New Constructions of Exceptional Simple Lie Superalgebras in Low Characteristic Using Tensor Categories

Arun Kannan (MIT)
January 11, 2024

IPAM Workshop on Symmetric Tensor Categories and Representation Theory © UCLA
• An (operadic) Lie algebra in an STC \mathcal{C} is an object $g \in \mathcal{C}$ and a morphism $B : g \otimes g \to g$ such that

$$B \circ (1_{g \otimes g} + c_{g,g}) = 0;$$

$$B \circ (B \otimes 1_g) \circ (1_{g \otimes 3} + (123)_{g \otimes 3} + (132)_{g \otimes 3}) = 0.$$
Lie Algebras in STCs

- An (operadic) Lie algebra in an STC C is an object $g \in C$ and a morphism $B : g \otimes g \to g$ such that

\[
B \circ (1_g \otimes g + c_{g,g}) = 0;
\]

\[
B \circ (B \otimes 1_g) \circ (1_g \otimes 3 + (123)_g \otimes 3 + (132)_g \otimes 3) = 0.
\]

- A Lie algebra as you know it is an operadic Lie algebra in Vec_K ($\text{char } K \neq 2$). A Lie superalgebra as you know it is an operadic Lie algebra in $s\text{Vec}_K$ ($\text{char } K \neq 2, 3$)
• An (operadic) Lie algebra in an STC C is an object $g \in C$ and a morphism $B : g \otimes g \to g$ such that

$$B \circ (1_g \otimes g + c_{g,g}) = 0;$$

$$B \circ (B \otimes 1_g) \circ (1_g \otimes 3 + (123)_g \otimes 3 + (132)_g \otimes 3) = 0.$$

• A Lie algebra as you know it is an operadic Lie algebra in Vec_K ($\text{char } K \neq 2$). A Lie superalgebra as you know it is an operadic Lie algebra in sVec_K ($\text{char } K \neq 2, 3$)

• In general might not satisfy $\text{gr } U(g) = S(g)$ (PBW Theorem).
Examples of Lie Algebras in STCs

- $\mathfrak{gl}(X) = X \otimes X^*$ with bracket B given by

$$B = 1_X \otimes \text{ev}_{X^*,X} \otimes 1_{X^*} \circ (1_{\mathfrak{gl}(X)} \otimes \mathfrak{gl}(X) - c_{\mathfrak{gl}(X),\mathfrak{gl}(X)})$$
Examples of Lie Algebras in STCs

- $\mathfrak{gl}(X) = X \otimes X^*$ with bracket B given by
 \[B = 1_X \otimes \text{ev}_{X^*} X \otimes 1_{X^*} \circ (1_{\mathfrak{gl}(X) \otimes \mathfrak{gl}(X)} - c_{\mathfrak{gl}(X), \mathfrak{gl}(X)}) \]

- $\mathfrak{sl}(X) = \ker \text{tr}$, where trace $\text{tr} : \mathfrak{gl}(X) \to \mathbb{1}$ is given by
 \[\text{tr} = \text{ev}_{X^*} X \circ c_X X^* \]
Examples of Lie Algebras in STCs

• $\mathfrak{gl}(X) = X \otimes X^*$ with bracket B given by

$$B = 1_X \otimes \text{ev}_{X^*},X \otimes 1_{X^*} \circ (1_{\mathfrak{gl}(X)} \otimes \mathfrak{gl}(X) - c_{\mathfrak{gl}(X),\mathfrak{gl}(X)})$$

• $\mathfrak{sl}(X) = \ker \text{tr}$, where trace $\text{tr} : \mathfrak{gl}(X) \to \mathbb{1}$ is given by

$$\text{tr} = \text{ev}_{X^*},X \circ c_{X,X^*}$$

• $\mathfrak{sp}(X, \beta)$ arises as follows: $\beta : X \otimes X \to \mathbb{1}$ is skew-symmetric if it satisfies $\beta = -\beta \circ c_{X,X}$. If β is non-degenerate, then $S^2(X) \subseteq X \otimes X \cong X \otimes X^* = \mathfrak{gl}(X)$ is a Lie subalgebra.
Examples of Lie Algebras in STCs

• \(\mathfrak{gl}(X) = X \otimes X^* \) with bracket \(B \) given by

\[
B = 1_X \otimes \text{ev}_{X^*,X} \otimes 1_{X^*} \circ (1_{\mathfrak{gl}(X)} \otimes \mathfrak{gl}(X) - c_{\mathfrak{gl}(X), \mathfrak{gl}(X)})
\]

• \(\mathfrak{sl}(X) = \ker \text{tr} \), where trace \(\text{tr} : \mathfrak{gl}(X) \to \mathbb{1} \) is given by

\[
\text{tr} = \text{ev}_{X^*,X} \circ c_{X,X^*}
\]

• \(\mathfrak{sp}(X, \beta) \) arises as follows: \(\beta : X \otimes X \to \mathbb{1} \) is \textit{skew-symmetric} if it satisfies \(\beta = -\beta \circ c_{X,X} \). If \(\beta \) is non-degenerate, then \(S^2(X) \subseteq X \otimes X \cong X \otimes X^* = \mathfrak{gl}(X) \) is a Lie subalgebra.

• Similarly, get \(\mathfrak{o}(X, \beta) \) with a symmetric form \(\beta = \beta \circ c_{X,X} \) identifying \(\wedge^2(X) \).
Examples of Lie Algebras in STCs

- $\mathfrak{gl}(X) = X \otimes X^*$ with bracket B given by

$$B = 1_X \otimes \text{ev}_{X^*,X} \otimes 1_{X^*} \circ \left(1_{\mathfrak{gl}(X) \otimes \mathfrak{gl}(X)} - c_{\mathfrak{gl}(X),\mathfrak{gl}(X)}\right)$$

- $\mathfrak{sl}(X) = \ker \text{tr}$, where trace $\text{tr} : \mathfrak{gl}(X) \to \mathbb{1}$ is given by

$$\text{tr} = \text{ev}_{X^*,X} \circ c_{X,X^*}$$

- $\mathfrak{sp}(X, \beta)$ arises as follows: $\beta : X \otimes X \to \mathbb{1}$ is skew-symmetric if it satisfies $\beta = -\beta \circ c_{X,X}$. If β is non-degenerate, then $S^2(X) \subseteq X \otimes X \cong X \otimes X^* = \mathfrak{gl}(X)$ is a Lie subalgebra.

- Similarly, get $\mathfrak{o}(X, \beta)$ with a symmetric form $\beta = \beta \circ c_{X,X}$ identifying $\wedge^2(X)$.

- $\mathfrak{gl}(X)$ is always PBW; the others are PBW at least for any Frobenius-exact \mathcal{C}.

3/20
Another Example

- Consider $\mathcal{C} = \text{Rep} \mathbb{K}[t]/(t^p)$. Indecomposable objects are $J_n = \mathbb{K}^n$ for $1 \leq n \leq p$.
Another Example

- Consider $\mathcal{C} = \text{Rep } \mathbb{K}[t]/(t^p)$. Indecomposable objects are $J_n = \mathbb{K}^n$ for $1 \leq n \leq p$.

- A Lie algebra $(\mathfrak{g}, [\cdot, \cdot])$ in $\text{Rep } \mathbb{K}[t]/(t^p)$ is an ordinary Lie algebra equipped with a nilpotent derivation of degree at most p:

$$t.[x, y] = [t.x, y] + [x, t.y]$$

(so that $[\cdot, \cdot]$ is a morphism in the category).
The Verlinde Category Ver_p

- The Verlinde category Ver_p is the semisimplification of $\text{Rep} \mathbb{K}[t]/(t^p)$.

- Ver_p is a counter-example to Deligne's theorem in positive characteristic ($p \neq 2, 3$) and plays a role in generalizing it.

- Representation theory of an affine group scheme G over Ver_p is controlled by underlying ordinary group scheme G_0 and its Lie algebra $\text{Lie}(G)$.

5/20
The Verlinde Category Ver_p

- The Verlinde category Ver_p is the semisimplification of $\text{Rep} \mathbb{K}[t]/(t^p)$.
- Simple objects: L_1, \ldots, L_{p-1}, images of J_1, \ldots, J_{p-1} (resp.). The indecomposable J_p goes to zero as $\dim J_p = p = 0$.

Tensor product rule ("truncated Clebsch-Gordan rule"): $L_n \otimes L_m = \min(n, m, p-n, p-m) \bigoplus_{i=1}^{\min(n,m)} L_{|n-m|+2i-1}$.

Ver_p is a counter-example to Deligne's theorem in positive characteristic ($p \neq 2, 3$) and plays a role in generalizing it.

Representation theory of an affine group scheme G over Ver_p is controlled by underlying ordinary group scheme G_0 and its Lie algebra $\text{Lie}(G)$.

5/20
The Verlinde Category Ver_p

- The Verlinde category Ver_p is the semisimplification of $\text{Rep} \; \mathbb{K}[t]/(t^p)$.
- Simple objects: L_1, \ldots, L_{p-1}, images of J_1, \ldots, J_{p-1} (resp.). The indecomposable J_p goes to zero as $\dim J_p = p = 0$.
- Tensor product rule (”truncated Clebsch-Gordan rule”):

$$L_n \otimes L_m = \bigoplus_{i=1}^{\min(n,m,p-n,p-m)} L_{|n-m|+2i-1}.$$
The Verlinde Category Ver_p

- The Verlinde category Ver_p is the semisimplification of $\text{Rep} \mathbb{K}[t]/(t^p)$.
- Simple objects: L_1, \ldots, L_{p-1}, images of J_1, \ldots, J_{p-1} (resp.).
 The indecomposable J_p goes to zero as $\dim J_p = p = 0$.
- Tensor product rule ("truncated Clebsch-Gordan rule"):

$$L_n \otimes L_m = \bigoplus_{i=1}^{\min(n,m,p-n,p-m)} L_{|n-m|+2i-1}.$$

- Ver_p is a counter-example to Deligne's theorem in positive characteristic ($p \neq 2, 3$) and plays a role in generalizing it.
The Verlinde Category Ver_p

- The Verlinde category Ver_p is the semisimplification of $\text{Rep} \mathbb{K}[t]/(t^p)$.
- Simple objects: L_1, \ldots, L_{p-1}, images of J_1, \ldots, J_{p-1} (resp.). The indecomposable J_p goes to zero as $\dim J_p = p = 0$.
- Tensor product rule ("truncated Clebsch-Gordan rule"):
 $$L_n \otimes L_m = \bigoplus_{i=1}^{\min(n,m,p-n,p-m)} L_{|n-m|+2i-1}.$$
- Ver_p is a counter-example to Deligne’s theorem in positive characteristic ($p \neq 2, 3$) and plays a role in generalizing it.
- Representation theory of an affine group scheme G over Ver_p is controlled by underlying ordinary group scheme G_0 and its Lie algebra $\text{Lie}(G)$.

Proposition: sVec_K is a full subcategory of Ver_p if $p > 2$.

Proof.

If $J_{p-1} \in \text{Rep } K[t]/(t^p)$ has basis $\{v, t.v, \ldots, t^{p-2}.v\}$, then can show $J_{p-1} \otimes J_{p-1} = J_1 \oplus (p-2)J_p$ with J_1 spanned by

$$w = v \otimes (t^{p-2}.v) - t.v \otimes (t^{p-3}.v) + \cdots - (t^{p-2}.v) \otimes v.$$

Because p is odd, $c_{J_{p-1}, J_{p-1}}(w) = -w$. After semisimplification, we get $L_{p-1} \otimes L_{p-1} = L_1$ and $c_{L_{p-1}, L_{p-1}}$ is multiplication by -1. Hence L_{p-1} tensor generates sVec_K. \qed
1. Any commutative algebra, Lie theory, or algebraic geometry done in Ver_p is new but must also generalize known (super) phenomena.
1. Any commutative algebra, Lie theory, or algebraic geometry done in Ver_p is new but must also generalize known (super) phenomena.

2. Semisimplification functor being symmetric monoidal (not exact!) is a window from ordinary rep theory to super and Ver_p rep theory.
Examples

1. If \mathfrak{g} is a Lie algebra in \mathcal{C} and V a module over \mathfrak{g}, then $\overline{\mathfrak{g}}$ is a Lie algebra in $\overline{\mathcal{C}}$ and \overline{V} is a module over $\overline{\mathfrak{g}}$.
Examples

1. If \(g \) is a Lie algebra in \(C \) and \(V \) a module over \(g \), then \(\overline{g} \) is a Lie algebra in \(\overline{C} \) and \(\overline{V} \) is a module over \(\overline{g} \).

2. \(\overline{\mathfrak{gl}(X)} = \mathfrak{gl}(\overline{X}), \overline{\mathfrak{sl}(X)} = \mathfrak{sl}(\overline{X}), \overline{\mathfrak{sp}(X, \beta)} = \mathfrak{sp}(\overline{X}, \overline{\beta}), \overline{\mathfrak{o}(X, \beta)} = \mathfrak{o}(\overline{X}, \overline{\beta}) \)
Examples

1. If \mathfrak{g} is a Lie algebra in \mathcal{C} and V a module over \mathfrak{g}, then $\overline{\mathfrak{g}}$ is a Lie algebra in $\overline{\mathcal{C}}$ and \overline{V} is a module over $\overline{\mathfrak{g}}$.

2. $\overline{\mathfrak{gl}(X)} = \mathfrak{gl}(\overline{X})$, $\overline{\mathfrak{sl}(X)} = \mathfrak{sl}(\overline{X})$, $\overline{\mathfrak{sp}(X, \beta)} = \mathfrak{sp}(\overline{X}, \overline{\beta})$, $\overline{\mathfrak{o}(X, \beta)} = \mathfrak{o}(\overline{X}, \overline{\beta})$

3. If \mathfrak{g} has non-degenerate Killing form, then so does $\overline{\mathfrak{g}}$, meaning it is the direct sum of simple Lie algebras. This lets us construct simple Lie algebras (for instance, in Ver_p).
Examples

1. If \mathfrak{g} is a Lie algebra in \mathcal{C} and V a module over \mathfrak{g}, then \mathcal{g} is a Lie algebra in \mathcal{C} and \mathcal{V} is a module over \mathfrak{g}.

2. $\mathfrak{gl}(X) = \mathfrak{gl}(\overline{X})$, $\mathfrak{sl}(X) = \mathfrak{sl}(\overline{X})$, $\mathfrak{sp}(X, \beta) = \mathfrak{sp}(\overline{X}, \overline{\beta})$, $\mathfrak{o}(X, \beta) = \mathfrak{o}(\overline{X}, \overline{\beta})$

3. If \mathfrak{g} has non-degenerate Killing form, then so does \mathcal{g}, meaning it is the direct sum of simple Lie algebras. This lets us construct simple Lie algebras (for instance, in Ver_p).

4. Semisimplification is not always PBW. Consider free Lie algebra in characteristic 3 on generators x, y modulo elements of degree 4, equipped with derivation d given by $d(x) = y, d(y) = 0$. As a Lie algebra in $\text{Rep} \mathbb{K}[t]/(t^3)$ it semisimplifies to a “Lie superalgebra” spanned by $\{z, [z, z], [z, [z, z]]\}$.
Example: \mathfrak{gl}_6

- Consider \mathfrak{gl}_6 in characteristic 3 with usual basis e_{ij}.
Example: \mathfrak{gl}_6

- Consider \mathfrak{gl}_6 in characteristic 3 with usual basis e_{ij}.
- Since

$$e_{56}^3 = 0 \implies (\mathrm{ad} e_{56})^3 = 0$$

$(\mathfrak{gl}_6, \mathrm{ad} e_{56})$ is a Lie algebra in Rep α_3.

\[\begin{pmatrix} \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \end{pmatrix} \]

- Therefore, its semisimplification is $\mathfrak{gl}(4|1) = 16L_1 \oplus 8L_2 \oplus L_1$.

\[9/20\]
Example: \(\mathfrak{gl}_6 \)

- Consider \(\mathfrak{gl}_6 \) in characteristic 3 with usual basis \(e_{ij} \).
- Since

\[
e_{56}^3 = 0 \implies (ad e_{56})^3 = 0
\]

(\(\mathfrak{gl}_6, ad e_{56} \)) is a Lie algebra in \(\text{Rep} \alpha_3 \).
- It decomposes as \(\mathfrak{gl}_6 = 16J_1 \oplus 8J_2 \oplus (J_1 \oplus J_3) \):
Example: \(\mathfrak{gl}_6\)

- Consider \(\mathfrak{gl}_6\) in characteristic 3 with usual basis \(e_{ij}\).
- Since
 \[
e_{56}^3 = 0 \implies (\text{ad } e_{56})^3 = 0\]
 \((\mathfrak{gl}_6, \text{ad } e_{56})\) is a Lie algebra in \(\text{Rep } \alpha_3\).
- It decomposes as \(\mathfrak{gl}_6 = 16J_1 \oplus 8J_2 \oplus (J_1 \oplus J_3)\):

\[
\begin{bmatrix}
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
\end{bmatrix}
\]

- Therefore, its semisimplification is \(\mathfrak{gl}(4|1) = 16L_1 \oplus 8L_2 \oplus L_1\).
In [Eld06; CE07b; CE07a; Eld07], Elduque and Cunha constructed new exceptional simple Lie superalgebras (in characteristic 3)
The Elduque and Cunha Lie Superalgebras

- In [Eld06; CE07b; CE07a; Eld07], Elduque and Cunha constructed new exceptional simple Lie superalgebras (in characteristic 3)
- Constructed using the *Elduque Supermagic Square*, a super analog of the *Freudenthal Magic Square*
The Elduque and Cunha Lie Superalgebras

- In [Eld06; CE07b; CE07a; Eld07], Elduque and Cunha constructed new exceptional simple Lie superalgebras (in characteristic 3)
- Constructed using the *Elduque Supermagic Square*, a super analog of the *Freudenthal Magic Square*
- Associates a Lie superalgebra to two unital composition algebras.
The Elduque and Cunha Lie Superalgebras

- In [Eld06; CE07b; CE07a; Eld07], Elduque and Cunha constructed new exceptional simple Lie superalgebras (in characteristic 3)
- Constructed using the *Elduque Supermagic Square*, a super analog of the *Freudenthal Magic Square*
- Associates a Lie superalgebra to two unital composition algebras.
- We saw several of these in the previous talk and saw how semisimplification plays a role in their construction at a conceptual level. Will present an alternative construction here.
Theorem (K). These Lie superalgebras can be constructed by semisimplifying an exceptional Lie algebra in characteristic 3 equipped with a nilpotent derivation of degree at most 3.
The setup: \(A \in \text{Mat}_n(\mathbb{Z}) \) such that diagonal entries are either 2 or 0; if \(a_{ii} = 2 \), declare \(i \) to be an even index, if \(a_{ii} = 0 \), declare \(i \) to be an odd index. Define the Lie superalgebra \(\tilde{g}(A) \) over \(\mathbb{K} \) to be the free Lie superalgebra on generators \(\{e_i, f_i, h_i\}_{1 \leq i \leq n} \) subject to the relations:

\[
[e_i, f_j] = \delta_{ij} h_i; \quad [h, e_j] = a_{ij} e_j; \quad [h, f_j] = -a_{ij} f_j; \quad [h_i, h_j] = 0,
\]

and let \(g(A) \) be \(\tilde{g}(A)/I \), where \(I \) is the maximal ideal trivially intersecting \(h = \mathbb{K} h_1 \oplus \cdots \oplus \mathbb{K} h_n \).
The setup: \(A \in \text{Mat}_n(\mathbb{Z}) \) such that diagonal entries are either 2 or 0; if \(a_{ii} = 2 \), declare \(i \) to be an even index, if \(a_{ii} = 0 \), declare \(i \) to be an odd index. Define the Lie superalgebra \(\tilde{g}(A) \) over \(\mathbb{K} \) to be the free Lie superalgebra on generators \(\{ e_i, f_i, h_i \}_{1 \leq i \leq n} \) subject to the relations:

\[
[e_i, f_j] = \delta_{ij} h_i; \quad [h, e_j] = a_{ij} e_j; \quad [h, f_j] = -a_{ij} f_j; \quad [h_i, h_j] = 0,
\]

and let \(g(A) \) be \(\tilde{g}(A)/I \), where \(I \) is the maximal ideal trivially intersecting \(\mathfrak{h} = \mathbb{K} h_1 \oplus \cdots \oplus \mathbb{K} h_n \).

The Elduque and Cunha Lie superalgebras are of this form (or “related”).
The 133-dimensional simple exceptional Lie algebra \mathfrak{e}_7 can be written $\mathfrak{e}_7 = g(\hat{A})$, where

$$
\hat{A} = \begin{bmatrix}
2 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 2 & 0 & -1 & 0 & 0 & 0 & 0 \\
-1 & 0 & 2 & -1 & 0 & 0 & 0 & 0 \\
0 & -1 & -1 & 2 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 2 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 2 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 & 2
\end{bmatrix}.
$$

The generator e_7 is ad-nilpotent of degree 3, so can view \mathfrak{e}_7 as an Lie algebra in $\text{Rep} \alpha_3$ w.r.t. $\text{ad} \ e_7$.
Its semisimplification is a finite-dimensional simple exceptional Eldque and Cunha Lie superalgebra $g(A)$ of superdimension $(66|32)$, where

$$A = \begin{bmatrix}
2 & 0 & -1 & 0 & 0 & 0 & 0 \\
0 & 2 & 0 & -1 & 0 & 0 & 0 \\
-1 & 0 & 2 & -1 & 0 & 0 & 0 \\
0 & -1 & -1 & 2 & -1 & 0 & 0 \\
0 & 0 & 0 & -1 & 2 & -1 & 0 \\
0 & 0 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 0
\end{bmatrix}.$$

Idea: the copy of J_2 spanned by e_6 and $[e_6, e_7]$ in e_7 became an odd generator (resp. f) in the semisimplification. Demonstration.
• Can do this more generally by adding commuting Chevalley generators. For instance, semisimplifying e_7 with respect to $e_1 + e_7$ gives another Elduque and Cunha Lie superalgebra. We can get most of them this way by looking at the right Cartan matrix and comparing dimensions.

• A few of them, however, cannot be determined by looking at Cartan matrix alone; these must be manually determined. For instance, there is the Elduque Lie superalgebra in characteristic 5. This can be constructed by semisimplifying e_8 with respect to $e_2 + e_3 + e_4$.

• If e and e' lie in the same nilpotent orbit, then the semisimplifications of $g(A)$ w.r.t. e and e' are isomorphic. This gives us large class of realizations (next slide).
• Can do this more generally by adding commuting Chevalley generators. For instance, semisimplifying e_7 with respect to $e_1 + e_7$ gives another Elduque and Cunha Lie superalgebra. We can get most of them this way by looking at the right Cartan matrix and comparing dimensions.

• A few of them, however, cannot be determined by looking at Cartan matrix alone; these must be manually determined. For instance, there is the Elduque Lie superalgebra in characteristic 5. This can be constructed by semisimplifying e_8 with respect to $e_2 + e_3 + e_4$.
• Can do this more generally by adding commuting Chevalley generators. For instance, semisimplifying e_7 with respect to $e_1 + e_7$ gives another Elduque and Cunha Lie superalgebra. We can get most of them this way by looking at the right Cartan matrix and comparing dimensions.

• A few of them, however, cannot be determined by looking at Cartan matrix alone; these must be manually determined. For instance, there is the Elduque Lie superalgebra in characteristic 5. This can be constructed by semisimplifying e_8 with respect to $e_2 + e_3 + e_4$.

• If e and e' lie in the same nilpotent orbit, then the semisimplifications of $g(A)$ w.r.t. e and e' are isomorphic. This gives us large class of realizations (next slide).
Here are some examples of legal swaps:
Here are some examples of legal swaps:

Here are some examples of illegal swaps:
Summary of Results

<table>
<thead>
<tr>
<th>Lie algebra</th>
<th>Nilpotent element</th>
<th>Lie superalgebra</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathfrak{b}_3</td>
<td>e_1, e_2</td>
<td>$\mathfrak{br}(2;3)$</td>
</tr>
<tr>
<td>\mathfrak{f}_4</td>
<td>e_1</td>
<td>see (⋆) below</td>
</tr>
<tr>
<td>\mathfrak{f}_4</td>
<td>e_4</td>
<td>$\mathfrak{g}(1,6)$</td>
</tr>
<tr>
<td>\mathfrak{f}_4</td>
<td>$e_1 + e_4$</td>
<td>see (⋆) below</td>
</tr>
<tr>
<td>$\mathfrak{e}_6^{(1)}$</td>
<td>e_1, e_2, e_6</td>
<td>$\mathfrak{g}(2,6)^{(1)}$</td>
</tr>
<tr>
<td>$\mathfrak{e}_6^{(1)}$</td>
<td>$e_1 + e_2, e_2 + e_6, e_1 + e_6$</td>
<td>$\mathfrak{g}(3,3)^{(1)}$</td>
</tr>
<tr>
<td>$\mathfrak{e}_6^{(1)}$</td>
<td>$e_1 + e_2 + e_6$</td>
<td>$\mathfrak{g}(2,3)^{(1)}$</td>
</tr>
<tr>
<td>\mathfrak{e}_7</td>
<td>e_1, e_2, e_7</td>
<td>$\mathfrak{g}(4,6)$</td>
</tr>
<tr>
<td>\mathfrak{e}_7</td>
<td>$e_1 + e_2, e_2 + e_7, e_1 + e_7$</td>
<td>$\mathfrak{f}(5;3)$</td>
</tr>
<tr>
<td>\mathfrak{e}_7</td>
<td>$e_1 + e_2 + e_7$</td>
<td>$\mathfrak{g}(4,3)$</td>
</tr>
<tr>
<td>\mathfrak{e}_7</td>
<td>$e_2 + e_5 + e_7$</td>
<td>\mathfrak{f}_4; see (★★) below</td>
</tr>
<tr>
<td>\mathfrak{e}_7</td>
<td>$e_1 + e_2 + e_5 + e_7$</td>
<td>$\mathfrak{g}(1,6)$</td>
</tr>
<tr>
<td>\mathfrak{e}_8</td>
<td>e_1, e_2, e_8</td>
<td>$\mathfrak{g}(8,6)$</td>
</tr>
<tr>
<td>\mathfrak{e}_8</td>
<td>$e_1 + e_2, e_2 + e_8, e_1 + e_8$</td>
<td>$\mathfrak{g}(6,6)$</td>
</tr>
<tr>
<td>\mathfrak{e}_8</td>
<td>$e_1 + e_2 + e_8$</td>
<td>$\mathfrak{g}(8,3)$</td>
</tr>
<tr>
<td>\mathfrak{e}_8</td>
<td>$e_1 + e_2 + e_6 + e_8$</td>
<td>$\mathfrak{g}(3,6)$</td>
</tr>
</tbody>
</table>
Follow-Up Problems

- Which nilpotent derivations give the same semisimplifications and why?
Follow-Up Problems

- Which nilpotent derivations give the same semisimplifications and why?
- Study the representation theory of these exceptional Lie superalgebras by semisimplifying representations of the exceptional Lie algebras they come from.
Follow-Up Problems

- Which nilpotent derivations give the same semisimplifications and why?
- Study the representation theory of these exceptional Lie superalgebras by semisimplifying representations of the exceptional Lie algebras they come from.
- What is the notion of a Kac-Moody Lie algebra in the Verlinde category? Given such a notion, how does it relate to semisimplifying a Kac-Moody Lie algebra in $\text{Rep} \, \alpha_p$?
Follow-Up Problems

- Which nilpotent derivations give the same semisimplifications and why?
- Study the representation theory of these exceptional Lie superalgebras by semisimplifying representations of the exceptional Lie algebras they come from.
- What is the notion of a Kac-Moody Lie algebra in the Verlinde category? Given such a notion, how does it relate to semisimplifying a Kac-Moody Lie algebra in $\text{Rep} \alpha_p$?
- What other simple Lie superalgebras can be obtained this way? What about simple Lie algebras in Ver_p?
Follow-Up Problems

- Which nilpotent derivations give the same semisimplifications and why?
- Study the representation theory of these exceptional Lie superalgebras by semisimplifying representations of the exceptional Lie algebras they come from.
- What is the notion of a Kac-Moody Lie algebra in the Verlinde category? Given such a notion, how does it relate to semisimplifying a Kac-Moody Lie algebra in \(\text{Rep} \alpha_p \)?
- What other simple Lie superalgebras can be obtained this way? What about simple Lie algebras in \(\text{Ver}_p \)?
- Semisimplify other algebraic objects (like distribution algebras of affine group schemes). What happens?
Some Open Problems

- Classification of simple algebraic groups and Lie algebras in Ver_p

- Notions of reductive groups and root systems in Ver_p, and associated representation theory (some progress made for $\text{GL}(X)$, minor progress for $\text{O}(X,\beta)$ and $\text{Sp}(X,\beta)$).

- Finite-generation of cohomology of finite group schemes for Ver_p in characteristic p.

- Polynomial Functors for STCs.

- Deligne's Theorem analog in characteristic p.

- More generally: what theorems that extend from vector spaces to supervector spaces extend to the Verlinde setting? What new things do we get along the way?
Some Open Problems

- Classification of simple algebraic groups and Lie algebras in Ver_p
- Notions of reductive groups and root systems in Ver_p, and associated representation theory (some progress made for $GL(X)$, minor progress for $O(X, \beta)$ and $Sp(X, \beta)$)

Finite-generation of cohomology of finite group schemes for Ver_p in characteristic p

Polynomial Functors for STCs

Deligne's Theorem analog in characteristic p

More generally: what theorems that extend from vector spaces to supervector spaces extend to the Verlinde setting? What new things do we get along the way?
Some Open Problems

- Classification of simple algebraic groups and Lie algebras in Ver_p
- Notions of reductive groups and root systems in Ver_p, and associated representation theory (some progress made for $\text{GL}(X)$, minor progress for $\text{O}(X, \beta)$ and $\text{Sp}(X, \beta)$)
- Finite-generation of cohomology of finite group schemes for Ver_p in characteristic p
Some Open Problems

- Classification of simple algebraic groups and Lie algebras in Ver_p
- Notions of reductive groups and root systems in Ver_p, and associated representation theory (some progress made for $\text{GL}(X)$, minor progress for $\text{O}(X, \beta)$ and $\text{Sp}(X, \beta)$)
- Finite-generation of cohomology of finite group schemes for Ver_p in characteristic p
- Polynomial Functors for STCs
Some Open Problems

- Classification of simple algebraic groups and Lie algebras in Ver_{p}
- Notions of reductive groups and root systems in Ver_{p}, and associated representation theory (some progress made for $GL(X)$, minor progress for $O(X, \beta)$ and $Sp(X, \beta)$)
- Finite-generation of cohomology of finite group schemes for Ver_{p} in characteristic p
- Polynomial Functors for STCs
- Deligne’s Theorem analog in characteristic p
Some Open Problems

- Classification of simple algebraic groups and Lie algebras in Ver_p
- Notions of reductive groups and root systems in Ver_p, and associated representation theory (some progress made for $\text{GL}(X)$, minor progress for $\text{O}(X, \beta)$ and $\text{Sp}(X, \beta)$)
- Finite-generation of cohomology of finite group schemes for Ver_p in characteristic p
- Polynomial Functors for STCs
- Deligne’s Theorem analog in characteristic p
- More generally: what theorems that extend from vector spaces to supervector spaces extend to the Verlinde setting? What new things do we get along the way?
References

