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Lie Algebras in STCs

• An (operadic) Lie algebra in an STC C is an object g ∈ C and

a morphism B : g⊗ g→ g such that

B ◦ (1g⊗g + cg,g) = 0;

B ◦ (B ⊗ 1g) ◦ (1g⊗3 + (123)g⊗3 + (132)g⊗3) = 0.

• A Lie algebra as you know it is an operadic Lie algebra in

VecK (char K 6= 2). A Lie superalgebra as you know it is an

operadic Lie algebra in sVecK (char K 6= 2, 3)

• In general might not satisfy gr U(g) = S(g) (PBW Theorem).
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Examples of Lie Algebras in STCs

• gl(X ) = X ⊗ X ∗ with bracket B given by

B = 1X ⊗ evX∗,X ⊗ 1X∗ ◦ (1gl(X )⊗gl(X ) − cgl(X ),gl(X ))

• sl(X ) = ker tr, where trace tr : gl(X )→ 1 is given by

tr = evX∗,X ◦ cX ,X∗

• sp(X , β) arises as follows: β : X ⊗ X → 1 is skew-symmetric

if it satisfies β = −β ◦ cX ,X . If β is non-degenerate, then

S2(X ) ⊆ X ⊗ X ∼= X ⊗ X ∗ = gl(X ) is a Lie subalgebra.

• Similarly, get o(X , β) with a symmetric form β = β ◦ cX ,X

identifying ∧2(X ).

• gl(X ) is always PBW; the others are PBW at least for any

Frobenius-exact C.
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Another Example

• Consider C = RepK[t]/(tp). Indecomposable objects are

Jn = Kn for 1 ≤ n ≤ p.

• A Lie algebra (g, [·, ·]) in RepK[t]/(tp) is an ordinary Lie

algebra equipped with a nilpotent derivation of degree at most

p:

t.[x , y ] = [t.x , y ] + [x , t.y ]

(so that [·, ·] is a morphism in the category).
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The Verlinde Category Verp

• The Verlinde category Verp is the semisimplification of

RepK[t]/(tp).

• Simple objects: L1, . . . , Lp−1, images of J1, . . . , Jp−1 (resp.).

The indecomposable Jp goes to zero as dim Jp = p = 0.

• Tensor product rule (”truncated Clebsch-Gordan rule”):

Ln ⊗ Lm =

min(n,m,p−n,p−m)⊕
i=1

L|n−m|+2i−1.

• Verp is a counter-example to Deligne’s theorem in positive

characteristic (p 6= 2, 3) and plays a role in generalizing it.

• Representation theory of an affine group scheme G over Verp

is controlled by underlying ordinary group scheme G0 and its

Lie algebra Lie(G ).
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Verp contains sVecK

Proposition: sVecK is a full subcategory of Verp if p > 2.

Proof.

If Jp−1 ∈ RepK[t]/(tp) has basis {v , t.v , . . . , tp−2.v}, then can

show Jp−1 ⊗ Jp−1 = J1 ⊕ (p − 2)Jp with J1 spanned by

w = v ⊗ (tp−2.v)− t.v ⊗ (tp−3.v) + · · · − (tp−2.v)⊗ v .

Because p is odd, cJp−1,Jp−1(w) = −w . After semisimplification,

we get Lp−1 ⊗ Lp−1 = L1 and cLp−1,Lp−1 is multiplication by −1.

Hence Lp−1 tensor generates sVecK.
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Upshot

1. Any commutative algebra, Lie theory, or algebraic geometry

done in Verp is new but must also generalize known (super)

phenomena.

2. Semisimplification functor being symmetric monoidal (not

exact!) is a window from ordinary rep theory to super and

Verp rep theory.
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Examples

1. If g is a Lie algebra in C and V a module over g, then g is a

Lie algebra in C and V is a module over g.

2. gl(X ) = gl(X ), sl(X ) = sl(X ), sp(X , β) =

sp(X , β), o(X , β) = o(X , β)

3. If g has non-degenerate Killing form, then so does g, meaning

it is the direct sum of simple Lie algebras. This lets us

construct simple Lie algebras (for instance, in Verp).

4. Semisimplification is not always PBW. Consider free Lie

algebra in characteristic 3 on generators x , y modulo elements

of degree 4, equipped with derivation d given by

d(x) = y , d(y) = 0. As a Lie algebra in RepK[t]/(t3) it

semisimplifies to a “Lie superalgebra” spanned by

{z , [z , z ], [z , [z , z ]]}.
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Example: gl6

• Consider gl6 in characteristic 3 with usual basis eij .

• Since

e356 = 0 =⇒ (ad e56)3 = 0

(gl6, ad e56) is a Lie algebra in Repα3.

• It decomposes as gl6 = 16J1 ⊕ 8J2 ⊕ (J1 ⊕ J3):

• • • • • •
• • • • • •
• • • • • •
• • • • • •
• • • • • •
• • • • • •


• Therefore, its semisimplification is gl(4|1) = 16L1 ⊕ 8L2 ⊕ L1.
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The Elduque and Cunha Lie Superalgebras

• In [Eld06; CE07b; CE07a; Eld07], Elduque and Cunha

constructed new exceptional simple Lie superalgebras (in

characteristic 3)

• Constructed using the Elduque Supermagic Square, a super

analog of the Freudenthal Magic Square

• Associates a Lie superalgebra to two unital composition

algebras.

• We saw several of these in the previous talk and saw how

semisimplification plays a role in their construction at a

conceptual level. Will present an alternative construction here.
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The Result

Theorem (K). These Lie superalgebras can constructed by

semisimplifying an exceptional Lie algebra in characteristic 3

equipped with a nilpotent derivation of degree at most 3.
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Kac-Moody Lie Superalgebra

• The setup: A ∈ Matn(Z) such that diagonal entries are either

2 or 0; if aii = 2, declare i to be an even index, if aii = 0,

declare i to be an odd index. Define the Lie superalgebra g̃(A)

over K to be the free Lie superalgebra on generators

{ei , fi , hi}1≤i≤n subject to the relations:

[ei , fj ] = δijhi ; [h, ej ] = aijej ; [h, fj ] = −aij fj ; [hi , hj ] = 0,

and let g(A) be g̃(A)/I , where I is the maximal ideal trivially

intersecting h = Kh1 ⊕ · · · ⊕Khn.

• The Elduque and Cunha Lie superalgebras are of this form (or

“related”).
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Semisimplification in Action

The 133-dimensional simple exceptional Lie algebra e7 can be

written e7 = g(Â), where

Â =



2 0 −1 0 0 0 0

0 2 0 −1 0 0 0

−1 0 2 −1 0 0 0

0 −1 −1 2 −1 0 0

0 0 0 −1 2 −1 0

0 0 0 0 −1 2 −1

0 0 0 0 0 −1 2


.

The generator e7 is ad-nilpotent of degree 3, so can view e7 as an

Lie algebra in Repα3 w.r.t. ad e7.
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Semisimplification in Action

Its semisimplification is a finite-dimensional simple exceptional

Eldque and Cunha Lie superalgebra g(A) of superdimension

(66|32), where

A =



2 0 −1 0 0 0

0 2 0 −1 0 0

−1 0 2 −1 0 0

0 −1 −1 2 −1 0

0 0 0 −1 2 −1

0 0 0 0 −1 0


.

Idea: the copy of J2 spanned by e6 and [e6, e7] in e7 became an

odd generator (resp. f ) in the semisimplification. Demonstration.
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Other Comments

• Can do this more generally by adding commuting Chevalley

generators. For instance, semisimplifying e7 with respect to

e1 + e7 gives another Elduque and Cunha Lie superalgebra.

We can get most of them this way by looking at the right

Cartan matrix and comparing dimensions.

• A few of them, however, cannot be determined by looking at

Cartan matrix alone; these must be manually determined. For

instance, there is the Elduque Lie superalgebra in

characteristic 5. This can be constructed by semisimplifying

e8 with respect to e2 + e3 + e4.

• If e and e ′ lie in the same nilpotent orbit, then the

semisimplifications of g(A) w.r.t. e and e ′ are isomorphic.

This gives us large class of realizations (next slide).
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Summary of Results
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Follow-Up Problems

• Which nilpotent derivations give the same semisimplifications

and why?

• Study the representation theory of these exceptional Lie

superalgebras by semisimplifying representations of the

exceptional Lie algebras they come from.

• What is the notion of a Kac-Moody Lie algebra in the

Verlinde category? Given such a notion, how does it relate to

semisimplifying a Kac-Moody Lie algebra in Repαp?

• What other simple Lie superalgebras can be obtained this

way? What about simple Lie algebras in Verp?

• Semisimplify other algebraic objects (like distribution algebras

of affine group schemes). What happens?
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Some Open Problems

• Classification of simple algebraic groups and Lie algebras in

Verp

• Notions of reductive groups and root systems in Verp, and

associated representation theory (some progress made for

GL(X ), minor progress for O(X , β) and Sp(X , β))

• Finite-generation of cohomology of finite group schemes for

Verp in characteristic p

• Polynomial Functors for STCs

• Deligne’s Theorem analog in characteristic p

• More generally: what theorems that extend from vector

spaces to supervector spaces extend to the Verlinde setting?

What new things do we get along the way?
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