The Delannoy Cateyory
Noah Snyder
Indiana University
Toint with Harman-Snowden
Slides at nsnyder1. pages.iu.edu

1. Background

2. Structural results Hs
3. Delannoy path model
4. Circle version

HSS The Circular Delannoy (ategay

Review
$G \frac{\text { Oligomorinic }}{\text { Group }}$ \& μ
measure on $\widehat{\sigma}$-sets

$\operatorname{Perm}(G, M)$ Category of Permutation reps smooth
$A(G)$-mols $\left(\begin{array}{c}K_{\text {drown! }} \\ \text { Envelope }\end{array}\right] \begin{aligned} & \text { Requires } M \\ & \text { to be Regular }\end{aligned}$
$\operatorname{Rep}(6, m)$

The Group

$$
G=A_{u+}(\mathbb{R},<) \begin{aligned}
& \text { Pressures }<\text { ally! } \\
& \text { Not ap. }
\end{aligned}
$$

Or, if you prefer, $\operatorname{Aut}(Q,<)$
Praise Limit of finite ordered sets

The \widehat{G}-sets
Every transitive beset is isomorphic to

$$
\mathbb{R}^{(n)}:=\text { Unordered distinct n-Tuples }
$$

stabilizer
Every open subgroup is $G(a)$ for $a \in \mathbb{R}^{n}$

Every Transitive $\hat{\sigma}$-set is isomorphic to $I_{1}^{\left(n_{1}\right)} \times I_{2}^{\left(n_{2}\right)} \times \ldots \times I_{k}^{\left(n_{k}\right)}$

Ex
 disjoint union of three Transitive $\hat{6}$ sets

The Measure
Tum (Harman-Snowden) There are exactly four measures for G
Ow \vec{M}. Euler characteristic on \mathbb{R} schapiakevino

- Euler characteristic on compactifications of \mathbb{R} by adding $+\infty,-\infty$, or both
\boldsymbol{r}
poorly be havel

Ex

$$
\mu(x)={ }^{V} E^{E}-1^{F}=1
$$

Ex

Ex $M\left(I_{1}^{\left(n_{1}\right)} \times \ldots \times I_{k}^{\left(n_{k}\right)}\right)=(-1)^{n_{1}+\ldots+n_{k}} \neq 0$ reqular

Structure of $\mathbb{R}^{(1)}=\mathbb{R}$
$\operatorname{Hom}_{\text {perm }}(\mathbb{R}, \mathbb{R})$ is G-invariant Schwartz fuss.
Basis $\mathbb{1}_{x<y}, \mathbb{1}_{x=y}, \mathbb{1}_{x>y}$
Compose $f \circ g=\int_{\mathbb{R}} f(x, y) g(y, z) d y^{f^{\text {uses } M}}$

Karoubian Description
Pep, Vorsamim: $\mathbb{1}, \mathbb{1}_{x \leq y}, \mathbb{1}_{x \geqslant y}$

$$
\mathbb{R}^{(i)} \cong \mathbb{1} \oplus L \cdot \oplus L_{0}
$$

$\operatorname{Rep}(G, \mu)$ description
$\varphi(\mathbb{R}) \leftarrow$ Schwartz functions
Lo Submodule gen by chat, functions of \longleftrightarrow
(Left continuous finitay functions)
${ }^{\text {Lo }}$ Submodule gen by char functions of \longrightarrow
$\mathbb{1}^{1}$ abmodule of constant functions

Novel Properties (HS)

- Doesn't come from (super)yroups or from Deligne interpolation.
- Semisimple in all characteristics
- In characteristic p it's the first example of a semisimple pre-Tannakian cat that does not have finite grow th.

Questions

- Simple objects?
- Fusion rules?
- Branching rules?
- Schur functors?

1. Background
 and Tensor Cateyonics
2. Structural results $\mathrm{H}_{5 S}$
3. Delannoy path model
4. Circle version]HSS The Circular $\begin{aligned} & \text { Delannoy Catenary }\end{aligned}$

Simple Objects $C\left(\mathbb{R}^{(n)}\right) \underset{\rightarrow}{\longrightarrow} C\left(\mathbb{R}^{(n-1)}\right)^{\text {join }{ }^{\text {Kernel }} \text { is the }} \begin{gathered}\text { "new }+ \text { af" } \\ \text { Multiplicity Free! }\end{gathered}$

Goal: Decompose the "new stuff" into Simple objects.

Def A weight is a word in $\{0,0\}$
Def A half-open interval has type

- if it is of the form (, J

0 if it is of the form $[$,)
A tuple $I=\left(I_{1}, \ldots, I_{n}\right)$ of half-ren is ordered if $I_{1}<I_{2}<\ldots<I_{n}$ and has type the word of types of I_{k}

Def $L e+L_{\lambda}$ be the \underline{G}-submodule of $\varphi\left(\mathbb{R}^{(n)}\right)$ generated by the $\mathbb{1}_{I}$ where I is an ordered tuple of half-open intervals of type λ.

$$
\mathbb{1}_{I}\left(x_{1}, \ldots, x_{n}\right)=\left\{\begin{array}{l}
1 \text { if } x_{i} \in I_{i} \\
0 \text { else }
\end{array}\right.
$$

Tho

- L_{λ} is simple
- $L_{\lambda} \cong L_{\mu}$ iff $\lambda=M$
- Every simple obj is isom. to some L_{λ}
- $J+\operatorname{ker}\left(\circlearrowright\left(\mathbb{R}^{n}\right) \underset{\rightarrow}{\rightarrow} C\left(\mathbb{R}^{n-1}\right)\right) \underset{\lambda: \operatorname{len}(\lambda)=n}{\underset{\bigoplus}{\oplus}} L_{\lambda}$

Fusion Rules
Thy Fusion rules given by "ruffle product"

$$
\begin{aligned}
& L_{0} \otimes L_{00} \cong L_{0.0} \oplus L_{0.0} \oplus L_{000} \\
& \underbrace{\oplus L_{00} \oplus}_{0 \ell \cdot \text { collide }} \underbrace{L_{00} \oplus L_{0 .} \oplus L_{0}}_{0 \& 0 \text { collide }}
\end{aligned}
$$

Other Structure

$$
\begin{aligned}
\operatorname{Res}_{G \times 6}^{G}\left(L_{l_{0,0,11}}\right) \cong & L_{0.0} \otimes \mathbb{1} \oplus L_{0 .} \otimes \mathbb{I} \\
& L_{0.0} \otimes L_{0} \oplus L_{0} \otimes L_{0} \oplus \\
& \oplus L_{0} \otimes L_{0.0} \oplus \mathbb{1} \otimes L_{00} \\
& \oplus \mathbb{1} \otimes L_{0.0}
\end{aligned}
$$

Grothendick Ring
K has basis a_{λ}
Hop algebra via:

$$
\begin{aligned}
\text { res: } K & \rightarrow K \otimes K \\
\operatorname{dim}: K & \longrightarrow \mathbb{Z} \\
a_{\lambda} & \mapsto(-1)^{\operatorname{len}(x)}
\end{aligned}
$$

Lyndon Wad
$\mathbb{Q} \otimes K$ is a polynomial algebra in $a_{\lambda} \downarrow$

$$
\frac{\varphi\left(\mathbb{R}^{(n)}\right) \cong \underset{\lambda}{\oplus} L_{\lambda}^{\left(C_{\lambda(\lambda)}^{n}\right)}}{L_{000}^{*} \cong L_{000}}
$$

A dams operations: $\quad \psi_{i}\left(a_{\lambda}^{r}\right)^{\text {clane of }}=a_{\lambda}$ Schur Fancters: $S_{\mu}(V) \cong \bigoplus_{i \geqslant 0}\left(\Lambda^{i} v\right)^{\text {c(m,i) }}$ $E_{x} \operatorname{sim}^{2}(v)=\Lambda^{2} v \oplus v$

1. Background
 and Tensor Cateyonics
2. Structural results $\mathrm{H}_{5 S}$
3. Delannoy path model
4. Circle version]HSS The Circular $\begin{aligned} & \text { Delannoy Catenary }\end{aligned}$

$$
\operatorname{Hom}\left(\varphi\left(\mathbb{R}^{(n)}\right), \check{\left(\mathbb{R}^{(m)}\right)}\right)
$$

Basis indexed by n-by-m Delannoy Paths

$$
\bigoplus_{3-1-x-2} \rightarrow \mathbb{1}_{x_{1}<x_{2}=y_{1}<y_{2}<x_{2}}
$$

Composition: $p \circ q=\sum_{\gamma}(-1)^{m} r$
Where γ is a 3 -dim Delannoy path which projects down to r, q, and r

Can you fully describe Perm (G, M) with Path?

- $\mathbb{R}^{(n)} \otimes \mathbb{R}^{(m)} \simeq \bigoplus_{n-b y-m p a t h \gamma} \mathbb{R}^{\operatorname{len}(\gamma)}$
- Associator is easy!
- $f \otimes g$ involves 4-dimensional paths (): foid, id $\otimes 9$ each only use 3 -dim paths

1. Background
 and Tensor Cateyonics
2. Structural results $\mathrm{H}_{5 S}$
3. Delannoy path model
4. Circle version]HSS The Circular $\begin{aligned} & \text { Delannoy Catenary }\end{aligned}$

Circular Delannoy
Ant $\left(S^{\prime}\right.$, cyclic ordering)
M again is Euler char.

$$
M(G)=0 \text { but } \mu(G(n))=(-1)^{n} \neq 0
$$

Quasi-regular so $\operatorname{Rep}(G, M)$ nen-s.s.

Main Results

- Classify simples, projectives, injectives
- Tame, so classify indecomposables.
- Compute branching rules
- Semisimplification
- Delannoy loop model

Don't Know Fusion rules, char $(k) \neq 0$.

