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The setting
C - finite tensor category over a field k with HomC(1, 1) ∼= k

M - exact module category over C: C ×M→M
(X,M) 7→ X ∗M

AssumeM has finitely many simple objects

H∗(C) := Ext∗C(1, 1) =
⊕
n≥0

ExtnC(1, 1)

H∗(M) := Ext∗M(M,M) for objects M ofM

Note:
• H∗(C) is a graded commutative algebra under cup product
• H∗(M) is an H∗(C)-module via − ∗M

Conjecture H∗(C) is a finitely generated k-algebra and H∗(M) is a
finitely generated H∗(C)-module for all objects M ofM.



Varieties for tensor categories

From now on let C be a finite tensor category for which
H∗(C) := Ext∗C(1, 1) is finitely generated, and
H∗(M) := Ext∗M(M,M) is a finitely generated H∗(C)-module for each
object M ofM

Define support varieties:

V(M) := Max(H∗(C)/AnnH∗(C) H∗(M))

See also Buan-Krause-Snashall-Solberg 2020, Nakano-Vashaw-Yakimov
2022 for tensor triangulated categories and relation to Balmer spectrum
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Some standard properties of support varieties
(Bergh-Plavnik-W 2021 and arXiv 2023)

(1) cx(M) = dimV(M), where the complexity cx(M) of an object M
ofM is the rate of growth of a minimal projective resolution P of M ,
· · · → P2 → P1 → P0 →M → 0, as measured by length of Pn

(2) V(M ⊕N) = V(M) ∪ V(N)

(3) If 0→M1 →M2 →M3 → 0 is a short exact sequence,
then V(Mi) ⊆ V(Mj) ∪ V(Ml) whenever {i, j, l} = {1,2,3}



Module product property

V(X ∗M)
?
= V(X) ∩ V(M)

Remark This is known to be an equality when C =M = A-mod for a
cocommutative Hopf algebra A (Friedlander-Pevtsova 2005) and for some
quantum groups A (Nakano-Vashaw-Yakimov arXiv 2022,
Negron-Pevtsova 2023)

In general, it is known to be an equality when X is projective or when
X = Lζ (“Carlson’s Lζ objects”), i.e. Lζ := ker(ζ) for nonzero
ζ ∈ HomC(Ωn(1), 1) ∼= Hn(C).

It is known not to be an equality for some modules of some
noncocommutative Hopf algebras (Benson-W 2014, Plavnik-W 2018,
Bergh-Plavnik-W arXiv 2023).
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Module product property: reduction to complexity 1

Theorem (Bergh-Plavnik-W) Let C be a braided finite tensor category with
finitely generated cohomology etc.,M an exact module category. TFAE:

(i) V(X ∗M) = V(X) ∩ V(M) for all objects X,M .

(ii) V(X ∗M) = V(X) ∩ V(M) for all objects X,M of complexity 1.

Remark
V(X ∗M) ⊆ V(X) ∩ V(M) follows from defns of actions and braiding.
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Module product property: reduction to complexity 1
Thm TFAE: (i) V(X ∗M) = V(X) ∩ V(M) for all X,M .
(ii) V(X ∗M) = V(X) ∩ V(M) for all X,M of complexity 1.

Idea of proof that (ii) implies (i): Assume cx(X) ≥ 1 and cx(M) ≥ 1.
Induction on cx(X) + cx(M); (ii) is case cx(X) + cx(M) = 2.

Case cx(M) ≥ 2: Reduce to case V(M) = Z(p) for a minimal prime p.
Reduce complexity: For each m ∈ V(M), ∃ a SES

0→Wm → Ωn(M)⊕ P →M → 0
with P projective, m ∈ V(Wm), and cx(Wm) = cx(M)− 1;
it follows that V(Wm) ⊆ V(M) and (a) V(M) = ∪mV(Wm).
By induction, (b) V(X ∗Wm) = V(X) ∩ V(Wm).

Combining (a) and (b): V(X) ∩ V(M)
(a)
= V(X) ∩ (∪mV(Wm))

(b)
= ∪mV(X ∗Wm)

(c)
⊆ V(X ∗M),

(c) by properties of ∗ and varieties.



Detecting projectivity
Thm TFAE: (i) V (X ∗M) = V(X) ∩ V(M) for all X,M .
(ii) V(X ∗M) = V(X) ∩ V(M) for all X,M of complexity 1.

Further reflection yields a third equivalent condition:
(iii) For all indecomposable periodic X,M with V(X) = V(M), the object
X ∗M is not projective.

This allows checking the above module product property for a potentially
more limited collection of objects. For some algebras, there are
representation theoretic techniques for this.

We will see this method in action next, for symmetric tensor categories
over algebraically closed fields of characteristic 0



Symmetric tensor categories

k - alg closed, char 0
C - symmetric finite tensor category

Deligne’s classification
C is equivalent to category of modules for the Hopf algebra

∧
(V ) oG,

where
• G is a finite group acting on a fin dim vector space V ,
• G contains a subgroup of order 2 with generator g acting as
multiplication by −1 on V
•∆(v) = v ⊗ 1 + g ⊗ v for all v ∈ V , ∆(h) = h⊗ h for all h ∈ G



Theorem (Bergh-Plavnik-W arXiv 2023) Let C be a symmetric finite
tensor category over alg closed field k of char 0. Then for all X,Y ∈ C,
V(X ⊗ Y ) = V(X) ∩ V(Y ).

Idea of proof:
(1) Use Deligne’s classification: take C =

∧
(V )oG -mod, with key case

being
∧

(V )oZ2

(2) Apply reduction to complexity 1: Suffices to check that two indec
periodic modules having same variety have tensor product nonprojective
(3) Apply techniques of Pevtsova-W 2009: analog of shifted cyclic
subgroups in

∧
(V ) detect projectivity and give rise to induced modules

that are periodic - boils down to checking restriction to copies of Sweedler
4-dimensional Hopf algebra as Hopf subalgebras of

∧
(V ) o Z2



Summary of open questions

Let C be a finite tensor category,M an exact module category.

(1) Is H∗(C) finitely generated etc?
(Known to be true for many classes of examples, unknown in general.)

A positive answer opens the door to support varieties with good
properties.

(2) Is V(X ∗M) = V(X) ∩ V(M)?
(Known to be true in some settings; known not to be true in others;
unknown in general; for C braided, reduced to objects of complexity 1.)
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Module product: negative answers

V(X ∗M)
?
= V(X) ∩ V(M)

This is known not to be an equality for many classes of examples
(Benson-W 2014, Plavnik-W 2018, Bergh-Plavnik-W arXiv 2023). In fact:

Theorem (Bergh-Plavnik-W arXiv 2023) Let k be a perfect field, let C be a
nonsemisimple finite tensor category with finitely generated cohomology
etc. Then C embeds as a finite tensor category into a finite tensor
category also having finitely generated cohomology, but not the support
variety tensor product property.



Module product: negative answers details
G - finite group acting on C by autoequivalences

Crossed product category C oG: objects ⊕g∈G(Mg, g) with Mg ∈ C,
morphisms componentwise, tensor product given by
(M, g)⊗ (N, h) = (M ⊗ g(N), gh), unit object (1,1G).
As a k-linear abelian category, C oG is the Deligne product C � VecG.

Cohomology H∗(C oG) ∼= H∗(C), support varieties “same” as for C,
so e.g. if C has the support variety tensor product property, then
V((M, g)⊗ (N, h)) = V(M) ∩ V(g(N))

Theorem (Bergh-Plavnik-W arXiv 2023)
Let k be a perfect field and C nonsemisimple. Let G = Z2 with nonidentity
element interchanging factors in C � C. Then (C � C) oG does not have
the support variety tensor product property.


