New Constructions of Exceptional Simple Lie Superalgebras in Low Characteristic Using Tensor Categories

Arun Kannan (MIT)

January 11, 2024

IPAM Workshop on Symmetric Tensor Categories and Representation Theory @ UCLA

Lie Algebras in STCs

 An (operadic) Lie algebra in an STC C is an object g ∈ C and a morphism B : g ⊗ g → g such that

$$B \circ (1_{\mathfrak{g}\otimes\mathfrak{g}} + c_{\mathfrak{g},\mathfrak{g}}) = 0;$$

 $B \circ (B \otimes 1_{\mathfrak{g}}) \circ (1_{\mathfrak{g}\otimes 3} + (123)_{\mathfrak{g}\otimes 3} + (132)_{\mathfrak{g}\otimes 3}) = 0.$

Lie Algebras in STCs

 An (operadic) Lie algebra in an STC C is an object g ∈ C and a morphism B : g ⊗ g → g such that

$$B \circ (1_{\mathfrak{g}\otimes\mathfrak{g}} + c_{\mathfrak{g},\mathfrak{g}}) = 0;$$

 $B \circ (B \otimes 1_{\mathfrak{g}}) \circ (1_{\mathfrak{g}\otimes\mathfrak{z}} + (123)_{\mathfrak{g}\otimes\mathfrak{z}} + (132)_{\mathfrak{g}\otimes\mathfrak{z}}) = 0.$

 A Lie algebra as you know it is an operadic Lie algebra in Vec_K (char K ≠ 2). A Lie superalgebra as you know it is an operadic Lie algebra in sVec_K (char K ≠ 2, 3)

Lie Algebras in STCs

 An (operadic) Lie algebra in an STC C is an object g ∈ C and a morphism B : g ⊗ g → g such that

$$B \circ (1_{\mathfrak{g}\otimes\mathfrak{g}} + c_{\mathfrak{g},\mathfrak{g}}) = 0;$$

 $B \circ (B \otimes 1_{\mathfrak{g}}) \circ (1_{\mathfrak{g}\otimes\mathfrak{z}} + (123)_{\mathfrak{g}\otimes\mathfrak{z}} + (132)_{\mathfrak{g}\otimes\mathfrak{z}}) = 0.$

- A Lie algebra as you know it is an operadic Lie algebra in Vec_K (char K ≠ 2). A Lie superalgebra as you know it is an operadic Lie algebra in sVec_K (char K ≠ 2,3)
- In general might not satisfy gr $U(\mathfrak{g}) = S(\mathfrak{g})$ (PBW Theorem).

$$B = 1_X \otimes ev_{X^*,X} \otimes 1_{X^*} \circ (1_{\mathfrak{gl}(X) \otimes \mathfrak{gl}(X)} - c_{\mathfrak{gl}(X),\mathfrak{gl}(X)})$$

• $\mathfrak{gl}(X) = X \otimes X^*$ with bracket B given by

$$B = 1_X \otimes \mathit{ev}_{X^*,X} \otimes 1_{X^*} \circ (1_{\mathfrak{gl}(X) \otimes \mathfrak{gl}(X)} - c_{\mathfrak{gl}(X),\mathfrak{gl}(X)})$$

• $\mathfrak{sl}(X) = \ker \operatorname{tr}$, where trace $\operatorname{tr} : \mathfrak{gl}(X) \to \mathbb{1}$ is given by $\operatorname{tr} = ev_{X^*,X} \circ c_{X,X^*}$

$$B = 1_X \otimes \mathit{ev}_{X^*,X} \otimes 1_{X^*} \circ (1_{\mathfrak{gl}(X) \otimes \mathfrak{gl}(X)} - c_{\mathfrak{gl}(X),\mathfrak{gl}(X)})$$

- $\mathfrak{sl}(X) = \ker \operatorname{tr}$, where trace $\operatorname{tr} : \mathfrak{gl}(X) \to \mathbb{1}$ is given by $\operatorname{tr} = ev_{X^*,X} \circ c_{X,X^*}$
- sp(X, β) arises as follows: β : X ⊗ X → 1 is skew-symmetric if it satisfies β = −β ∘ c_{X,X}. If β is non-degenerate, then S²(X) ⊆ X ⊗ X ≅ X ⊗ X* = gl(X) is a Lie subalgebra.

$$B = 1_X \otimes \mathit{ev}_{X^*,X} \otimes 1_{X^*} \circ (1_{\mathfrak{gl}(X) \otimes \mathfrak{gl}(X)} - c_{\mathfrak{gl}(X),\mathfrak{gl}(X)})$$

- $\mathfrak{sl}(X) = \ker \operatorname{tr}$, where trace $\operatorname{tr} : \mathfrak{gl}(X) \to \mathbb{1}$ is given by $\operatorname{tr} = ev_{X^*,X} \circ c_{X,X^*}$
- sp(X, β) arises as follows: β : X ⊗ X → 1 is skew-symmetric if it satisfies β = −β ∘ c_{X,X}. If β is non-degenerate, then S²(X) ⊆ X ⊗ X ≅ X ⊗ X* = gl(X) is a Lie subalgebra.
- Similarly, get o(X, β) with a symmetric form β = β ∘ c_{X,X} identifying ∧²(X).

$$B = 1_X \otimes \mathit{ev}_{X^*,X} \otimes 1_{X^*} \circ (1_{\mathfrak{gl}(X) \otimes \mathfrak{gl}(X)} - c_{\mathfrak{gl}(X),\mathfrak{gl}(X)})$$

- $\mathfrak{sl}(X) = \ker \operatorname{tr}$, where trace $\operatorname{tr} : \mathfrak{gl}(X) \to \mathbb{1}$ is given by $\operatorname{tr} = ev_{X^*,X} \circ c_{X,X^*}$
- sp(X, β) arises as follows: β : X ⊗ X → 1 is skew-symmetric if it satisfies β = -β ∘ c_{X,X}. If β is non-degenerate, then S²(X) ⊆ X ⊗ X ≅ X ⊗ X* = gl(X) is a Lie subalgebra.
- Similarly, get o(X, β) with a symmetric form β = β ∘ c_{X,X} identifying ∧²(X).
- gl(X) is always PBW; the others are PBW at least for any Frobenius-exact C.

Another Example

 Consider C = Rep K[t]/(t^p). Indecomposable objects are J_n = Kⁿ for 1 ≤ n ≤ p.

Another Example

- Consider C = Rep K[t]/(t^p). Indecomposable objects are *J_n* = Kⁿ for 1 ≤ *n* ≤ *p*.
- A Lie algebra (g, [·, ·]) in Rep K[t]/(t^p) is an ordinary Lie algebra equipped with a nilpotent derivation of degree at most p:

$$t.[x, y] = [t.x, y] + [x, t.y]$$

(so that $[\cdot, \cdot]$ is a morphism in the category).

 The Verlinde category Ver_p is the semisimplification of Rep K[t]/(t^p).

- The Verlinde category Ver_p is the semisimplification of Rep K[t]/(t^p).
- Simple objects: L₁,..., L_{p-1}, images of J₁,..., J_{p-1} (resp.). The indecomposable J_p goes to zero as dim J_p = p = 0.

- The Verlinde category Ver_p is the semisimplification of Rep K[t]/(t^p).
- Simple objects: L₁,..., L_{p-1}, images of J₁,..., J_{p-1} (resp.). The indecomposable J_p goes to zero as dim J_p = p = 0.
- Tensor product rule ("truncated Clebsch-Gordan rule"):

$$L_n \otimes L_m = \bigoplus_{i=1}^{\min(n,m,p-n,p-m)} L_{|n-m|+2i-1}.$$

- The Verlinde category Ver_p is the semisimplification of Rep K[t]/(t^p).
- Simple objects: L₁,..., L_{p-1}, images of J₁,..., J_{p-1} (resp.). The indecomposable J_p goes to zero as dim J_p = p = 0.
- Tensor product rule ("truncated Clebsch-Gordan rule"):

$$L_n \otimes L_m = \bigoplus_{i=1}^{\min(n,m,p-n,p-m)} L_{|n-m|+2i-1}.$$

 Ver_p is a counter-example to Deligne's theorem in positive characteristic (p ≠ 2, 3) and plays a role in generalizing it.

- The Verlinde category Ver_p is the semisimplification of Rep K[t]/(t^p).
- Simple objects: L₁,..., L_{p-1}, images of J₁,..., J_{p-1} (resp.). The indecomposable J_p goes to zero as dim J_p = p = 0.
- Tensor product rule ("truncated Clebsch-Gordan rule"):

$$L_n \otimes L_m = \bigoplus_{i=1}^{\min(n,m,p-n,p-m)} L_{|n-m|+2i-1}.$$

- Ver_p is a counter-example to Deligne's theorem in positive characteristic (p ≠ 2,3) and plays a role in generalizing it.
- Representation theory of an affine group scheme G over Ver_p is controlled by underlying ordinary group scheme G₀ and its Lie algebra Lie(G).

Proposition: $sVec_{\mathbb{K}}$ is a full subcategory of Ver_p if p > 2.

Proof.

If $J_{p-1} \in \operatorname{Rep} \mathbb{K}[t]/(t^p)$ has basis $\{v, t.v, \dots, t^{p-2}.v\}$, then can show $J_{p-1} \otimes J_{p-1} = J_1 \oplus (p-2)J_p$ with J_1 spanned by

$$w = v \otimes (t^{p-2}.v) - t.v \otimes (t^{p-3}.v) + \cdots - (t^{p-2}.v) \otimes v.$$

Because p is odd, $c_{J_{p-1},J_{p-1}}(w) = -w$. After semisimplification, we get $L_{p-1} \otimes L_{p-1} = L_1$ and $c_{L_{p-1},L_{p-1}}$ is multiplication by -1. Hence L_{p-1} tensor generates sVec_K.

Upshot

 Any commutative algebra, Lie theory, or algebraic geometry done in Ver_p is new but must also generalize known (super) phenomena.

Upshot

- Any commutative algebra, Lie theory, or algebraic geometry done in Ver_p is new but must also generalize known (super) phenomena.
- Semisimplification functor being symmetric monoidal (not exact!) is a window from ordinary rep theory to super and Ver_p rep theory.

 If g is a Lie algebra in C and V a module over g, then g is a Lie algebra in C and V is a module over g.

 If g is a Lie algebra in C and V a module over g, then g is a Lie algebra in C and V is a module over g.

2.
$$\overline{\mathfrak{gl}(X)} = \mathfrak{gl}(\overline{X}), \ \overline{\mathfrak{sl}(X)} = \mathfrak{sl}(\overline{X}), \ \overline{\mathfrak{sp}(X,\beta)} = \mathfrak{sp}(\overline{X},\overline{\beta}), \ \overline{\mathfrak{o}(X,\beta)} = \mathfrak{o}(\overline{X},\overline{\beta})$$

 If g is a Lie algebra in C and V a module over g, then g is a Lie algebra in C and V is a module over g.

2.
$$\overline{\mathfrak{gl}(X)} = \mathfrak{gl}(\overline{X}), \ \overline{\mathfrak{sl}(X)} = \mathfrak{sl}(\overline{X}), \ \overline{\mathfrak{sp}(X,\beta)} = \mathfrak{sp}(\overline{X},\overline{\beta}), \ \overline{\mathfrak{o}(X,\beta)} = \mathfrak{o}(\overline{X},\overline{\beta})$$

If g has non-degenerate Killing form, then so does g
 , meaning
 it is the direct sum of simple Lie algebras. This lets us
 construct simple Lie algebras (for instance, in Ver_p).

 If g is a Lie algebra in C and V a module over g, then g is a Lie algebra in C and V is a module over g.

2.
$$\overline{\mathfrak{gl}(X)} = \mathfrak{gl}(\overline{X}), \ \overline{\mathfrak{sl}(X)} = \mathfrak{sl}(\overline{X}), \ \overline{\mathfrak{sp}(X,\beta)} = \mathfrak{sp}(\overline{X},\overline{\beta}), \ \overline{\mathfrak{o}(X,\beta)} = \mathfrak{o}(\overline{X},\overline{\beta})$$

- If g has non-degenerate Killing form, then so does g
 , meaning
 it is the direct sum of simple Lie algebras. This lets us
 construct simple Lie algebras (for instance, in Ver_p).
- Semisimplification is not always PBW. Consider free Lie algebra in characteristic 3 on generators x, y modulo elements of degree 4, equipped with derivation d given by d(x) = y, d(y) = 0. As a Lie algebra in Rep K[t]/(t³) it semisimplifies to a "Lie superalgebra" spanned by {z, [z, z], [z, [z, z]]}.

• Consider \mathfrak{gl}_6 in characteristic 3 with usual basis e_{ij} .

Example: \mathfrak{gl}_6

- Consider \mathfrak{gl}_6 in characteristic 3 with usual basis e_{ij} .
- Since

$$e_{56}^3 = 0 \implies (ad e_{56})^3 = 0$$

 $(\mathfrak{gl}_6, \operatorname{ad} e_{56})$ is a Lie algebra in Rep α_3 .

Example: \mathfrak{gl}_6

- Consider \mathfrak{gl}_6 in characteristic 3 with usual basis e_{ij} .
- Since

$$e_{56}^3=0\implies (\mathsf{ad}\ e_{56})^3=0$$

 $(\mathfrak{gl}_6, \operatorname{ad} e_{56})$ is a Lie algebra in Rep α_3 .

• It decomposes as $\mathfrak{gl}_6 = 16J_1 \oplus 8J_2 \oplus (J_1 \oplus J_3)$:

Example: \mathfrak{gl}_6

- Consider \mathfrak{gl}_6 in characteristic 3 with usual basis e_{ij} .
- Since

$$e_{56}^3=0\implies (\mathsf{ad}\ e_{56})^3=0$$

 $(\mathfrak{gl}_6, \operatorname{ad} e_{56})$ is a Lie algebra in Rep α_3 .

• It decomposes as $\mathfrak{gl}_6 = 16J_1 \oplus 8J_2 \oplus (J_1 \oplus J_3)$:

• Therefore, its semisimplification is $\mathfrak{gl}(4|1) = 16L_1 \oplus 8L_2 \oplus L_1$.

 In [Eld06; CE07b; CE07a; Eld07], Elduque and Cunha constructed new exceptional simple Lie superalgebras (in characteristic 3)

- In [Eld06; CE07b; CE07a; Eld07], Elduque and Cunha constructed new exceptional simple Lie superalgebras (in characteristic 3)
- Constructed using the *Elduque Supermagic Square*, a super analog of the *Freudenthal Magic Square*

- In [Eld06; CE07b; CE07a; Eld07], Elduque and Cunha constructed new exceptional simple Lie superalgebras (in characteristic 3)
- Constructed using the *Elduque Supermagic Square*, a super analog of the *Freudenthal Magic Square*
- Associates a Lie superalgebra to two unital composition algebras.

- In [Eld06; CE07b; CE07a; Eld07], Elduque and Cunha constructed new exceptional simple Lie superalgebras (in characteristic 3)
- Constructed using the *Elduque Supermagic Square*, a super analog of the *Freudenthal Magic Square*
- Associates a Lie superalgebra to two unital composition algebras.
- We saw several of these in the previous talk and saw how semisimplification plays a role in their construction at a conceptual level. Will present an alternative construction here.

The Result

Theorem (K). These Lie superalgebras can constructed by semisimplifying an exceptional Lie algebra in characteristic 3 equipped with a nilpotent derivation of degree at most 3.

Kac-Moody Lie Superalgebra

The setup: A ∈ Mat_n(Z) such that diagonal entries are either 2 or 0; if a_{ii} = 2, declare i to be an even index, if a_{ii} = 0, declare i to be an odd index. Define the Lie superalgebra g̃(A) over K to be the free Lie superalgebra on generators {e_i, f_i, h_i}_{1≤i≤n} subject to the relations:

$$[e_i, f_j] = \delta_{ij}h_i; \quad [h, e_j] = a_{ij}e_j; \quad [h, f_j] = -a_{ij}f_j; \quad [h_i, h_j] = 0,$$

and let $\mathfrak{g}(A)$ be $\tilde{\mathfrak{g}}(A)/I$, where *I* is the maximal ideal trivially intersecting $\mathfrak{h} = \mathbb{K}h_1 \oplus \cdots \oplus \mathbb{K}h_n$.

Kac-Moody Lie Superalgebra

The setup: A ∈ Mat_n(Z) such that diagonal entries are either
2 or 0; if a_{ii} = 2, declare i to be an even index, if a_{ii} = 0, declare i to be an odd index. Define the Lie superalgebra g̃(A) over K to be the free Lie superalgebra on generators
{e_i, f_i, h_i}_{1≤i≤n} subject to the relations:

$$[e_i, f_j] = \delta_{ij}h_i; \quad [h, e_j] = a_{ij}e_j; \quad [h, f_j] = -a_{ij}f_j; \quad [h_i, h_j] = 0,$$

and let $\mathfrak{g}(A)$ be $\tilde{\mathfrak{g}}(A)/I$, where *I* is the maximal ideal trivially intersecting $\mathfrak{h} = \mathbb{K}h_1 \oplus \cdots \oplus \mathbb{K}h_n$.

• The Elduque and Cunha Lie superalgebras are of this form (or "related").

The 133-dimensional simple exceptional Lie algebra \mathfrak{e}_7 can be written $\mathfrak{e}_7 = \mathfrak{g}(\hat{A})$, where

	2	0	-1	0	0	0	0]
	0	2	0	-1	0	0	0	
	-1	0	2	-1	0	0	0	
$\hat{A} =$	0	-1	-1	2	-1	0	0	.
	0	0	$-1 \\ 0 \\ 2 \\ -1 \\ 0$	-1	2	-1	0	
	0	0	0	0	-1	2	-1	
	0	0	0	0	0		2	

The generator e_7 is ad-nilpotent of degree 3, so can view e_7 as an Lie algebra in Rep α_3 w.r.t. ad e_7 .

Its semisimplification is a finite-dimensional simple exceptional Eldque and Cunha Lie superalgebra g(A) of superdimension (66|32), where

$$A = \begin{bmatrix} 2 & 0 & -1 & 0 & 0 & 0 \\ 0 & 2 & 0 & -1 & 0 & 0 \\ -1 & 0 & 2 & -1 & 0 & 0 \\ 0 & -1 & -1 & 2 & -1 & 0 \\ 0 & 0 & 0 & -1 & 2 & -1 \\ \hline 0 & 0 & 0 & 0 & -1 & 0 \end{bmatrix}$$

Idea: the copy of J_2 spanned by e_6 and $[e_6, e_7]$ in e_7 became an odd generator (resp. f) in the semisimplification. Demonstration.

Can do this more generally by adding commuting Chevalley generators. For instance, semisimplifying e₇ with respect to e₁ + e₇ gives another Elduque and Cunha Lie superalgebra. We can get most of them this way by looking at the right Cartan matrix and comparing dimensions.

- Can do this more generally by adding commuting Chevalley generators. For instance, semisimplifying e₇ with respect to e₁ + e₇ gives another Elduque and Cunha Lie superalgebra. We can get most of them this way by looking at the right Cartan matrix and comparing dimensions.
- A few of them, however, cannot be determined by looking at Cartan matrix alone; these must be manually determined. For instance, there is the Elduque Lie superalgebra in characteristic 5. This can be constructed by semisimplifying e₈ with respect to e₂ + e₃ + e₄.

- Can do this more generally by adding commuting Chevalley generators. For instance, semisimplifying e₇ with respect to e₁ + e₇ gives another Elduque and Cunha Lie superalgebra. We can get most of them this way by looking at the right Cartan matrix and comparing dimensions.
- A few of them, however, cannot be determined by looking at Cartan matrix alone; these must be manually determined. For instance, there is the Elduque Lie superalgebra in characteristic 5. This can be constructed by semisimplifying e₈ with respect to e₂ + e₃ + e₄.
- If e and e' lie in the same nilpotent orbit, then the semisimplifications of g(A) w.r.t. e and e' are isomorphic. This gives us large class of realizations (next slide).

Here are some examples of legal swaps:

Here are some examples of legal swaps:

Here are some examples of illegal swaps:

Summary of Results

Lie algebra	Nilpotent element	Lie superalgebra
br ₃	e_1, e_2	$\mathfrak{brj}_{2;3}$
f4	e_1	see (\star) below
	e_4	g(1, 6)
	$e_1 + e_4$	see (\star) below
$e_{6}^{(1)}$	e_1, e_2, e_6	$g(2, 6)^{(1)}$
	e_1+e_2,e_2+e_6,e_1+e_6	
	$e_1 + e_2 + e_6$	$\mathfrak{g}(2,3)^{(1)}$
e7	e_1, e_2, e_7	g(4, 6)
	$e_1 + e_2, e_2 + e_7, e_1 + e_7$	$\mathfrak{el}(5;3)$
	$e_1 + e_2 + e_7$	$\mathfrak{g}(4,3)$
	$e_2 + e_5 + e_7$	\mathfrak{f}_4 ; see (**) below
	$e_1 + e_2 + e_5 + e_7$	$\mathfrak{g}(1,6)$
e ₈	e_1, e_2, e_8	g(8, 6)
	$e_1 + e_2, e_2 + e_8, e_1 + e_8$	
	$e_1 + e_2 + e_8$	$\mathfrak{g}(8,3)$
	$e_1 + e_2 + e_6 + e_8$	$\mathfrak{g}(3,6)$

• Which nilpotent derivations give the same semisimplifications and why?

- Which nilpotent derivations give the same semisimplifications and why?
- Study the representation theory of these exceptional Lie superalgebras by semisimplifying representations of the exceptional Lie algebras they come from.

- Which nilpotent derivations give the same semisimplifications and why?
- Study the representation theory of these exceptional Lie superalgebras by semisimplifying representations of the exceptional Lie algebras they come from.
- What is the notion of a Kac-Moody Lie algebra in the Verlinde category? Given such a notion, how does it relate to semisimplifying a Kac-Moody Lie algebra in Rep α_p?

- Which nilpotent derivations give the same semisimplifications and why?
- Study the representation theory of these exceptional Lie superalgebras by semisimplifying representations of the exceptional Lie algebras they come from.
- What is the notion of a Kac-Moody Lie algebra in the Verlinde category? Given such a notion, how does it relate to semisimplifying a Kac-Moody Lie algebra in Rep α_p?
- What other simple Lie superalgebras can be obtained this way? What about simple Lie algebras in Ver_p?

- Which nilpotent derivations give the same semisimplifications and why?
- Study the representation theory of these exceptional Lie superalgebras by semisimplifying representations of the exceptional Lie algebras they come from.
- What is the notion of a Kac-Moody Lie algebra in the Verlinde category? Given such a notion, how does it relate to semisimplifying a Kac-Moody Lie algebra in Rep α_p?
- What other simple Lie superalgebras can be obtained this way? What about simple Lie algebras in Ver_p?
- Semisimplify other algebraic objects (like distribution algebras of affine group schemes). What happens?

- Classification of simple algebraic groups and Lie algebras in Ver_{p}

- Classification of simple algebraic groups and Lie algebras in Ver_p
- Notions of reductive groups and root systems in Ver_p, and associated representation theory (some progress made for GL(X), minor progress for O(X, β) and Sp(X, β))

- Classification of simple algebraic groups and Lie algebras in Ver_p
- Notions of reductive groups and root systems in Ver_p, and associated representation theory (some progress made for GL(X), minor progress for O(X, β) and Sp(X, β))
- Finite-generation of cohomology of finite group schemes for Ver_p in characteristic p

- Classification of simple algebraic groups and Lie algebras in Ver_p
- Notions of reductive groups and root systems in Ver_p, and associated representation theory (some progress made for GL(X), minor progress for O(X, β) and Sp(X, β))
- Finite-generation of cohomology of finite group schemes for Ver_p in characteristic p
- Polynomial Functors for STCs

- Classification of simple algebraic groups and Lie algebras in Ver_p
- Notions of reductive groups and root systems in Ver_p, and associated representation theory (some progress made for GL(X), minor progress for O(X, β) and Sp(X, β))
- Finite-generation of cohomology of finite group schemes for Ver_p in characteristic p
- Polynomial Functors for STCs
- Deligne's Theorem analog in characteristic p

- Classification of simple algebraic groups and Lie algebras in Ver_p
- Notions of reductive groups and root systems in Ver_p, and associated representation theory (some progress made for GL(X), minor progress for O(X, β) and Sp(X, β))
- Finite-generation of cohomology of finite group schemes for Ver_p in characteristic p
- Polynomial Functors for STCs
- Deligne's Theorem analog in characteristic p
- More generally: what theorems that extend from vector spaces to supervector spaces extend to the Verlinde setting? What new things do we get along the way?

References

[CE07a] Isabel Cunha and Alberto Elduque. "An extended Freudenthal magic square in characteristic 3". In: Journal of Algebra 317.2 (2007), pp. 471–509.

- [CE07b] Isabel Cunha and Alberto Elduque. "The extended Freudenthal magic square and Jordan algebras". In: Manuscripta Mathematica 123.3 (2007), pp. 325–351.
- [Eld06] Alberto Elduque. "New simple Lie superalgebras in characteristic 3". In: Journal of Algebra 296.1 (2006), pp. 196–233.
- [Eld07] Alberto Elduque. "Some new simple modular Lie superalgebras". In: Pacific Journal of Mathematics 231.2 (2007), pp. 337–359.