Taming the Dirac fermion

Composite Dirac liquids and surface topological orders

Andrew M. Essin
TOPOLOGICAL INSULATORS
Topological Insulators
WORK WITH

DAVID MROSS

JASON ALICEA
WORK WITH

DAVID MROSS

JASON ALICEA
Outline - Background

Prehistory (-30 yrs.) - Fractional Quantum Hall

Ancient History (-10 yrs) - Topological Insulators

History (-1 yr) - Symmetric Topological Surfaces
"Topological" Phases of Matter

Energy

```
```

"Gap"

 ✓

"Gapless"

 ✗
Topological Phases of Matter

Energy

Gap

Gapless

✓

✗

✓
Electrons

Properties:
- Energy
- Charge = 1
- Spin = $\frac{1}{2}$

Symmetries
- Phase rotation
- Time reversal

"Statistics"

$\Psi(\text{coords}) \rightarrow -\Psi(\text{coords})$
More generally,

“Local Fermions” have charge = odd integer

Local Bosons have charge = even

\[b \xrightarrow{\psi} \bar{\psi} \]

Not neutrons, say: Fermions, charge = 0.
How to Get a Cap
How to get a gap

- For bosons, need strong interactions.

Energy cost for two bosons in the same state
How to get a gap

- For bosons, need strong interactions:

 Energy cost for two bosons in the same state

 \[\text{\textbf{\textcircled{\textbf{bb}}}} \]

- Filled fermion band ("Dirac sea")

\[\text{\textbf{\textcircled{\textbf{E}}}} \]

\[\text{\textbf{\textcircled{\textbf{k}}}} \]
How to get a gap

- For bosons, need strong interactions:

 Energy cost for two bosons in the same state

- Filled fermion band ("Dirac sea")

\[E \]

\[\text{GAP} \]

\[\text{GAP} \]

\[k \]

Contrast metal

\[E \]

\[k \]
Fractional excitations may have other statistics, charge.

Consider fractional quantum Hall at $\nu = 1/2$.
Fractional excitations may have other statistics, charge

Consider fractional quantum Hall at $v = \frac{1}{2}$.

Old idea of Halperin:
- Electrons pair to form charge-2 bosons
- These pairs break into 8 pieces with charge $\frac{1}{4}$, statistics $e^{\frac{i\pi}{8}}$
Fractional excitations may have other statistics, charge.

Consider fractional quantum Hall at $\nu = \frac{1}{2}$.

Old idea of Halperin:
- Electrons pair to form charge-$\frac{1}{2}$ bosons.
- These pairs break into 8 pieces with charge $\frac{1}{4}$, statistics $e^{-\frac{i\pi}{8}}$.

Edge: charge conductance $\frac{1}{2} = \frac{2^{2/8}}{8} \rightarrow \nu = \frac{1}{2}$

Energy conductance 1. $\rightarrow c = 1$
Later idea (Moore & Read):

Charge $\frac{1}{4}$ anyon carries Majorana bound state,

\rightarrow Non-Abelian fusion, braiding.

\[\begin{align*}
\left\{ \begin{array}{l}
\nu = \frac{1}{2}, \quad c = 1 \\
\nu = 0, \quad c = \frac{1}{2}
\end{array} \right. \\
\rightarrow \nu = \frac{1}{2}, \quad c = \frac{3}{2}
\end{align*} \]
Experiments see a gapless state, sort of like a metal

"Composite Fermi Liquid"

Very crudely, one can imagine fractional fermions
Experiments see a gapless state, sort of like a metal

"Composite Fermi liquid"

Very crudely, one can imagine fractional fermions

The two states correspond to pairing of these fermions:

Halperin

Moore-Read

Plausible candidate for topological state at filling 5/2.
Hastings (Oshikawa; Lieb, Schultz, Mattis)

With appropriate symmetries and charges:

1. Gap + Fractional excitations

2. Gapless
3D Topological Insulator

\[H_{2D} = i \Psi^+ \tilde{\sigma} \cdot \nabla \Psi \]

\[\Psi = \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix} \]
3D Topological Insulator

\[H_{2D} = i \begin{pmatrix} \sigma^+ & 0 \\ 0 & \sigma^- \end{pmatrix} \Psi \]

\[\Psi = \begin{pmatrix} \psi_+ \\ \psi_- \end{pmatrix} \]

Symmetry

Symmetry Action

Time Reversal

\[\uparrow \leftrightarrow \downarrow \]

Phase Rotation

\[\Psi \rightarrow e^{i\phi} \Psi \]

Symmetry-Breaking

\[h > 0 \]

\[h \in \mathbb{R} \]

\[\Delta > 0 \]

\[\Delta \in \mathbb{C} \]
2D SURFACE v. 2D BULK

3D BULK STATES

E k

E k
Symmetry Breaking: Point Defects
Symmetry Breaking - Point Defects

Majorana Bound State

\[\gamma = \gamma^+ \]

[Diagram with arrows and \(\Delta e^{i\alpha(x)} \)]
Symmetry Breaking - Line Defects

Chiral Fermion Mode

$\nu = 1$, $c = 1$
Symmetry Breaking - Line Defects

Chiral Fermion Mode

\[h > 0 \quad h < 0 \]

\[V = 1, \quad c = 1 \]

Chiral Majorana Mode

\[h > 0 \quad \Delta \]

\[c = \frac{1}{2} \]
Symmetric, Gapped Surfaces

Bonderson, Nayak, Qi
Metlitski, Kane, Fisher
Wang, Potter, Senthil

Chen, Fidkowski, Vishwanath — Walker-Wang Models
Symmetric, Gapped Surfaces

Bonderson, Nayak, Qi
Metlitski, Kane, Fisher
Wang, Potter, Senthil

CHEN, FIDKOWSKI, VISHWANATH – WALKER-WANG MODELS

Two possibilities:

\[h > 0 \]

\[\nu = \frac{1}{2}, \ c = \frac{1}{2} \]

“T-Pfaffian”

\[h > 0 \]

\[\nu = \frac{1}{2}, \ c = \frac{1}{2} \]

“Pfaffian - Antisemion”
Questions?
1. CAGE THE DIRAC FERMION
1. Cage the Dirac fermion

2. Energetically bind charge

→ all charges capped.

→ Neutral bound state → U(1) not broken
1. CAGE THE DIRAC FERMION

2. ENERGETICALLY BIND CHARGE

 -> ALL CHARGES GAPPED.

3. GAPLESS, NEUTRAL DIRAC FERMION REMAINS

 COMPOSITE DIRAC LIQUID
Composite Dirac Liquid

Thermal transport like a Dirac metal

Charge Insulator

\Rightarrow Like a gapless spin liquid
COMPOSITE DIRAC LIQUID

\[\nu = \frac{1}{2} \]

Ferro
COMPOSITE DIRAC LIQUID

Gapless spectrum enforced by fictitious $U(1)$ symmetry.
Composite Dirac Liquid

Gapless spectrum enforced by fictitious $U(1)$ symmetry.

Pair potential Δ breaks fictitious symmetry

→ Full gap

→ Majorana bound states

→ Majorana edge mode

$\nu = \frac{1}{2}$
\[\sigma_{xy} = 0, \quad K_{xy} = 0 \]

\[\sigma_{xy} = \frac{1}{2}, \quad K_{xy} = \frac{1}{2} \]
\[\sigma_{xy} = 0, \quad K_{xy} = 0 \]

\[\sigma_{xy} = \frac{1}{2}, \quad K_{xy} = \frac{1}{2} \]

\[\nu = \frac{1}{2}, \quad \xi = \frac{1}{2} \]
\[\sigma_{xy} = 0, \quad K_{xy} = 0 \]

\[\sigma_{xy} = \frac{1}{2}, \quad K_{xy} = \frac{1}{2} \]

\[\nu = \frac{1}{2}, \quad c = \frac{1}{2} \]
Composite Dirac Liquid

Gapless spectrum enforced by fictitious $U(1)$ symmetry.

Pair potential Δ breaks fictitious symmetry

\rightarrow Full gap

\rightarrow Majorana bound states

\rightarrow Majorana edge mode

$\Rightarrow \ \nu = \frac{1}{2}$

$\Rightarrow \ \nu = \frac{1}{2}$
Symmetric, Gapped Surfaces

U(1)
Symmetric, Gapped Surfaces

$U(1)$ \quad $U(1), \tilde{U}(1)$

GAP $U(1)$ CHARGE

$\nu = \frac{1}{2}$
Symmetric, Gapped Surfaces

\[U(1) \quad U(1), \tilde{U}(1) \]
Symmetric, Gapped Surfaces

\(U(1) \)

\(U(1), \tilde{U}(1) \)

GAP \(U(1) \) CHARGE

\(\nu = \frac{1}{2} \)

BREAK \(\tilde{U}(1) \)

\(\nu = \frac{1}{2} \)

\(\nu < \frac{1}{2} \)

TPF

GAP \(\tilde{U}(1) \) CHARGE

\(\nu = \frac{1}{2} \)

\(\nu = -\frac{1}{2} \)

Ferro
Symmetric, Gapped Surfaces

\(U(1) \quad U(1), \bar{U}(1) \quad TPF \)

\[\begin{align*}
\text{GAP } U(1) & \quad \text{CHARGE} \\
\nu = \frac{1}{2} & \quad \nu = \frac{1}{2} \\
\phi = 0 & \quad \phi = 0 \\
\end{align*} \]
Other Gapped Surfaces ~ 2D States

\[\text{Gap } \mathbb{U}(1) \text{ Charge } \xrightarrow{\mathcal{M}} \text{ Ferro} \quad \xrightarrow{T \text{ broken}} \text{ Ferro} \]

\(\nu = \frac{1}{2} \)
\[\begin{array}{ccc}
\text{Ferro} & \rightarrow & v = \frac{1}{2}, \ c = 1 \\
\text{SEMION} & \rightarrow & v = 0, \ c = 1 \\
\text{FERMION} & \rightarrow & v = 0, \ c = \frac{1}{2} \\
\text{MAJORANA FERMION} & \rightarrow & \text{...}
\end{array} \]
Modify time-reversal symmetry

\[\psi_n \rightarrow \psi_n, \quad \psi_{\bar{n}} \rightarrow -\psi_{\bar{n}} \]

\[\psi_n(\vec{r}) \rightarrow \psi_n(\vec{r} + \vec{x}), \quad \psi_{\bar{n}}(\vec{r}) \rightarrow \psi_{\bar{n}}(\vec{r} + \vec{x}) \]
Now: Condense Bosons to Gap Charge

- Nonchiral, Neutral

Don't Break Antiferro Symmetry

Not Strong Enough
Now: Condense bosons to gap charge

- Nonchiral, neutral

Don't break AF symmetry

Not strong enough
Demand \(\nu_{\text{TOTAL}} = 0 \) \(\Rightarrow \) \(\nu = \frac{1}{2} \)
\(v = \frac{1}{2} \) - Any Abelian \(v = \frac{1}{2} \) state.

- Moore - read

- Not TPf, Pf-5

- Spinless electron wire

Quasi-1D approach pioneered by

Kane, Mukhopadhyay, Lubensky
Teo & Kane
$\sum_i v_i = 0 \quad - \text{NEUTRAL}$

$\sum_i (-1)^i v_i^2 = 0 \quad - \text{NONCHIRAL}$

$\sum_i (-1)^i v_i v_{i+3} = 0 \quad - \text{MUTUALLY LOCAL AND SYMMETRIC}$

$\vec{v} = (\cdots \ 001 -3 4 -3 100 \cdots)$
BIND

1 Fermion, charge = 1
2 Semions, charge = $-\frac{1}{2}$
BIND

1. Fermion, charge = 1
2. Semions, charge = $-\frac{1}{2}$

NB: Physical process must take 4 Semions from

So really condense
Neutral Fermion

(Note: Chirality Reversed)
Neutral Fermion

(Note: Chirality Reversed)
COMPOSITE DIRAC LIQUID
How ABOUT \(TPF \)?

\[c = 1 \quad \rightarrow \quad c = \frac{1}{2} \]

\[f = \chi + i\eta \]
\(T - \text{Pfaffian} \)
AND Pf - 3?
MAJORANA BOUND STATES?
Open Questions

Prove deconfined nonabelian anyons

Continuum Description

$T^2 = ? \quad (\bar{T}^2 = \text{translation})$

Other topological bulks

- Weak topological insulator
- Topological superconductor?
THANK YOU