objects of \mathcal{D}
- \checkmark insertions on Wilson lines / junctions labeled by morphisms of ${\cal D}$
- 2-d cut-and-paste boundaries on which Wilson lines can end
- state spaces for cut-and-paste boundaries = morphisms spaces $Hom_{\mathcal{D}}(X, \mathbf{1})$
- RT-type TFT with boundaries and defects :
 - Task : construct symmetric monoidal 2-functor $Cobord_{3,2,1}^{\partial} \longrightarrow 2-Vect$ for category of cobordisms with corners

In particular:

- ➡ determine labels for physical boundaries / for surface defects
- determine labels for boundary and defect Wilson lines and for insertions
- Conjecture : *Fit together to form bicategories of module categories*

- can contain boundary Wilson lines
- Wilson line can contain insertions
- insertions can be composed

 \rightsquigarrow category \mathcal{W}_a of Wilson lines on boundary a

- so can contain boundary Wilson lines
- Solution Wilson line can contain insertions
- ➡ insertions can be composed
- solution be boundary Wilson lines can be fused and can be deformed

 \rightarrow rigid monoidal category \mathcal{W}_a of Wilson lines on boundary a

- 🛶 can contain boundary Wilson lines
- Wilson line can contain insertions
- ➡ insertions can be composed
- boundary Wilson lines can be fused and can be deformed
- ▲ also impose : finitely semisimple etc
- \rightsquigarrow spherical fusion category \mathcal{W}_a of Wilson lines on boundary a

- \rightsquigarrow fusion category \mathcal{W}_a of Wilson lines on boundary a
- Postulate process of moving bulk Wilson lines to boundary

 \rightsquigarrow functor $F_a: \mathcal{C} \to \mathcal{W}_a$

- \rightsquigarrow fusion category \mathcal{W}_a of Wilson lines on boundary a
- Postulate process of moving bulk Wilson lines to boundary

 \rightsquigarrow functor $F_a: \mathcal{C} \to \mathcal{W}_a$

Impose compatibility of fusion in bulk and boundary

 \rightsquigarrow monoidal structure $F_a(U \otimes_{\mathcal{C}} V) \xrightarrow{\cong} F_a(U) \otimes_{\mathcal{W}_a} F_a(V)$

Select boundary "a" to some bulk region labeled by a modular tensor cateory CRes 1 \rightarrow fusion category \mathcal{W}_a of Wilson lines on boundary a Postulate process of moving bulk Wilson lines to boundary Res 1 \rightsquigarrow functor $F_a: \mathcal{C} \to \mathcal{W}_a$ Impose compatibility of fusion in bulk and boundary R C \rightsquigarrow monoidal structure $F_a(U \otimes_{\mathcal{C}} V) \xrightarrow{\cong} F_a(U) \otimes_{\mathcal{W}_a} F_a(V)$ Impose independence from details of bulk-to-boundary process P \rightsquigarrow central structure $F_a(U) \otimes_{\mathcal{W}_a} X \xrightarrow{\cong} X \otimes_{\mathcal{W}_a} F_a(U)$ lift $\mathcal{Z}(\mathcal{W}_{a})$ to Drinfeld center of \mathcal{W}_{a} $\overbrace{F_{a}}^{\widetilde{F}_{a}}$ forget $\mathcal{C} \xrightarrow{F_{a}} \mathcal{W}_{a}$ DAVYDOV-MÜGER-NIKSHYCH-OSTRIK equivalently: choice of lift Davydov-Müger-Nikshych-Ostrik 2013 Select boundary "*a*" to some bulk region labeled by a modular tensor cateory C \rightarrow fusion category \mathcal{W}_a of Wilson lines on boundary *a*

Postulate process of moving bulk Wilson lines to boundary

 \rightsquigarrow functor $F_a: \mathcal{C} \to \mathcal{W}_a$

Impose compatibility of fusion in bulk and boundary

 \rightsquigarrow monoidal structure $F_a(U \otimes_{\mathcal{C}} V) \xrightarrow{\cong} F_a(U) \otimes_{\mathcal{W}_a} F_a(V)$

Impose independence from details of bulk-to-boundary process

 \rightsquigarrow central structure $F_a(U) \otimes_{\mathcal{W}_a} X \xrightarrow{\cong} X \otimes_{\mathcal{W}_a} F_a(U)$

Postulate naturality : only reason for being able to consistently move boundary Wilson line $Y \in W_a$ past any $X \in W_a$ should be that $Y = F_a(U)$ for some $U \in C$

 \rightarrow braided equivalence

$$\mathcal{C} \xrightarrow{\simeq} \mathcal{Z}(\mathcal{W}_a)$$

Select boundary "a" to some bulk region labeled by a modular tensor cateory CR I \rightarrow fusion category \mathcal{W}_a of Wilson lines on boundary a

Postulate process of moving bulk Wilson lines to boundary

 \rightsquigarrow functor $F_a: \mathcal{C} \to \mathcal{W}_a$

Impose compatibility of fusion in bulk and boundary R.

 \rightsquigarrow monoidal structure $F_a(U \otimes_{\mathcal{C}} V) \xrightarrow{\cong} F_a(U) \otimes_{\mathcal{W}_a} F_a(V)$

Impose independence from details of bulk-to-boundary process Res l

 \rightsquigarrow central structure $F_a(U) \otimes_{\mathcal{W}_a} X \xrightarrow{\cong} X \otimes_{\mathcal{W}_a} F_a(U)$

Postulate naturality : only reason for being able to consistently move boundary Wilson line $Y \in \mathcal{W}_a$ past any $X \in \mathcal{W}_a$ should be that $Y = F_a(U)$ for some $U \in \mathcal{C}$

 \rightarrow braided equivalence $\mathcal{C} \xrightarrow{\simeq} \mathcal{Z}(\mathcal{W}_a)$

Compatible boundary condition for bulk region \mathcal{C} In short :

= Witt trivialization $\widetilde{F}_a: \mathcal{C} \xrightarrow{\simeq} \mathcal{Z}(\mathcal{W}_a)$ for some fusion category \mathcal{W}_a

$$\mathcal{C} \xrightarrow{\simeq} \mathcal{Z}(\mathcal{W}_a)$$

in particular obstruction: no compatible boundary condition unless [C] = 0in *Witt group* of modular tensor categories

- \sim Thus for single boundary condition a:
- $\mathcal{C} \xrightarrow{\simeq} \mathcal{Z}(\mathcal{W}_a)$
 - in particular obstruction: no compatible boundary condition unless [C] = 0in *Witt group* of modular tensor categories
- \sim Other boundary condition b:
 - other fusion category \mathcal{W}_b of Wilson lines in region b

$$\mathcal{C} \xrightarrow{\simeq} \mathcal{Z}(\mathcal{W}_a)$$

- in particular obstruction: no compatible boundary condition unless [C] = 0in *Witt group* of modular tensor categories
- \sim Other boundary condition b:
 - \blacktriangleright category $\mathcal{W}_{a,b}$
 - of Wilson lines separating boundary region labeled a from region labeled b
 - so fusion of Wilson lines in region $a \rightsquigarrow$ functor $\mathcal{W}_a \times \mathcal{W}_{a,b} \longrightarrow \mathcal{W}_{a,b}$
 - so gives action of \mathcal{W}_a on $\mathcal{W}_{a,b}$: $\mathcal{W}_{a,b}$ is left module category over \mathcal{W}_a
 - \sim likewise : $\mathcal{W}_{a,b}$ is right module category over \mathcal{W}_b

$$\mathcal{C} \xrightarrow{\simeq} \mathcal{Z}(\mathcal{W}_a)$$

- in particular obstruction: no compatible boundary condition unless [C] = 0in *Witt group* of modular tensor categories
- \bullet Other boundary condition b:
 - \backsim category $\mathcal{W}_{a,b}$
 - of Wilson lines separating boundary region labeled a from region labeled b
 - so fusion of Wilson lines in region $a \rightsquigarrow$ functor $\mathcal{W}_a \times \mathcal{W}_{a,b} \longrightarrow \mathcal{W}_{a,b}$
 - \blacksquare gives action of \mathcal{W}_a on $\mathcal{W}_{a,b}$: $\mathcal{W}_{a,b}$ is left module category over \mathcal{W}_a
 - \sim likewise : $\mathcal{W}_{a,b}$ is right module category over \mathcal{W}_b
 - → but also : $\mathcal{W}_{a,b}$ is right module category over $\mathcal{E}_{nd_{\mathcal{W}_a}}(\mathcal{W}_{a,b})$

— module endofunctors

real Thus for single boundary condition $a: \quad \mathcal{C} \xrightarrow{\simeq} \mathcal{Z}(\mathcal{W}_a)$

in particular obstruction: no compatible boundary condition unless $[\mathcal{C}] = 0$ in *Witt group* of modular tensor categories

- Other boundary condition **b**: R
 - \sim category $\mathcal{W}_{a,b}$

of Wilson lines separating boundary region labeled *a* from region labeled *b*

- In fusion of Wilson lines in region $a \rightsquigarrow$ functor $\mathcal{W}_a \times \mathcal{W}_{a,b} \longrightarrow \mathcal{W}_{a,b}$
- so gives action of \mathcal{W}_a on $\mathcal{W}_{a,b}$: $\mathcal{W}_{a,b}$ is left module category over \mathcal{W}_a
- \blacksquare likewise : $\mathcal{W}_{a,b}$ is right module category over \mathcal{W}_b
- \sim but also: $\mathcal{W}_{a,b}$ is right module category over $\mathcal{E}nd_{\mathcal{W}_a}(\mathcal{W}_{a,b})$
- Impose naturality : $\mathcal{E}nd_{\mathcal{W}_a}(\mathcal{W}_{a,b}) \simeq \mathcal{W}_b$ R C

Consistency check: $\mathcal{Z}(\mathcal{E}nd_{\mathcal{W}_a}(\mathcal{W}_{a,b})) \simeq \mathcal{Z}(\mathcal{W}_a)$ canonically

SCHAUENBURG 2001

$$\mathcal{C} \xrightarrow{\simeq} \mathcal{Z}(\mathcal{W}_a)$$

in particular obstruction: no compatible boundary condition unless [C] = 0in *Witt group* of modular tensor categories

- \sim Other boundary condition b:
 - \blacktriangleright category $\mathcal{W}_{a,b}$

of Wilson lines separating boundary region labeled a from region labeled b

- ➡ fusion of Wilson lines in region a \rightarrow functor $\mathcal{W}_a \times \mathcal{W}_{a,b} \longrightarrow \mathcal{W}_{a,b}$
- so gives action of \mathcal{W}_a on $\mathcal{W}_{a,b}$: $\mathcal{W}_{a,b}$ is left module category over \mathcal{W}_a
- \sim likewise: $\mathcal{W}_{a,b}$ is right module category over \mathcal{W}_b
- → but also : $\mathcal{W}_{a,b}$ is right module category over $\mathcal{E}nd_{\mathcal{W}_a}(\mathcal{W}_{a,b})$
- \bowtie Impose naturality: $\mathcal{E}nd_{\mathcal{W}_a}(\mathcal{W}_{a,b}) \simeq \mathcal{W}_b$

 \implies can work with a single *reference boundary condition* a

■ Conjecture : Boundary conditions for C form the bicategory W_a -Modof module categories over a fusion category W_a satisfying $Z(W_a) \simeq C$


```
■ Then \mathcal{W}_{b,c} \simeq \mathcal{F}_{un_{\mathcal{W}_a}}(\mathcal{W}_b, \mathcal{W}_c) for any pair of boundary conditions b, c
```

- Will assume : Boundary conditions given by \mathcal{W}_a - $\mathcal{M}od$
 - Then $\mathcal{W}_{b,c} \simeq \mathcal{F}_{un_{\mathcal{W}_a}}(\mathcal{W}_b, \mathcal{W}_c)$ for any pair of boundary conditions b, c
- 🖙 Warning :
 - via $\mathcal{C} \xrightarrow{\simeq} \mathcal{Z}(\mathcal{W}_a) \xrightarrow{\text{forget}} \mathcal{W}_a$

any $\mathcal{M} \in \mathcal{W}_a$ - \mathcal{M}_od has natural structure of \mathcal{C} -module category

But not every C-module category of a Witt-trivial C gives a boundary condition

- Will assume : Boundary conditions given by \mathcal{W}_a - $\mathcal{M}od$
- Then $\mathcal{W}_{b,c} \simeq \mathcal{F}_{un_{\mathcal{W}_a}}(\mathcal{W}_b, \mathcal{W}_c)$ for any pair of boundary conditions b, c
- 🖙 Warning:
 - via $\mathcal{C} \xrightarrow{\simeq} \mathcal{Z}(\mathcal{W}_a) \xrightarrow{\text{forget}} \mathcal{W}_a$

any $\mathcal{M} \in \mathcal{W}_a$ - \mathcal{M}_od has natural structure of \mathcal{C} -module category

But not every C-module category of a Witt-trivial C gives a boundary condition

Illustration: Toric code

2 elementary boundary conditions

BRAVYI-KITAEV 2001

- will assume: Boundary conditions given by \mathcal{W}_a - $\mathcal{M}od$
- \sim Then $\mathcal{W}_{b,c} \simeq \mathcal{F}_{un_{\mathcal{W}_a}}(\mathcal{W}_b, \mathcal{W}_c)$ for any pair of boundary conditions b, c
- IN Warning :
 - via $\mathcal{C} \xrightarrow{\simeq} \mathcal{Z}(\mathcal{W}_a) \xrightarrow{\text{forget}} \mathcal{W}_a$

any $\mathcal{M} \in \mathcal{W}_a$ - \mathcal{M}_od has natural structure of \mathcal{C} -module category

But not every C-module category of a Witt-trivial C gives a boundary condition

Illustration: Toric code

- 2 elementary boundary conditions
- $\backsim \mathcal{C} = \mathcal{Z}(\mathcal{V}ect(\mathbb{Z}_2))$
- Solution → 6 inequivalent indecomposable module categories over C
- ~ 2 inequivalent indecomposable module categories over $\mathcal{W} = \mathcal{V}ect(\mathbb{Z}_2)$

- Parallel analysis for surface defects :
 - \sim defect d separating bulk regions labeled by C_1 and C_2
 - \checkmark two monoidal functors $\mathcal{C}_1 \to \mathcal{W}_d$ and $\mathcal{C}_2^{rev} \to \mathcal{W}_d$ to fusion category \mathcal{W}_d

inverse braiding

- Parallel analysis for surface defects :
 - \sim defect d separating bulk regions labeled by C_1 and C_2
 - \checkmark two monoidal functors $\mathcal{C}_1 \to \mathcal{W}_d$ and $\mathcal{C}_2^{rev} \to \mathcal{W}_d$ to fusion category \mathcal{W}_d
 - \sim combine to central functor $\mathcal{C}_1 \boxtimes \mathcal{C}_2^{rev} \to \mathcal{W}_d$

Deligne product

- Parallel analysis for surface defects :
 - \blacksquare defect d separating bulk regions labeled by \mathcal{C}_1 and \mathcal{C}_2
 - \checkmark two monoidal functors $\mathcal{C}_1 \to \mathcal{W}_d$ and $\mathcal{C}_2^{rev} \to \mathcal{W}_d$ to fusion category \mathcal{W}_d
 - \backsim combine to central functor $\mathcal{C}_1 \boxtimes \mathcal{C}_2^{rev} \to \mathcal{W}_d$

$$\mathcal{C}_1 \boxtimes \mathcal{C}_2^{\mathrm{rev}} \xrightarrow{\simeq} \mathcal{Z}(\mathcal{W}_a)$$

→ obstruction: no defects between C_1 and C_2 unless $[C_1] = [C_2]$ in Witt group

- Parallel analysis for surface defects :
 - \sim defect *d* separating bulk regions labeled by C_1 and C_2
 - \checkmark two monoidal functors $\mathcal{C}_1 \to \mathcal{W}_d$ and $\mathcal{C}_2^{rev} \to \mathcal{W}_d$ to fusion category \mathcal{W}_d
 - \backsim combine to central functor $\mathcal{C}_1 \boxtimes \mathcal{C}_2^{rev} \to \mathcal{W}_d$

$$\mathcal{C}_1 \boxtimes \mathcal{C}_2^{\mathrm{rev}} \xrightarrow{\simeq} \mathcal{Z}(\mathcal{W}_a)$$

 \square Defects separating C_1 from C_2 form the bicategory \mathcal{W}_d - \mathcal{M}_{od}

of module categories over a fusion category \mathcal{W}_d satisfying $\mathcal{Z}(\mathcal{W}_d) \simeq \mathcal{C}_1 \boxtimes \mathcal{C}_2^{rev}$

- Parallel analysis for surface defects :
 - \sim defect *d* separating bulk regions labeled by C_1 and C_2
 - \checkmark two monoidal functors $\mathcal{C}_1 \to \mathcal{W}_d$ and $\mathcal{C}_2^{rev} \to \mathcal{W}_d$ to fusion category \mathcal{W}_d
 - \backsim combine to central functor $\mathcal{C}_1 \boxtimes \mathcal{C}_2^{rev} \to \mathcal{W}_d$

$$\mathcal{C}_1 \boxtimes \mathcal{C}_2^{\mathrm{rev}} \xrightarrow{\simeq} \mathcal{Z}(\mathcal{W}_a)$$

 \blacksquare Defects separating \mathcal{C}_1 from \mathcal{C}_2 form the bicategory \mathcal{W}_d - $\mathcal{M}od$

of module categories over a fusion category \mathcal{W}_d satisfying $\mathcal{Z}(\mathcal{W}_d) \simeq \mathcal{C}_1 \boxtimes \mathcal{C}_2^{rev}$

- Example: Canonical Witt trivialization $C \boxtimes C^{rev} \xrightarrow{\simeq} \mathcal{Z}(C)$ (*C* modular)
 - \sim defects separating C from itself = C-module catgeories

- Parallel analysis for surface defects :
 - \sim defect *d* separating bulk regions labeled by C_1 and C_2
 - \checkmark two monoidal functors $\mathcal{C}_1 \to \mathcal{W}_d$ and $\mathcal{C}_2^{rev} \to \mathcal{W}_d$ to fusion category \mathcal{W}_d
 - \backsim combine to central functor $\mathcal{C}_1 \boxtimes \mathcal{C}_2^{rev} \to \mathcal{W}_d$

$$\mathcal{C}_1 \boxtimes \mathcal{C}_2^{\operatorname{rev}} \xrightarrow{\simeq} \mathcal{Z}(\mathcal{W}_a)$$

■ Defects separating C_1 from C_2 form the bicategory W_d -Mod

of module categories over a fusion category \mathcal{W}_d satisfying $\mathcal{Z}(\mathcal{W}_d) \simeq \mathcal{C}_1 \boxtimes \mathcal{C}_2^{rev}$

- $\square \quad \text{Canonical Witt trivialization} \quad \mathcal{C} \boxtimes \mathcal{C}^{\text{rev}} \xrightarrow{\simeq} \mathfrak{Z}(\mathcal{C})$
 - \sim defects separating C from itself = C-module catgeories
 - \checkmark regular C-module category (C, \otimes) \rightsquigarrow transparent defect T
 - serves as monoidal unit for fusion of surface defects
 - Wilson lines separating transparent defect from itself = ordinary Wilson lines

- Parallel analysis for surface defects :
 - \sim defect *d* separating bulk regions labeled by C_1 and C_2
 - \checkmark two monoidal functors $\mathcal{C}_1 \to \mathcal{W}_d$ and $\mathcal{C}_2^{rev} \to \mathcal{W}_d$ to fusion category \mathcal{W}_d
 - \backsim combine to central functor $\mathcal{C}_1 \boxtimes \mathcal{C}_2^{rev} \to \mathcal{W}_d$

$$\mathcal{C}_1 \boxtimes \mathcal{C}_2^{\mathrm{rev}} \xrightarrow{\simeq} \mathcal{Z}(\mathcal{W}_a)$$

- Defects separating C_1 from C_2 form the bicategory W_d -Modof module categories over a fusion category W_d satisfying $\mathcal{Z}(W_d) \simeq C_1 \boxtimes C_2^{rev}$
 - ▶ Canonical Witt trivialization $\mathcal{C} \boxtimes \mathcal{C}^{rev} \xrightarrow{\simeq} \mathcal{I}(\mathcal{C})$
 - \sim defects separating C from itself = C-module catgeories
 - \backsim regular C-module category $(C, \otimes) \rightsquigarrow$ transparent defect T
 - \square Example: *Turaev-Viro* TFT: $C_1 \simeq \mathcal{Z}(\mathcal{A}_1)$ and $C_2 \simeq \mathcal{Z}(\mathcal{A}_2)$

 $\rightsquigarrow \mathcal{C}_1 \boxtimes \mathcal{C}_2^{\mathrm{rev}} \simeq \mathcal{Z}(\mathcal{A}_1) \boxtimes \mathcal{Z}(\mathcal{A}_2^{\mathrm{op}}) \simeq \mathcal{Z}(\mathcal{A}_1 \boxtimes \mathcal{A}_2^{\mathrm{op}})$

 \rightsquigarrow defects separating C_1 from C_2 form bicategory A_1 - A_2 -Bimod

KITAEV-KONG 2012

Defects for multi-layer systems

- $\scriptstyle \blacksquare$ Classification of module categories over a general modular tensor category ${\cal D}$ out of reach
 - (even finding *any* indecomposable \mathcal{D} -module besides (\mathcal{D}, \otimes) can be hard)
- Side remark:
 - bijection between indecomposable \mathcal{D} -module categories and modular invariant torus partition functions for the rational conformal field theory based on \mathcal{D}

Defects for multi-layer systems

- $\scriptstyle {\bf Im}$ Classification of module categories over a general modular tensor category ${\cal D}$ out of reach
- TFT for *N*-layer system: modular tensor category $\mathcal{D} = \mathcal{C}^{\boxtimes N}$ with \mathcal{C} modular tensor category for each single layer

- $\scriptstyle {\bf I} = {\bf I}$ Classification of module categories over a general modular tensor category ${\cal D}$ out of reach
- **TFT** for *N*-layer system : modular tensor category $\mathcal{D} = \mathcal{C}^{\boxtimes N}$

Generic non-trivial right \mathcal{D} -module category: $\mathcal{P} \equiv \mathcal{P}_{\mathcal{D}} := (\mathcal{C}, \triangleleft, \alpha)$ with $W \triangleleft (U_1 \boxtimes \cdots \boxtimes U_N) = W \otimes U_1 \otimes \cdots \otimes U_N$

and mixed associativity constraint for N = 2

- $\scriptstyle {\rm Im}$ Classification of module categories over a general modular tensor category ${\cal D}$ out of reach
- **TFT** for *N*-layer system : modular tensor category $\mathcal{D} = \mathcal{C}^{\boxtimes N}$

Generic non-trivial right \mathcal{D} -module category: $\mathcal{P} \equiv \mathcal{P}_{\mathcal{D}} := (\mathcal{C}, \triangleleft, \alpha)$ with $W \triangleleft (U_1 \boxtimes \cdots \boxtimes U_N) = W \otimes U_1 \otimes \cdots \otimes U_N$

and mixed associativity constraint for N = 2

- $\scriptstyle {\rm Im}$ Classification of module categories over a general modular tensor category ${\cal D}$ out of reach
- **TFT** for *N*-layer system: modular tensor category $\mathcal{D} = \mathcal{C}^{\boxtimes N}$
- Generic non-trivial right *D*-module category: $\mathcal{P} \equiv \mathcal{P}_{\mathcal{D}} := (\mathcal{C}, \triangleleft, \alpha)$ with $W \triangleleft (U_1 \boxtimes \cdots \boxtimes U_N) = W \otimes U_1 \otimes \cdots \otimes U_N$
- Generalization: a \mathcal{D} -module category for every permutation of the N factors \mathcal{C} Side remark: corresponding to permutation modular invariants in RCFT

- $\scriptstyle {\bf Im}$ Classification of module categories over a general modular tensor category ${\cal D}$ out of reach
- **TFT** for *N*-layer system : modular tensor category $\mathcal{D} = \mathcal{C}^{\boxtimes N}$
- Generic non-trivial right *D*-module category: $\mathcal{P} \equiv \mathcal{P}_{\mathcal{D}} := (\mathcal{C}, \triangleleft, \alpha)$ with $W \triangleleft (U_1 \boxtimes \cdots \boxtimes U_N) = W \otimes U_1 \otimes \cdots \otimes U_N$
- Generalization: a \mathcal{D} -module category for every permutation of the N factors \mathcal{C} Side remark: corresponding to permutation modular invariants in RCFT
- From now on restrict to two-layer system $\mathcal{D} = \mathcal{C} \boxtimes \mathcal{C}$
 - \blacktriangleright two generic \mathcal{D} -module categories $\mathcal{D} \equiv \mathcal{T}$ and \mathcal{P}
 - \checkmark right action $\mathcal{P} \times \mathcal{D} \to \mathcal{P}$

- $\scriptstyle {\rm Im}$ Classification of module categories over a general modular tensor category ${\cal D}$ out of reach
- IFT for *N*-layer system : modular tensor category $\mathcal{D} = \mathcal{C}^{\boxtimes N}$
- Seneric non-trivial right *D*-module category: *P* ≡ *P*_D := (C, ⊲, α)
 with *W* ⊲ (*U*₁ ⊠ · · · ⊠ *U*_N) = *W* ⊗ *U*₁ ⊗ · · · ⊗ *U*_N
- Generalization: a \mathcal{D} -module category for every permutation of the N factors \mathcal{C} Side remark: corresponding to permutation modular invariants in RCFT
- From now on restrict to two-layer system $\mathcal{D} = \mathcal{C} \boxtimes \mathcal{C}$
 - we two generic \mathcal{D} -module categories $\mathcal{D} \equiv \mathcal{T}$ and \mathcal{P}
 - \checkmark right action $\mathcal{P} \times \mathcal{D} \to \mathcal{P}$
 - \sim form part of a \mathbb{Z}_2 -*equivariant* modular category
 - thus further fusion functors $\mathcal{D} \times \mathcal{P} \to \mathcal{P}$ and $\mathcal{P} \times \mathcal{P} \to \mathcal{D}$
 - \sim derivable from a \mathbb{Z}_2 -equivariant topological field theory

- \square \mathcal{D} -module category \mathcal{P} realizable as category $A_{\mathcal{P}}$ -mod of left $A_{\mathcal{P}}$ -modules in \mathcal{D}
 - $\clubsuit \ A_{\mathcal{P}} = \bigoplus_{i \in I_{\mathcal{C}}} S_i^{\vee} \boxtimes S_i \quad \text{ as object }$
 - \sim algebra structure determined by fusion of simple objects in C:

BARMEIER-JF-RUNKEL-SCHWEIGERT 2010 BARMEIER-SCHWEIGERT 2011

- \mathbb{T} \mathcal{D} -module category \mathcal{P} realizable as category $A_{\mathcal{P}}$ -mod of left $A_{\mathcal{P}}$ -modules in \mathcal{D}
 - $\blacksquare A_{\mathcal{P}} = \bigoplus_{i \in I_{\mathcal{C}}} S_i^{\vee} \boxtimes S_i$
 - symmetric special Frobenius algebra:

- \square \square -module category \mathcal{P} realizable as category $A_{\mathcal{P}}$ -mod of left $A_{\mathcal{P}}$ -modules in \mathcal{D}
 - $\blacksquare A_{\mathcal{P}} = \bigoplus_{i \in I_{\mathcal{C}}} S_i^{\vee} \boxtimes S_i$
 - symmetric special Frobenius algebra
 - 👞 Azumaya algebra:

braided induction functors $\alpha_{A_{\mathcal{P}}}^{\pm} \colon \mathcal{C} \to A_{\mathcal{P}}$ -bimod are monoidal equivalences $U \longmapsto (A_{\mathcal{P}} \otimes U, m \otimes \operatorname{id}_{U}, (m \otimes \operatorname{id}_{U}) \circ (\operatorname{id}_{A_{\mathcal{P}}} \otimes c_{U,A_{\mathcal{P}}}))$ resp. $c_{A_{\mathcal{P}}}^{-1}U$

- \square \mathcal{D} -module category \mathcal{P} realizable as category $A_{\mathcal{P}}$ -mod of left $A_{\mathcal{P}}$ -modules in \mathcal{D}
 - $\backsim A_{\mathcal{P}} = \bigoplus_{i \in I_{\mathcal{C}}} S_i^{\vee} \boxtimes S_i$
 - 🛶 symmetric special Frobenius Azumaya algebra
- Realized Analogously
 - $$\begin{split} & \bigoplus_{i_1, i_2, \dots, i_N \in I_{\mathcal{C}}} \left(S_{i_1} \boxtimes S_{i_2} \boxtimes \dots \boxtimes S_{i_N} \right)^{\bigoplus \mathcal{N}_{i_1, i_2, \dots, i_N}} \\ & \text{for } N > 2 \qquad \qquad \mathcal{N}_{i_1, i_2, \dots, i_N} = \dim \operatorname{Hom}_{\mathcal{C}}(S_{i_1} \otimes S_{i_2} \otimes \dots \otimes S_{i_N}, \mathbf{1}) \end{split}$$

- - $\backsim A_{\mathcal{P}} = \bigoplus_{i \in I_{\mathcal{C}}} S_i^{\vee} \boxtimes S_i$
 - symmetric special Frobenius Azumaya algebra
- For *A* Azumaya $\Psi_A := (\alpha_A^+)^{-1} \circ \alpha_A^$ describes transmission of bulk Wilson lines through surface defect *A*-mod

- \square \mathcal{D} -module category \mathcal{P} realizable as category $A_{\mathcal{P}}$ -mod of left $A_{\mathcal{P}}$ -modules in \mathcal{D}
 - $\backsim A_{\mathcal{P}} = \bigoplus_{i \in I_{\mathcal{C}}} S_i^{\vee} \boxtimes S_i$
 - symmetric special Frobenius Azumaya algebra
- For *A* Azumaya $\Psi_A := (\alpha_A^+)^{-1} \circ \alpha_A^$ describes transmission of bulk Wilson lines through surface defect *A*-mod $\sim \alpha_{A_{\mathcal{P}}}^+(U \boxtimes V) \cong \alpha_{A_{\mathcal{P}}}^-(V \boxtimes U)$ by direct calculation
 - $\rightsquigarrow\,$ transmission of bulk Wilson lines through $\mathcal P\,$ permutes the layers

- \square \mathcal{D} -module category \mathcal{P} realizable as category $A_{\mathcal{P}}$ -mod of left $A_{\mathcal{P}}$ -modules in \mathcal{D}
 - $\backsim A_{\mathcal{P}} = \bigoplus_{i \in I_{\mathcal{C}}} S_i^{\vee} \boxtimes S_i$
 - 🛶 symmetric special Frobenius Azumaya algebra
- For *A* Azumaya $\Psi_A := (\alpha_A^+)^{-1} \circ \alpha_A^$ describes transmission of bulk Wilson lines through surface defect *A*-mod

 $\backsim \alpha^+_{A_{\mathcal{P}}}(U \boxtimes V) \cong \alpha^-_{A_{\mathcal{P}}}(V \boxtimes U)$

Braided induction for tensor products :

- \square \mathcal{D} -module category \mathcal{P} realizable as category $A_{\mathcal{P}}$ -mod of left $A_{\mathcal{P}}$ -modules in \mathcal{D}
 - $\backsim A_{\mathcal{P}} = \bigoplus_{i \in I_{\mathcal{C}}} S_i^{\vee} \boxtimes S_i$
 - 🛶 symmetric special Frobenius Azumaya algebra
- For *A* Azumaya $\Psi_A := (\alpha_A^+)^{-1} \circ \alpha_A^$ describes transmission of bulk Wilson lines through surface defect *A*-mod
 - $\checkmark \alpha^+_{A_{\mathcal{P}}}(U \boxtimes V) \cong \alpha^-_{A_{\mathcal{P}}}(V \boxtimes U)$
 - Braided induction for tensor products
 - •• $\Psi_{A_1 \otimes A_2} = \Psi_{A_1} \circ \Psi_{A_2}$ as monoidal functors if $A_{1,2}$ Azumaya
 - •• $A_{\mathcal{P}} \otimes A_{\mathcal{P}}$ Morita equivalent to $\mathbf{1}_{\mathcal{D}}$

- - $\backsim A_{\mathcal{P}} = \bigoplus_{i \in I_{\mathcal{C}}} S_i^{\vee} \boxtimes S_i$
 - 🛶 symmetric special Frobenius Azumaya algebra
- For *A* Azumaya $\Psi_A := (\alpha_A^+)^{-1} \circ \alpha_A^$ describes transmission of bulk Wilson lines through surface defect *A*-mod

 $\bullet \ \alpha^+_{A_{\mathcal{P}}}(U \boxtimes V) \cong \alpha^-_{A_{\mathcal{P}}}(V \boxtimes U)$

- Braided induction for tensor products
 - •• $\Psi_{A_1 \otimes A_2} = \Psi_{A_1} \circ \Psi_{A_2}$ as monoidal functors if $A_{1,2}$ Azumaya
 - •• $A_{\mathcal{P}} \otimes A_{\mathcal{P}}$ Morita equivalent to $\mathbf{1}_{\mathcal{D}}$
- Fusion rules : $\mathcal{T} \boxtimes_{\mathcal{D}} \mathcal{P} \simeq \mathcal{P}$
 - $\mathcal{P}\boxtimes_{\mathcal{D}}\mathcal{P}\simeq\mathcal{T}$
- Categories of defect Wilson lines :

 $\mathcal{F}\!un_{\mathcal{D}}(\mathcal{T},\mathcal{P}) \simeq (\mathbf{1}_{\mathcal{D}} \otimes A_{\mathcal{P}}) \operatorname{-\mathsf{mod}} \cong A_{\mathcal{P}} \operatorname{-\mathsf{mod}} \cong \mathcal{C}$ $\mathcal{F}\!un_{\mathcal{D}}(\mathcal{P},\mathcal{T}) \simeq \mathcal{C}$ $\mathcal{E}\!nd_{\mathcal{D}}(\mathcal{T}) \simeq \mathcal{D} \simeq \mathcal{E}\!nd_{\mathcal{D}}(\mathcal{P})$

- \blacksquare Via extended TFT $\mathbf{tft}_{3,2,1}^{\mathcal{D}}$ assign functors to 2-manifolds
- General surfaces with Wilson lines :

- \blacksquare Via extended TFT $\mathbf{tft}_{3,2,1}^{\mathcal{D}}$ assign functors to 2-manifolds
- General surfaces with Wilson lines :
 - functor $\mathbf{tft}_{3,2,1}^{\mathcal{D}}(\partial_{-}\Sigma \xrightarrow{\Sigma} \partial_{+}\Sigma)$
 - e.g. pair of pants

 $Y \;\longmapsto\; \boxtimes:\; \mathcal{D} \times \mathcal{D} \to \mathcal{D}$

 \blacksquare Via extended TFT $\mathbf{tft}_{3,2,1}^{\mathcal{D}}$ assign functors to 2-manifolds

 $\cdots \boxtimes \mathcal{O}_m \longmapsto \operatorname{Hom}_{\mathcal{D}}(\mathcal{O}_1 \otimes \mathcal{D} \cdots \otimes \mathcal{D} \mathcal{O}_m, \mathbf{I}_{\mathcal{D}})$

= space of conformal blocks

= space of ground states of topologial phase

- seneralizes to higher genus
- dimension computed by Verlinde formula

- General surface :
 - m_0 boundary circles \bigcirc with even number of \mathcal{P} -defects
 - m_1 boundary circles \bigcirc with odd number of \mathcal{P} -defects

- General surface : m_0 boundary circles \bigcirc with even number of \mathcal{P} -defects m_1 boundary circles \bigcirc with odd number of \mathcal{P} -defects gives functor $\mathcal{D}^{\boxtimes m_0} \boxtimes \mathcal{C}^{\boxtimes m_1} \longrightarrow \mathcal{V}ect$
 - \sim expressible as a composite of functors in pair-of-pants decomposition of Σ
 - \checkmark glue \mathbb{Z}_2 -covers of pairs of pants \rightsquigarrow branched twofold cover $\widetilde{\Sigma}$
 - compatible with gluing of surfaces with defects
 - ► $\mathbf{tft}_{3,2,1}^{\mathbb{Z}_2;\mathcal{D}}(\Sigma) = \mathbf{tft}_{3,2,1}^{\mathcal{C}}(\widetilde{\Sigma})$

- General surface : m_0 boundary circles \bigcirc with even number of \mathcal{P} -defects m_1 boundary circles \bigcirc with odd number of \mathcal{P} -defects gives functor $\mathcal{D}^{\boxtimes m_0} \boxtimes \mathcal{C}^{\boxtimes m_1} \longrightarrow \mathcal{V}ect$
 - Subscript{Schements} Generalized Verlinde formula for tft $_{3,2,1}^{\mathcal{C}}(\widetilde{\Sigma})$
 - ► boundary circle with even number of \mathcal{P} -defects labeled by $U \boxtimes \tilde{U} \in \mathcal{D} = \mathcal{C} \boxtimes \mathcal{C}$ (pre-image on $\tilde{\Sigma}$ consisting of two circles)
 - ► boundary circle with odd number of \mathcal{P} -defects labeled by $V \in \mathcal{C}$ (pre-image on $\widetilde{\Sigma}$ consisting of one circle)

- General surface : $m_0 \text{ boundary circles } \text{ with even number of } P\text{-defects}$ $m_1 \text{ boundary circles } \text{ with odd number of } P\text{-defects}$ $qives functor \quad D^{\boxtimes m_0} \boxtimes C^{\boxtimes m_1} \longrightarrow Vect$ $\square \text{ Generalized Verlinde formula via ordinary Verlinde formula for tft}_{3,2,1}^C(\tilde{\Sigma})$
 - ▶ boundary circle with even number of \mathcal{P} -defects labeled by simple $U_i \boxtimes \tilde{U}_i \in \mathcal{D}$
 - ▶ boundary circle with odd number of \mathcal{P} -defects labeled by simple $V_j \in \mathcal{C}$

$$\dim_{\mathbb{C}} \left(\mathbf{tft}^{\mathcal{D}}(\Sigma; \{U_i \boxtimes \tilde{U}_i\}, \{V_j\}) \right) = \sum_{n \in I_{\mathcal{C}}} (S_{0,n})^{2\chi - m_1} \prod_{i=1}^{m_0} \frac{S_{U_i,n}}{S_{0,n}} \frac{S_{\tilde{U}_i,n}}{S_{0,n}} \prod_{j=1}^{m_1} \frac{S_{V_j,n}}{S_{0,n}}$$

 m_0 boundary circles \bigcirc with even number of \mathcal{P} -defects m_1 boundary circles \bigcirc with odd number of \mathcal{P} -defects

gives functor $\mathcal{D}^{\boxtimes m_0} \boxtimes \mathcal{C}^{\boxtimes m_1} \longrightarrow \mathcal{V}ect$

Generalized Verlinde formula via ordinary Verlinde formula for $\mathbf{tft}_{3,2,1}^{\mathcal{C}}(\widetilde{\Sigma})$

- \blacktriangleright boundary circle with even number of \mathcal{P} -defects labeled by simple $U_i \boxtimes \tilde{U}_i \in \mathcal{D}$
- ▶ boundary circle with odd number of \mathcal{P} -defects labeled by simple $V_i \in \mathcal{C}$

e.g.
$$\dim_{\mathbb{C}} (\mathbf{tft}^{\mathcal{D}}(S^2; \emptyset, \{V, V, \dots, V\})) = \sum_{n \in I_{\mathcal{C}}} (S_{0,n})^{4-2m_1} (S_{V,n})^{m_1}$$

General surface : Res l m_0 boundary circles \bigcirc with even number of \mathcal{P} -defects m_1 boundary circles \bigcirc with odd number of \mathcal{P} -defects gives functor $\mathcal{D}^{\boxtimes m_0} \boxtimes \mathcal{C}^{\boxtimes m_1} \longrightarrow \mathcal{V}ect$ Generalized Verlinde formula via ordinary Verlinde formula for $\mathbf{tft}_{3,2,1}^{\mathcal{C}}(\widetilde{\Sigma})$ \sim boundary circle with even number of \mathcal{P} -defects labeled by simple $U_i \boxtimes \tilde{U}_i \in \mathcal{D}$ \sim boundary circle with odd number of \mathcal{P} -defects labeled by simple $V_i \in \mathcal{C}$ e.g. $\dim_{\mathbb{C}} (\mathbf{tft}^{\mathcal{D}}(S^2; \emptyset, \{V, V, \dots, V\})) = \sum_{n \in I_C} (S_{0,n})^{4-2m_1} (S_{V,n})^{m_1}$ $n \in I_{\mathcal{C}}$ - depends on genon type Vmodular S-matrix of C

JF IPAM 28_1_15 - p. 16/19

TFT for topological defects

- Dijkgraaf-Witten theories
 - → input data: finite group *G* and cocycle $\omega \in Z^3(G, \mathbb{C}^{\times})$

 $\sim \mathcal{C} = D^{\omega}(G) \operatorname{-mod} \simeq \mathcal{Z}(\operatorname{Vect}(G)^{\omega})$ Turaev-Viro type

- $\sim \omega$ gives holonomy on closed three-manifolds \sim topological bulk Lagrangian
- two-step gauge-theoretic construction :

> groupoid cocycle $\tau \in H^2(G/\!/G, \mathbb{C}^{\times})$ obtained by transgression WILLERTON 2008

- Dijkgraaf-Witten theories
 - → input data : finite group *G* and cocycle $\omega \in Z^3(G, \mathbb{C}^{\times})$
 - $\sim \mathcal{C} = D^{\omega}(G) \operatorname{-mod} \simeq \mathcal{Z}(\operatorname{Vect}(G)^{\omega})$ Turaev-Viro type
 - $\sim \omega$ gives holonomy on closed three-manifolds \sim topological bulk Lagrangian
 - w two-step gauge-theoretic construction :

 $\underbrace{\textit{Cobord}_{3,2,1}}_{\text{Bun}} \xrightarrow{\text{Bun}} \underbrace{\textit{Span}\textit{Grp}}_{\text{Cobord}_{3,2,1}} \xrightarrow{[-,\textit{Vect}]^{\tau}} 2\text{-}\underbrace{\textit{Vect}}_{\text{twisted linearization}}$

extends to TFT with boundaries and defects
via (bi)relative manifolds and (bi)relative bundles

- Dijkgraaf-Witten theories
 - → input data: finite group G and cocycle $\omega \in Z^3(G, \mathbb{C}^{\times})$
 - $\sim \mathcal{C} = D^{\omega}(G) \operatorname{-mod} \simeq \mathcal{Z}(\operatorname{Vect}(G)^{\omega})$ Turaev-Viro type
 - $\sim \omega$ gives holonomy on closed three-manifolds \sim topological bulk Lagrangian
 - w two-step gauge-theoretic construction :

 $\begin{array}{ccc} \textit{Cobord}_{3,2,1} & \xrightarrow{\operatorname{Bun}} & \textit{Span}\textit{Grp} & \xrightarrow{[-,\textit{Vect}]^{\tau}} & 2\text{-}\textit{Vect} & \text{twisted linearization} \end{array}$

extends to TFT with boundaries and defects

► category of relative bundles for smooth map $j: Y \to X$ and group homomorphism $\iota: H \to G$

objects: G-bundle $P_G \rightarrow X$ and H-bundle $P_H \rightarrow Y$

with isomorphism $\alpha \colon \operatorname{Ind}_{H}^{G}(P_{H}) \xrightarrow{\cong} j^{*}P_{G}$

morphisms: bundle morphisms

 $\operatorname{Ind}G(D) \xrightarrow{\alpha} \operatorname{is} D$

- Dijkgraaf-Witten theories
 - → input data: finite group G and cocycle $\omega \in Z^3(G, \mathbb{C}^{\times})$
 - $\sim \mathcal{C} = D^{\omega}(G) \operatorname{-mod} \simeq \mathcal{Z}(\operatorname{Vect}(G)^{\omega})$ Turaev-Viro type
 - $\sim \omega$ gives holonomy on closed three-manifolds \sim topological bulk Lagrangian
 - w two-step gauge-theoretic construction :

 $\operatorname{Cobord}_{3,2,1} \xrightarrow{\operatorname{Bun}} \operatorname{Span}\operatorname{Grp} \xrightarrow{[-,\operatorname{Vect}]^{\tau}} 2\operatorname{-}\operatorname{Vect} \quad \text{twisted linearization}$

- extends to TFT with boundaries and defects
- **Example:** category for circle S with one defect point p
 - \sim to interval $\mathbb{S} \setminus \{p\}$ assign group G with cocycle ω
 - ▶ to p assign homomorphism $i: H \to G \times G$ with cochain $\theta \in C^2(H, \mathbb{C}^{\times})$
 - \implies Bun gives action groupoid $G \setminus G \times G//_{u} H$
 - w twisted linearization gives $[G \setminus G \times G//_{i} H, \text{Vect}]^{\tau_{\omega,\theta}}$

 $\begin{array}{ll} \text{find} & \tau_{\omega,\theta}((\gamma_1,\gamma_2);(g,h),(g',h')) = [\theta(h',h)]^{-1} \\ & \omega(g',g,\gamma_1) \left[\omega(g',g\gamma_1\imath_1(h)^{-1},\imath_1(h)) \right]^{-1} \omega(g'g\gamma_1\imath_1(h)^{-1}\imath_1(h')^{-1},\imath_1(h'),\imath_1(h)) \\ & [\omega(g',g,\gamma_2)]^{-1} \omega(g',g\gamma_2\imath_2(h)^{-1},\imath_2(h)) \left[\omega(g'g\gamma_2\imath_2(h)^{-1}\imath_2(h')^{-1},\imath_2(h'),\imath_2(h)) \right]^{-1} \end{array}$

- Dijkgraaf-Witten theories
 - → input data: finite group G and cocycle $\omega \in Z^3(G, \mathbb{C}^{\times})$
 - $\sim \mathcal{C} = D^{\omega}(G) \operatorname{-mod} \simeq \mathcal{Z}(\operatorname{Vect}(G)^{\omega})$ Turaev-Viro type
 - $\sim \omega$ gives holonomy on closed three-manifolds \sim topological bulk Lagrangian
 - w two-step gauge-theoretic construction :

 $\begin{array}{ccc} \textit{Cobord}_{3,2,1} & \xrightarrow{\operatorname{Bun}} & \textit{Span}\textit{Grp} & \xrightarrow{[-,\textit{Vect}]^{\tau}} & 2\text{-}\textit{Vect} & \text{twisted linearization} \end{array}$

- extends to TFT with boundaries and defects
- **Example:** category for circle S with one defect point p
 - \sim to interval $\mathbb{S} \setminus \{p\}$ assign group G with cocycle ω
 - ▶ to p assign homomorphism $i: H \to G \times G$ with cochain $\theta \in C^2(H, \mathbb{C}^{\times})$
 - \sim Bun gives action groupoid $G \setminus G \times G //_{u} H$
 - twisted linearization gives $[G \setminus G \times G//_{i} H, \text{Vect}]^{\tau_{\omega,\theta}}$
 - → thus equivalent to category of $G \times G$ -graded vector spaces $\bigoplus_{g_1,g_2 \in G} V_{(g_1,g_2)}$ with $\tau_{\omega,\theta}$ -twisted $G \times H$ -action $\pi_{g,h} : V_{(g_1,g_2)} \to V_{(gg_1,gg_2)i(h)^{-1}}$
 - \sim equivalent to category of $A_{G_{\text{diag}}}$ - $A_{H,\theta}$ -bimodules in $\operatorname{Vect}(G)^{\omega} \boxtimes \operatorname{Vect}(G)^{\omega^{-1}}$

- A few other available results :
 - ► transmission functors for invertible defects realize bijection \checkmark invertible A-bimodule categories \leftrightarrow braided auto-equivalences of $\mathcal{Z}(A)$

- so gauge-theoretic description of symmetries of abelian Dijkgraaf-Witten theories
 - $O_q(A \oplus A^*)$ generated by

 $\varphi \oplus (\varphi^*)^{-1}$ with $\varphi \in \operatorname{Aut}(A)$ $(g, \chi) \mapsto (g, \chi + \beta(g, -))$ with β alternating bicharacter (*B-field*) electric-magnetic dualities

- A few other available results : -F
 - transmission functors for invertible defects realize bijection invertible \mathcal{A} -bimodule categories $\leftrightarrow \rightarrow$ braided auto-equivalences of $\mathcal{Z}(\mathcal{A})$
 - gauge-theoretic description of symmetries of abelian Dijkgraaf-Witten theories
 - simplicial constructions à la TV/BW
 - deconfining of twist defects SEE Z. WANG'S TALK
 - \sim interpretation of categories arising as $\mathbf{tft}_{3,2,1}^{\mathcal{Z}(\mathcal{A})}(\mathbb{S})$ as category-valued trace \otimes for 1-morphisms in the tricategory of finite tensor categories
- Among next steps : Res 1
 - formulation of Dijkgraaf-Witten results in terms of relative Deligne product and so as to extend to all Turaev-Viro TFTs

CRANE-YETTER 2014