2024 Symmetric Tensor Categories and Representation Theory IPAM

Growth in tensor powers

Victor Ostrik

University of Oregon
vostrik@uoregon.edu

January 8-12
arxiv: 2107.02372, 2301.00885, 2301.09804 (jt with Kevin Coulembier, Pavel Etingof)

Reminder (from Daniel's talk):

Reminder (from Daniel's talk):

F - any field

Reminder (from Daniel's talk):

F - any field
Γ - any of the following:

- group or group scheme
- Lie algebra,
- semigroup,
- super group or super Lie algebra

Reminder (from Daniel's talk):

F - any field
「 - any of the following:

- group or group scheme
- Lie algebra,
- semigroup,
- super group or super Lie algebra
V - finite dimensional representation of Γ perhaps V is an object of a Tannakian category

Reminder (from Daniel's talk):

F - any field
「 - any of the following:

- group or group scheme
- Lie algebra,
- semigroup,
- super group or super Lie algebra
V - finite dimensional representation of Γ perhaps V is an object of a Tannakian category
$b_{n}(V)=$ number of indecomposable summands in $V^{\otimes n}$

Reminder (from Daniel's talk):

F - any field
「 - any of the following:

- group or group scheme
- Lie algebra,
- semigroup,
- super group or super Lie algebra
V - finite dimensional representation of Γ perhaps V is an object of a Tannakian category
$b_{n}(V)=$ number of indecomposable summands in $V^{\otimes n}$
Theorem (K. Coulembier, V. O., D. Tubbenhauer)
For any group Γ, field F, representation V we have

$$
\lim _{n \rightarrow \infty} \sqrt[n]{b_{n}(V)}=\operatorname{dim}(V)
$$

Reminder (from Daniel's talk):

F - any field
「 - any of the following:

- group or group scheme
- Lie algebra,
- semigroup,
- super group or super Lie algebra
V - finite dimensional representation of Γ perhaps V is an object of a Tannakian category
$b_{n}(V)=$ number of indecomposable summands in $V^{\otimes n}$

Theorem (K. Coulembier, V. O., D. Tubbenhauer)

For any group Γ, field F, representation V we have

$$
\lim _{n \rightarrow \infty} \sqrt[n]{b_{n}(V)}=\operatorname{dim}(V)
$$

Warning: counterexamples for comodules over Hopf algebras

Other counts: non-projective summands

Other counts: non-projective summands

D. Benson, P. Symonds: 「 finite, char $F=p>0$

Other counts: non-projective summands

D. Benson, P. Symonds: 「 finite, char $F=p>0$
$c_{n}(V)=$ total dimension of non-projective summands in $V^{\otimes n}$

Other counts: non-projective summands

D. Benson, P. Symonds: 「 finite, char $F=p>0$
$c_{n}(V)=$ total dimension of non-projective summands in $V^{\otimes n}$

$$
\gamma(V):=\lim _{n \rightarrow \infty} \sqrt[n]{c_{n}(V)}
$$

Other counts: non-projective summands

D. Benson, P. Symonds: 「 finite, char $F=p>0$
$c_{n}(V)=$ total dimension of non-projective summands in $V^{\otimes n}$

$$
\gamma(V):=\lim _{n \rightarrow \infty} \sqrt[n]{c_{n}(V)}
$$

- The limit exists! but difficult to compute...

Other counts: non-projective summands

D. Benson, P. Symonds: 「 finite, char $F=p>0$
$c_{n}(V)=$ total dimension of non-projective summands in $V^{\otimes n}$

$$
\gamma(V):=\lim _{n \rightarrow \infty} \sqrt[n]{c_{n}(V)}
$$

- The limit exists! but difficult to compute...
- $\gamma(V)$ is not necessarily an integer

Other counts: non-projective summands

D. Benson, P. Symonds: 「 finite, char $F=p>0$
$c_{n}(V)=$ total dimension of non-projective summands in $V^{\otimes n}$

$$
\gamma(V):=\lim _{n \rightarrow \infty} \sqrt[n]{c_{n}(V)}
$$

- The limit exists! but difficult to compute...
- $\gamma(V)$ is not necessarily an integer
- $0 \leq \gamma(V) \leq \operatorname{dim}(V), \gamma(V)=0 \Leftrightarrow V$ is projective

Other counts: non-projective summands

D. Benson, P. Symonds: 「 finite, char $F=p>0$
$c_{n}(V)=$ total dimension of non-projective summands in $V^{\otimes n}$

$$
\gamma(V):=\lim _{n \rightarrow \infty} \sqrt[n]{c_{n}(V)}
$$

- The limit exists! but difficult to compute...
- $\gamma(V)$ is not necessarily an integer
- $0 \leq \gamma(V) \leq \operatorname{dim}(V), \gamma(V)=0 \Leftrightarrow V$ is projective
- $\gamma(V)>0 \Rightarrow \gamma(V) \geq 1, \gamma(V)>1 \Rightarrow \gamma(V) \geq \sqrt{2}$

Other counts: non-projective summands

D. Benson, P. Symonds: 「 finite, char $F=p>0$
$c_{n}(V)=$ total dimension of non-projective summands in $V^{\otimes n}$

$$
\gamma(V):=\lim _{n \rightarrow \infty} \sqrt[n]{c_{n}(V)}
$$

- The limit exists! but difficult to compute...
- $\gamma(V)$ is not necessarily an integer
- $0 \leq \gamma(V) \leq \operatorname{dim}(V), \gamma(V)=0 \Leftrightarrow V$ is projective
- $\gamma(V)>0 \Rightarrow \gamma(V) \geq 1, \gamma(V)>1 \Rightarrow \gamma(V) \geq \sqrt{2}$
- Conjecture: $\gamma(V)$ is an algebraic integer

Other counts: non-projective summands

D. Benson, P . Symonds: Γ finite, char $F=p>0$
$c_{n}(V)=$ total dimension of non-projective summands in $V^{\otimes n}$

$$
\gamma(V):=\lim _{n \rightarrow \infty} \sqrt[n]{c_{n}(V)}
$$

- The limit exists! but difficult to compute...
- $\gamma(V)$ is not necessarily an integer
- $0 \leq \gamma(V) \leq \operatorname{dim}(V), \gamma(V)=0 \Leftrightarrow V$ is projective
- $\gamma(V)>0 \Rightarrow \gamma(V) \geq 1, \gamma(V)>1 \Rightarrow \gamma(V) \geq \sqrt{2}$
- Conjecture: $\gamma(V)$ is an algebraic integer
- $\gamma(V \oplus W) \neq \gamma(V)+\gamma(W)$ and $\gamma(V \otimes W) \neq \gamma(V) \gamma(W)$ in general

Other counts: non-projective summands

D. Benson, P . Symonds: Γ finite, char $F=p>0$
$c_{n}(V)=$ total dimension of non-projective summands in $V^{\otimes n}$

$$
\gamma(V):=\lim _{n \rightarrow \infty} \sqrt[n]{c_{n}(V)}
$$

- The limit exists! but difficult to compute...
- $\gamma(V)$ is not necessarily an integer
- $0 \leq \gamma(V) \leq \operatorname{dim}(V), \gamma(V)=0 \Leftrightarrow V$ is projective
- $\gamma(V)>0 \Rightarrow \gamma(V) \geq 1, \gamma(V)>1 \Rightarrow \gamma(V) \geq \sqrt{2}$
- Conjecture: $\gamma(V)$ is an algebraic integer
- $\gamma(V \oplus W) \neq \gamma(V)+\gamma(W)$ and $\gamma(V \otimes W) \neq \gamma(V) \gamma(W)$ in general
- can reduce to Γ elementary abelian

Other counts: non-projective summands

D. Benson, P . Symonds: Γ finite, char $F=p>0$
$c_{n}(V)=$ total dimension of non-projective summands in $V^{\otimes n}$

$$
\gamma(V):=\lim _{n \rightarrow \infty} \sqrt[n]{c_{n}(V)}
$$

- The limit exists! but difficult to compute...
- $\gamma(V)$ is not necessarily an integer
- $0 \leq \gamma(V) \leq \operatorname{dim}(V), \gamma(V)=0 \Leftrightarrow V$ is projective
- $\gamma(V)>0 \Rightarrow \gamma(V) \geq 1, \gamma(V)>1 \Rightarrow \gamma(V) \geq \sqrt{2}$
- Conjecture: $\gamma(V)$ is an algebraic integer
- $\gamma(\boldsymbol{V} \oplus \boldsymbol{W}) \neq \gamma(\boldsymbol{V})+\gamma(W)$ and $\gamma(\boldsymbol{V} \otimes \boldsymbol{W}) \neq \gamma(\boldsymbol{V}) \gamma(W)$ in general
- can reduce to Γ elementary abelian

Consider $c_{n}^{\prime}(V)=$ number of non-projective summands in $V^{\otimes n}$

Other counts: non-projective summands

D. Benson, P. Symonds: 「 finite, char $F=p>0$
$c_{n}(V)=$ total dimension of non-projective summands in $V^{\otimes n}$

$$
\gamma(V):=\lim _{n \rightarrow \infty} \sqrt[n]{c_{n}(V)}
$$

- The limit exists! but difficult to compute...
- $\gamma(V)$ is not necessarily an integer
- $0 \leq \gamma(V) \leq \operatorname{dim}(V), \gamma(V)=0 \Leftrightarrow V$ is projective
- $\gamma(V)>0 \Rightarrow \gamma(V) \geq 1, \gamma(V)>1 \Rightarrow \gamma(V) \geq \sqrt{2}$
- Conjecture: $\gamma(V)$ is an algebraic integer
- $\gamma(V \oplus W) \neq \gamma(V)+\gamma(W)$ and $\gamma(V \otimes W) \neq \gamma(V) \gamma(W)$ in general
- can reduce to Γ elementary abelian

Consider $c_{n}^{\prime}(V)=$ number of non-projective summands in $V^{\otimes n}$ and define $\gamma^{\prime}(V)=\lim _{n \rightarrow \infty} \sqrt[n]{c_{n}^{\prime}(V)}$

Other counts: non-projective summands

D. Benson, P. Symonds: 「 finite, char $F=p>0$
$c_{n}(V)=$ total dimension of non-projective summands in $V^{\otimes n}$

$$
\gamma(V):=\lim _{n \rightarrow \infty} \sqrt[n]{c_{n}(V)}
$$

- The limit exists! but difficult to compute...
- $\gamma(V)$ is not necessarily an integer
- $0 \leq \gamma(V) \leq \operatorname{dim}(V), \gamma(V)=0 \Leftrightarrow V$ is projective
- $\gamma(V)>0 \Rightarrow \gamma(V) \geq 1, \gamma(V)>1 \Rightarrow \gamma(V) \geq \sqrt{2}$
- Conjecture: $\gamma(V)$ is an algebraic integer
- $\gamma(V \oplus W) \neq \gamma(V)+\gamma(W)$ and $\gamma(V \otimes W) \neq \gamma(V) \gamma(W)$ in general
- can reduce to Γ elementary abelian

Consider $c_{n}^{\prime}(V)=$ number of non-projective summands in $V^{\otimes n}$ and define $\gamma^{\prime}(V)=\lim _{n \rightarrow \infty} \sqrt[n]{c_{n}^{\prime}(V)}$

- Open True/False question: is $\gamma(V)=\gamma^{\prime}(V)$ for all V ?

Example

Example

$\Gamma=\mathbb{Z} / 5 \mathbb{Z}, p=5$, representation: $1 \mapsto A, A^{5}=\mathrm{Id} \Leftrightarrow(A-\mathrm{Id})^{5}=0$

Example

$\Gamma=\mathbb{Z} / 5 \mathbb{Z}, p=5$, representation: $1 \mapsto A, A^{5}=\mathrm{Id} \Leftrightarrow(A-\mathrm{Id})^{5}=0$ Indecomposable representations: Jordan cells $J_{1}, J_{2}, J_{3}, J_{4}$, J_{5}

Example

$\Gamma=\mathbb{Z} / 5 \mathbb{Z}, p=5$, representation: $1 \mapsto A, A^{5}=\mathrm{Id} \Leftrightarrow(A-\mathrm{Id})^{5}=0$ Indecomposable representations: Jordan cells $J_{1}, J_{2}, J_{3}, J_{4}, J_{5}$
$J_{3}: 1 \mapsto\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)$

Example

$\Gamma=\mathbb{Z} / 5 \mathbb{Z}, p=5$, representation: $1 \mapsto A, A^{5}=\mathrm{Id} \Leftrightarrow(A-\mathrm{Id})^{5}=0$ Indecomposable representations: Jordan cells $J_{1}, J_{2}, J_{3}, J_{4}, J_{5}$
$J_{3}: 1 \mapsto\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)$
J_{1} is trivial and the only simple

Example

$\Gamma=\mathbb{Z} / 5 \mathbb{Z}, p=5$, representation: $1 \mapsto A, A^{5}=\mathrm{Id} \Leftrightarrow(A-\mathrm{Id})^{5}=0$ Indecomposable representations: Jordan cells $J_{1}, J_{2}, J_{3}, J_{4}, J_{5}$
$J_{3}: 1 \mapsto\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)$
J_{1} is trivial and the only simple J_{5} is the only projective

Example

$\Gamma=\mathbb{Z} / 5 \mathbb{Z}, p=5$, representation: $1 \mapsto A, A^{5}=\mathrm{Id} \Leftrightarrow(A-\mathrm{Id})^{5}=0$
Indecomposable representations: Jordan cells $J_{1}, J_{2}, J_{3}, J_{4}$, J_{5}
$J_{3}: 1 \mapsto\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)$
J_{1} is trivial and the only simple J_{5} is the only projective

Tensor products: $J_{1} \otimes J_{i}=J_{i}, J_{3} \otimes J_{3}=J_{1}+J_{3}+J_{5} J_{3} \otimes J_{5}=3 J_{5}$

Example

$\Gamma=\mathbb{Z} / 5 \mathbb{Z}, p=5$, representation: $1 \mapsto A, A^{5}=\mathrm{Id} \Leftrightarrow(A-\mathrm{Id})^{5}=0$
Indecomposable representations: Jordan cells $J_{1}, J_{2}, J_{3}, J_{4}$, J_{5}
$J_{3}: 1 \mapsto\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)$
J_{1} is trivial and the only simple J_{5} is the only projective

Tensor products: $J_{1} \otimes J_{i}=J_{i} J_{3} \otimes J_{3}=J_{1}+J_{3}+J_{5} J_{3} \otimes J_{5}=3 J_{5}$
Take $V=J_{3}$ and let $V^{\otimes n}=A_{n} J_{1}+B_{n} J_{3}+C_{n} J_{5}$

Example

$\Gamma=\mathbb{Z} / 5 \mathbb{Z}, p=5$, representation: $1 \mapsto A, A^{5}=\mathrm{Id} \Leftrightarrow(A-\mathrm{Id})^{5}=0$
Indecomposable representations: Jordan cells $J_{1}, J_{2}, J_{3}, J_{4}, J_{5}$
$J_{3}: 1 \mapsto\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)$
J_{1} is trivial and the only simple J_{5} is the only projective

Tensor products: $J_{1} \otimes J_{i}=J_{i} \quad J_{3} \otimes J_{3}=J_{1}+J_{3}+J_{5} J_{3} \otimes J_{5}=3 J_{5}$
Take $V=J_{3}$ and let $V^{\otimes n}=A_{n} J_{1}+B_{n} J_{3}+C_{n} J_{5}$
Then $A_{n+1}=B_{n}$ (so $A_{n}=B_{n-1}$) $B_{n+1}=A_{n}+B_{n} \quad C_{n+1}=B_{n}+3 C_{n}$

Example

$\Gamma=\mathbb{Z} / 5 \mathbb{Z}, p=5$, representation: $1 \mapsto A, A^{5}=\mathrm{Id} \Leftrightarrow(A-\mathrm{Id})^{5}=0$
Indecomposable representations: Jordan cells $J_{1}, J_{2}, J_{3}, J_{4}, J_{5}$
$J_{3}: 1 \mapsto\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)$
J_{1} is trivial and the only simple J_{5} is the only projective

Tensor products: $J_{1} \otimes J_{i}=J_{i} J_{3} \otimes J_{3}=J_{1}+J_{3}+J_{5} J_{3} \otimes J_{5}=3 J_{5}$
Take $V=J_{3}$ and let $V^{\otimes n}=A_{n} J_{1}+B_{n} J_{3}+C_{n} J_{5}$
Then $A_{n+1}=B_{n}$ (so $A_{n}=B_{n-1}$) $B_{n+1}=A_{n}+B_{n} \quad C_{n+1}=B_{n}+3 C_{n}$
Hence $B_{n+1}=B_{n-1}+B_{n}=F_{n}=c_{n}^{\prime}(V)$ (Fibonacci number)

Example

$\Gamma=\mathbb{Z} / 5 \mathbb{Z}, p=5$, representation: $1 \mapsto A, A^{5}=\mathrm{Id} \Leftrightarrow(A-\mathrm{Id})^{5}=0$ Indecomposable representations: Jordan cells $J_{1}, J_{2}, J_{3}, J_{4}, J_{5}$
$J_{3}: 1 \mapsto\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)$
J_{1} is trivial and the only simple J_{5} is the only projective

Tensor products: $J_{1} \otimes J_{i}=J_{i} J_{3} \otimes J_{3}=J_{1}+J_{3}+J_{5} J_{3} \otimes J_{5}=3 J_{5}$
Take $V=J_{3}$ and let $V^{\otimes n}=A_{n} J_{1}+B_{n} J_{3}+C_{n} J_{5}$
Then $A_{n+1}=B_{n}$ (so $A_{n}=B_{n-1}$) $B_{n+1}=A_{n}+B_{n} \quad C_{n+1}=B_{n}+3 C_{n}$
Hence $B_{n+1}=B_{n-1}+B_{n}=F_{n}=c_{n}^{\prime}(V)$ (Fibonacci number) and $c_{n}(V)=A_{n}+3 B_{n}=B_{n+2}+B_{n}$ (Lucas number)

Example

$\Gamma=\mathbb{Z} / 5 \mathbb{Z}, p=5$, representation: $1 \mapsto A, A^{5}=\mathrm{Id} \Leftrightarrow(A-\mathrm{Id})^{5}=0$ Indecomposable representations: Jordan cells $J_{1}, J_{2}, J_{3}, J_{4}, J_{5}$
$J_{3}: 1 \mapsto\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)$
J_{1} is trivial and the only simple J_{5} is the only projective

Tensor products: $J_{1} \otimes J_{i}=J_{i} J_{3} \otimes J_{3}=J_{1}+J_{3}+J_{5} J_{3} \otimes J_{5}=3 J_{5}$
Take $V=J_{3}$ and let $V^{\otimes n}=A_{n} J_{1}+B_{n} J_{3}+C_{n} J_{5}$
Then $A_{n+1}=B_{n}$ (so $A_{n}=B_{n-1}$) $B_{n+1}=A_{n}+B_{n} \quad C_{n+1}=B_{n}+3 C_{n}$
Hence $B_{n+1}=B_{n-1}+B_{n}=F_{n}=c_{n}^{\prime}(V)$ (Fibonacci number) and
$c_{n}(V)=A_{n}+3 B_{n}=B_{n+2}+B_{n}($ Lucas number $) \Rightarrow \gamma(V)=\frac{1+\sqrt{5}}{2}$

Example

$\Gamma=\mathbb{Z} / 5 \mathbb{Z}, p=5$, representation: $1 \mapsto A, A^{5}=\mathrm{Id} \Leftrightarrow(A-\mathrm{Id})^{5}=0$ Indecomposable representations: Jordan cells $J_{1}, J_{2}, J_{3}, J_{4}, J_{5}$
$J_{3}: 1 \mapsto\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)$
J_{1} is trivial and the only simple J_{5} is the only projective

Tensor products: $J_{1} \otimes J_{i}=J_{i} J_{3} \otimes J_{3}=J_{1}+J_{3}+J_{5} J_{3} \otimes J_{5}=3 J_{5}$
Take $V=J_{3}$ and let $V^{\otimes n}=A_{n} J_{1}+B_{n} J_{3}+C_{n} J_{5}$
Then $A_{n+1}=B_{n}$ (so $A_{n}=B_{n-1}$) $B_{n+1}=A_{n}+B_{n} \quad C_{n+1}=B_{n}+3 C_{n}$
Hence $B_{n+1}=B_{n-1}+B_{n}=F_{n}=c_{n}^{\prime}(V)$ (Fibonacci number) and
$c_{n}(V)=A_{n}+3 B_{n}=B_{n+2}+B_{n}($ Lucas number $) \Rightarrow \gamma(V)=\frac{1+\sqrt{5}}{2}=\delta(V)$

Example

$\Gamma=\mathbb{Z} / 5 \mathbb{Z}, p=5$, representation: $1 \mapsto A, A^{5}=\mathrm{Id} \Leftrightarrow(A-\mathrm{Id})^{5}=0$ Indecomposable representations: Jordan cells $J_{1}, J_{2}, J_{3}, J_{4}$, J_{5}
$J_{3}: 1 \mapsto\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)$
J_{1} is trivial and the only simple J_{5} is the only projective

Tensor products: $J_{1} \otimes J_{i}=J_{i} J_{3} \otimes J_{3}=J_{1}+J_{3}+J_{5} J_{3} \otimes J_{5}=3 J_{5}$
Take $V=J_{3}$ and let $V^{\otimes n}=A_{n} J_{1}+B_{n} J_{3}+C_{n} J_{5}$
Then $A_{n+1}=B_{n}$ (so $A_{n}=B_{n-1}$) $B_{n+1}=A_{n}+B_{n} \quad C_{n+1}=B_{n}+3 C_{n}$
Hence $B_{n+1}=B_{n-1}+B_{n}=F_{n}=c_{n}^{\prime}(V)$ (Fibonacci number) and $c_{n}(V)=A_{n}+3 B_{n}=B_{n+2}+B_{n}$ (Lucas number) $\Rightarrow \gamma(V)=\frac{1+\sqrt{5}}{2}=\delta(V)$

Exercise. Compute $\gamma\left(J_{2}\right)$ and $\gamma\left(J_{4}\right)$ (of course $\gamma\left(J_{1}\right)=1$ and $\gamma\left(J_{5}\right)=0$)

Other counts: non-negligible summands

Other counts: non-negligible summands

Assume F is algebraically closed, char $F=p \geq 0, V^{\otimes n}=\bigoplus_{i=1}^{b_{n}(V)} W_{i}$

Other counts: non-negligible summands

Assume F is algebraically closed, char $F=p \geq 0, V^{\otimes n}=\bigoplus_{i=1}^{b_{n}(V)} W_{i}$ $d_{n}(V)=$ total number of summands W_{i} in $V^{\otimes n}$ with $\operatorname{dim}\left(W_{i}\right) \neq 0 \in F$

Other counts: non-negligible summands

Assume F is algebraically closed, char $F=p \geq 0, V^{\otimes n}=\bigoplus_{i=1}^{b_{n}(V)} W_{i}$ $d_{n}(V)=$ total number of summands W_{i} in $V^{\otimes n}$ with $\operatorname{dim}\left(W_{i}\right) \neq 0 \in F$
Observation: $d_{n+m}(V) \geq d_{n}(V) d_{m}(V)$ and $d_{n}(V) \leq \operatorname{dim}(V)^{n}$

Other counts: non-negligible summands

Assume F is algebraically closed, char $F=p \geq 0, V^{\otimes n}=\bigoplus_{i=1}^{b_{n}(V)} W_{i}$ $d_{n}(V)=$ total number of summands W_{i} in $V^{\otimes n}$ with $\operatorname{dim}\left(W_{i}\right) \neq 0 \in F$
Observation: $d_{n+m}(V) \geq d_{n}(V) d_{m}(V)$ and $d_{n}(V) \leq \operatorname{dim}(V)^{n}$
Fekete's Lemma implies that $\delta(V):=\lim _{n \rightarrow \infty} \sqrt[n]{d_{n}(V)}$ exists

Other counts: non-negligible summands

Assume F is algebraically closed, char $F=p \geq 0, V^{\otimes n}=\bigoplus_{i=1}^{b_{n}(V)} W_{i}$ $d_{n}(V)=$ total number of summands W_{i} in $V^{\otimes n}$ with $\operatorname{dim}\left(W_{i}\right) \neq 0 \in F$
Observation: $d_{n+m}(V) \geq d_{n}(V) d_{m}(V)$ and $d_{n}(V) \leq \operatorname{dim}(V)^{n}$
Fekete's Lemma implies that $\delta(V):=\lim _{n \rightarrow \infty} \sqrt[n]{d_{n}(V)}$ exists
W - indecomposable representation of a group Γ (or super group scheme)

Other counts: non-negligible summands

Assume F is algebraically closed, char $F=p \geq 0, V^{\otimes n}=\bigoplus_{i=1}^{b_{n}(V)} W_{i}$ $d_{n}(V)=$ total number of summands W_{i} in $V^{\otimes n}$ with $\operatorname{dim}\left(W_{i}\right) \neq 0 \in F$
Observation: $d_{n+m}(V) \geq d_{n}(V) d_{m}(V)$ and $d_{n}(V) \leq \operatorname{dim}(V)^{n}$
Fekete's Lemma implies that $\delta(V):=\lim _{n \rightarrow \infty} \sqrt[n]{d_{n}(V)}$ exists
W - indecomposable representation of a group Γ (or super group scheme)

Definition

W is negligible if $\operatorname{dim}(W)=0 \in F$ (take $\operatorname{sdim}(W)$ for super groups)

Other counts: non-negligible summands

Assume F is algebraically closed, char $F=p \geq 0, V^{\otimes n}=\bigoplus_{i=1}^{b_{n}(V)} W_{i}$ $d_{n}(V)=$ total number of summands W_{i} in $V^{\otimes n}$ with $\operatorname{dim}\left(W_{i}\right) \neq 0 \in F$
Observation: $d_{n+m}(V) \geq d_{n}(V) d_{m}(V)$ and $d_{n}(V) \leq \operatorname{dim}(V)^{n}$
Fekete's Lemma implies that $\delta(V):=\lim _{n \rightarrow \infty} \sqrt[n]{d_{n}(V)}$ exists
W - indecomposable representation of a group Γ (or super group scheme)

Definition

W is negligible if $\operatorname{dim}(W)=0 \in F$ (take $\operatorname{sdim}(W)$ for super groups)
W is non-negligible if $\operatorname{dim}(W) \neq 0 \in F$

Other counts: non-negligible summands

Assume F is algebraically closed, char $F=p \geq 0, V^{\otimes n}=\bigoplus_{i=1}^{b_{n}(V)} W_{i}$ $d_{n}(V)=$ total number of summands W_{i} in $V^{\otimes n}$ with $\operatorname{dim}\left(W_{i}\right) \neq 0 \in F$
Observation: $d_{n+m}(V) \geq d_{n}(V) d_{m}(V)$ and $d_{n}(V) \leq \operatorname{dim}(V)^{n}$
Fekete's Lemma implies that $\delta(V):=\lim _{n \rightarrow \infty} \sqrt[n]{d_{n}(V)}$ exists
W - indecomposable representation of a group Γ (or super group scheme)

Definition

W is negligible if $\operatorname{dim}(W)=0 \in F$ (take $\operatorname{sdim}(W)$ for super groups) W is non-negligible if $\operatorname{dim}(W) \neq 0 \in F$

More generally, (possibly decomposable) W is negligible if every indecomposable summand is negligible

Other counts: non-negligible summands

Assume F is algebraically closed, char $F=p \geq 0, V^{\otimes n}=\bigoplus_{i=1}^{b_{n}(V)} W_{i}$ $d_{n}(V)=$ total number of summands W_{i} in $V^{\otimes n}$ with $\operatorname{dim}\left(W_{i}\right) \neq 0 \in F$
Observation: $d_{n+m}(V) \geq d_{n}(V) d_{m}(V)$ and $d_{n}(V) \leq \operatorname{dim}(V)^{n}$
Fekete's Lemma implies that $\delta(V):=\lim _{n \rightarrow \infty} \sqrt[n]{d_{n}(V)}$ exists
W - indecomposable representation of a group Γ (or super group scheme)

Definition

W is negligible if $\operatorname{dim}(W)=0 \in F$ (take $\operatorname{sdim}(W)$ for super groups) W is non-negligible if $\operatorname{dim}(W) \neq 0 \in F$

More generally, (possibly decomposable) W is negligible if every indecomposable summand is negligible
Fact (D.Benson): Negligible representations form tensor ideal

Other counts: non-negligible summands

Assume F is algebraically closed, char $F=p \geq 0, V^{\otimes n}=\bigoplus_{i=1}^{b_{n}(V)} W_{i}$ $d_{n}(V)=$ total number of summands W_{i} in $V^{\otimes n}$ with $\operatorname{dim}\left(W_{i}\right) \neq 0 \in F$
Observation: $d_{n+m}(V) \geq d_{n}(V) d_{m}(V)$ and $d_{n}(V) \leq \operatorname{dim}(V)^{n}$
Fekete's Lemma implies that $\delta(V):=\lim _{n \rightarrow \infty} \sqrt[n]{d_{n}(V)}$ exists

W - indecomposable representation of a group 「 (or super group scheme)

Definition

W is negligible if $\operatorname{dim}(W)=0 \in F$ (take $\operatorname{sdim}(W)$ for super groups) W is non-negligible if $\operatorname{dim}(W) \neq 0 \in F$

More generally, (possibly decomposable) W is negligible if every indecomposable summand is negligible
Fact (D.Benson): Negligible representations form tensor ideal $d_{n}(V)=$ total number of non-negligible summands in $V^{\otimes n}$

Properties of δ

Properties of δ

Obvious properties:

- $\delta(V \oplus W) \geq \delta(V)+\delta(W)$

Properties of δ

Obvious properties:

- $\delta(V \oplus W) \geq \delta(V)+\delta(W)$
- $\delta(V \otimes W) \geq \delta(V) \delta(W)$

Properties of δ

Obvious properties:

- $\delta(V \oplus W) \geq \delta(V)+\delta(W)$
- $\delta(V \otimes W) \geq \delta(V) \delta(W)$
- $\delta(V)=0 \Leftrightarrow V$ is negligible

Properties of δ

Obvious properties:

- $\delta(V \oplus W) \geq \delta(V)+\delta(W)$
- $\delta(V \otimes W) \geq \delta(V) \delta(W)$
- $\delta(V)=0 \Leftrightarrow V$ is negligible
- $\delta(V)>0 \Rightarrow 1 \leq \delta(V) \leq \operatorname{dim}(V)$

Properties of δ

Obvious properties:

- $\delta(V \oplus W) \geq \delta(V)+\delta(W)$
- $\delta(V \otimes W) \geq \delta(V) \delta(W)$
- $\delta(V)=0 \Leftrightarrow V$ is negligible
- $\delta(V)>0 \Rightarrow 1 \leq \delta(V) \leq \operatorname{dim}(V)$

Theorem (K. Coulembier, P. Etingof, V. O.)

1. $\delta(V \oplus W)=\delta(V)+\delta(W)$ and $\delta(V \otimes W)=\delta(V) \delta(W)$.

Properties of δ

Obvious properties:

- $\delta(V \oplus W) \geq \delta(V)+\delta(W)$
- $\delta(V \otimes W) \geq \delta(V) \delta(W)$
- $\delta(V)=0 \Leftrightarrow V$ is negligible
- $\delta(V)>0 \Rightarrow 1 \leq \delta(V) \leq \operatorname{dim}(V)$

Theorem (K. Coulembier, P. Etingof, V. O.)

1. $\delta(V \oplus W)=\delta(V)+\delta(W)$ and $\delta(V \otimes W)=\delta(V) \delta(W)$.
2. Let $q=q_{p}=e^{\frac{\pi i}{p}}$ and $[m]_{q}:=\frac{q^{m}-q^{-m}}{q-q^{-1}}=q^{m-1}+\ldots+q^{1-m}$ for $m \in \mathbb{N}$. Then $\delta(V)=$ linear combination of $[m]_{q}, 1 \leq m \leq \frac{p}{2}$ with nonnegative integer coefficients.

Properties of δ

Obvious properties:

- $\delta(V \oplus W) \geq \delta(V)+\delta(W)$
- $\delta(V \otimes W) \geq \delta(V) \delta(W)$
- $\delta(V)=0 \Leftrightarrow V$ is negligible
- $\delta(V)>0 \Rightarrow 1 \leq \delta(V) \leq \operatorname{dim}(V)$

Theorem (K. Coulembier, P. Etingof, V. O.)

1. $\delta(V \oplus W)=\delta(V)+\delta(W)$ and $\delta(V \otimes W)=\delta(V) \delta(W)$.
2. Let $q=q_{p}=e^{\frac{\pi i}{\rho}}$ and $[m]_{q}:=\frac{q^{m}-q^{-m}}{q-q^{-1}}=q^{m-1}+\ldots+q^{1-m}$ for $m \in \mathbb{N}$. Then $\delta(V)=$ linear combination of $[m]_{q}, 1 \leq m \leq \frac{p}{2}$ with nonnegative integer coefficients.

Example

For $p=2$ or $p=3$ we say that $\delta(V) \in \mathbb{Z}_{\geq 0}$

Properties of δ

Obvious properties:

- $\delta(V \oplus W) \geq \delta(V)+\delta(W)$
- $\delta(V \otimes W) \geq \delta(V) \delta(W)$
- $\delta(V)=0 \Leftrightarrow V$ is negligible
- $\delta(V)>0 \Rightarrow 1 \leq \delta(V) \leq \operatorname{dim}(V)$

Theorem (K. Coulembier, P. Etingof, V. O.)

1. $\delta(V \oplus W)=\delta(V)+\delta(W)$ and $\delta(V \otimes W)=\delta(V) \delta(W)$.
2. Let $q=q_{p}=e^{\frac{\pi i}{\rho}}$ and $[m]_{q}:=\frac{q^{m}-q^{-m}}{q-q^{-1}}=q^{m-1}+\ldots+q^{1-m}$ for $m \in \mathbb{N}$. Then $\delta(V)=$ linear combination of $[m]_{q}, 1 \leq m \leq \frac{p}{2}$ with nonnegative integer coefficients.

Example

For $p=2$ or $p=3$ we say that $\delta(V) \in \mathbb{Z}_{\geq 0}$
For $p=5, \delta(V)=a+b \frac{1+\sqrt{5}}{2}$ where $a, b \in \mathbb{Z}_{\geq 0}\left(\right.$ since $\left.[2]_{q_{5}}=\frac{1+\sqrt{5}}{2}\right)$

Example

Γ	p	V	$\operatorname{dim}(V)$	$\gamma(V)$	$\delta(V)$	$d_{n}(V)$	note
$\mathbb{Z} / 5 \mathbb{Z}$	5	J_{3}	3	$\frac{1+\sqrt{5}}{2}$	$\frac{1+\sqrt{5}}{2}$	F_{n}	$=c_{n}^{\prime}(V)$

Example

Γ	p	V	$\operatorname{dim}(V)$	$\gamma(V)$	$\delta(V)$	$d_{n}(V)$	note
$\mathbb{Z} / 5 \mathbb{Z}$	5	J_{3}	3	$\frac{1+\sqrt{5}}{2}$	$\frac{1+\sqrt{5}}{2}$	F_{n}	$=c_{n}^{\prime}(V)$
$\mathbb{Z} / 8 \mathbb{Z}$	2	J_{5}	5	3	1	1	

Example

Γ	p	V	$\operatorname{dim}(V)$	$\gamma(V)$	$\delta(V)$	$d_{n}(V)$	note
$\mathbb{Z} / 5 \mathbb{Z}$	5	J_{3}	3	$\frac{1+\sqrt{5}}{2}$	$\frac{1+\sqrt{5}}{2}$	F_{n}	$=c_{n}^{\prime}(V)$
$\mathbb{Z} / 8 \mathbb{Z}$	2	J_{5}	5	3	1	1	
$\mathbb{Z} / 9 \mathbb{Z}$	3	J_{5}	5	3	2	$\frac{1}{3}\left(2^{n+1}+(-1)^{n}\right)$	$=d_{n}\left(W_{S_{3}}\right)$

Example

Γ	p	V	$\operatorname{dim}(V)$	$\gamma(V)$	$\delta(V)$	$d_{n}(V)$	note
$\mathbb{Z} / 5 \mathbb{Z}$	5	J_{3}	3	$\frac{1+\sqrt{5}}{2}$	$\frac{1+\sqrt{5}}{2}$	F_{n}	$=c_{n}^{\prime}(V)$
$\mathbb{Z} / 8 \mathbb{Z}$	2	J_{5}	5	3	1	1	
$\mathbb{Z} / 9 \mathbb{Z}$	3	J_{5}	5	3	2	$\frac{1}{3}\left(2^{n+1}+(-1)^{n}\right)$	$=d_{n}\left(W_{S_{3}}\right)$

$W_{S_{3}}$ - 2-dimensional representation of S_{3} over \mathbb{C}

Example

Γ	p	V	$\operatorname{dim}(V)$	$\gamma(V)$	$\delta(V)$	$d_{n}(V)$	note
$\mathbb{Z} / 5 \mathbb{Z}$	5	J_{3}	3	$\frac{1+\sqrt{5}}{2}$	$\frac{1+\sqrt{5}}{2}$	F_{n}	$=c_{n}^{\prime}(V)$
$\mathbb{Z} / 8 \mathbb{Z}$	2	J_{5}	5	3	1	1	
$\mathbb{Z} / 9 \mathbb{Z}$	3	J_{5}	5	3	2	$\frac{1}{3}\left(2^{n+1}+(-1)^{n}\right)$	$=d_{n}\left(W_{S_{3}}\right)$

$W_{S_{3}}$ - 2-dimensional representation of S_{3} over \mathbb{C}

Example

Assume $p=2$ and $\operatorname{dim}(V)=3$ or $p=3$ and $\operatorname{dim}(V)=2$

Example

Γ	p	V	$\operatorname{dim}(V)$	$\gamma(V)$	$\delta(V)$	$d_{n}(V)$	note
$\mathbb{Z} / 5 \mathbb{Z}$	5	J_{3}	3	$\frac{1+\sqrt{5}}{2}$	$\frac{1+\sqrt{5}}{2}$	F_{n}	$=c_{n}^{\prime}(V)$
$\mathbb{Z} / 8 \mathbb{Z}$	2	J_{5}	5	3	1	1	
$\mathbb{Z} / 9 \mathbb{Z}$	3	J_{5}	5	3	2	$\frac{1}{3}\left(2^{n+1}+(-1)^{n}\right)$	$=d_{n}\left(W_{S_{3}}\right)$

$W_{S_{3}}$ - 2-dimensional representation of S_{3} over \mathbb{C}

Example

Assume $p=2$ and $\operatorname{dim}(V)=3$ or $p=3$ and $\operatorname{dim}(V)=2$
Then exactly one of the following is true:

Example

Γ	p	V	$\operatorname{dim}(V)$	$\gamma(V)$	$\delta(V)$	$d_{n}(V)$	note
$\mathbb{Z} / 5 \mathbb{Z}$	5	J_{3}	3	$\frac{1+\sqrt{5}}{2}$	$\frac{1+\sqrt{5}}{2}$	F_{n}	$=c_{n}^{\prime}(V)$
$\mathbb{Z} / 8 \mathbb{Z}$	2	J_{5}	5	3	1	1	
$\mathbb{Z} / 9 \mathbb{Z}$	3	J_{5}	5	3	2	$\frac{1}{3}\left(2^{n+1}+(-1)^{n}\right)$	$=d_{n}\left(W_{S_{3}}\right)$

$W_{S_{3}}$ - 2-dimensional representation of S_{3} over \mathbb{C}

Example

Assume $p=2$ and $\operatorname{dim}(V)=3$ or $p=3$ and $\operatorname{dim}(V)=2$
Then exactly one of the following is true:
(a) all summands of $V^{\otimes n}$ are non-negligible for all n
(b) exactly one summand of each $V^{\otimes n}$ is non-negligible for all n

Example

Γ	p	V	$\operatorname{dim}(V)$	$\gamma(V)$	$\delta(V)$	$d_{n}(V)$	note
$\mathbb{Z} / 5 \mathbb{Z}$	5	J_{3}	3	$\frac{1+\sqrt{5}}{2}$	$\frac{1+\sqrt{5}}{2}$	F_{n}	$=c_{n}^{\prime}(V)$
$\mathbb{Z} / 8 \mathbb{Z}$	2	J_{5}	5	3	1	1	
$\mathbb{Z} / 9 \mathbb{Z}$	3	J_{5}	5	3	2	$\frac{1}{3}\left(2^{n+1}+(-1)^{n}\right)$	$=d_{n}\left(W_{S_{3}}\right)$

$W_{S_{3}}$ - 2-dimensional representation of S_{3} over \mathbb{C}

Example

Assume $p=2$ and $\operatorname{dim}(V)=3$ or $p=3$ and $\operatorname{dim}(V)=2$
Then exactly one of the following is true:
(a) all summands of $V^{\otimes n}$ are non-negligible for all n
(b) exactly one summand of each $V^{\otimes n}$ is non-negligible for all n

Define $d_{n}^{\prime}(V)=$ total dimension of non-negligible summands in $V^{\otimes n}$

Example

Γ	p	V	$\operatorname{dim}(V)$	$\gamma(V)$	$\delta(V)$	$d_{n}(V)$	note
$\mathbb{Z} / 5 \mathbb{Z}$	5	J_{3}	3	$\frac{1+\sqrt{5}}{2}$	$\frac{1+\sqrt{5}}{2}$	F_{n}	$=c_{n}^{\prime}(V)$
$\mathbb{Z} / 8 \mathbb{Z}$	2	J_{5}	5	3	1	1	
$\mathbb{Z} / 9 \mathbb{Z}$	3	J_{5}	5	3	2	$\frac{1}{3}\left(2^{n+1}+(-1)^{n}\right)$	$=d_{n}\left(W_{S_{3}}\right)$

$W_{S_{3}}$ - 2-dimensional representation of S_{3} over \mathbb{C}

Example

Assume $p=2$ and $\operatorname{dim}(V)=3$ or $p=3$ and $\operatorname{dim}(V)=2$
Then exactly one of the following is true:
(a) all summands of $V^{\otimes n}$ are non-negligible for all n
(b) exactly one summand of each $V^{\otimes n}$ is non-negligible for all n

Define $d_{n}^{\prime}(V)=$ total dimension of non-negligible summands in $V^{\otimes n}$ and $\delta^{\prime}(V):=\lim _{n \rightarrow \infty} \sqrt[n]{d_{n}^{\prime}(V)}$

Example

Γ	p	V	$\operatorname{dim}(V)$	$\gamma(V)$	$\delta(V)$	$d_{n}(V)$	note
$\mathbb{Z} / 5 \mathbb{Z}$	5	J_{3}	3	$\frac{1+\sqrt{5}}{2}$	$\frac{1+\sqrt{5}}{2}$	F_{n}	$=c_{n}^{\prime}(V)$
$\mathbb{Z} / 8 \mathbb{Z}$	2	J_{5}	5	3	1	1	
$\mathbb{Z} / 9 \mathbb{Z}$	3	J_{5}	5	3	2	$\frac{1}{3}\left(2^{n+1}+(-1)^{n}\right)$	$=d_{n}\left(W_{S_{3}}\right)$

$W_{S_{3}}$ - 2-dimensional representation of S_{3} over \mathbb{C}

Example

Assume $p=2$ and $\operatorname{dim}(V)=3$ or $p=3$ and $\operatorname{dim}(V)=2$
Then exactly one of the following is true:
(a) all summands of $V^{\otimes n}$ are non-negligible for all n
(b) exactly one summand of each $V^{\otimes n}$ is non-negligible for all n

Define $d_{n}^{\prime}(V)=$ total dimension of non-negligible summands in $V^{\otimes n}$ and $\delta^{\prime}(V):=\lim _{n \rightarrow \infty} \sqrt[n]{d_{n}^{\prime}(V)}$

Question: is $\delta(V)=\delta^{\prime}(V)$ for any V ?

Comments on proof

Comments on proof

Step 1: Semisimplification
Assume \mathcal{C} is F-linear monoidal category such that Tr is defined

Comments on proof

Step 1: Semisimplification
Assume \mathcal{C} is F-linear monoidal category such that Tr is defined (e.g. any monoidal subcategory of $\operatorname{Rep}(\Gamma)$)

Comments on proof

Step 1: Semisimplification
Assume \mathcal{C} is F-linear monoidal category such that Tr is defined (e.g. any monoidal subcategory of $\operatorname{Rep}(\Gamma)$)

Definition

$f \in \operatorname{Hom}(X, Y)$ is negligible if $\operatorname{Tr}(f g)=0 \in F$ for any $g \in \operatorname{Hom}(Y, X)$.

Comments on proof

Step 1: Semisimplification
Assume \mathcal{C} is F-linear monoidal category such that Tr is defined (e.g. any monoidal subcategory of $\operatorname{Rep}(\Gamma)$)

Definition

$f \in \operatorname{Hom}(X, Y)$ is negligible if $\operatorname{Tr}(f g)=0 \in F$ for any $g \in \operatorname{Hom}(Y, X)$. Let $\mathcal{N}(X, Y) \subset \operatorname{Hom}(X, Y)$ denote the subset of negligible morphisms

Comments on proof

Step 1: Semisimplification
Assume \mathcal{C} is F-linear monoidal category such that Tr is defined (e.g. any monoidal subcategory of $\operatorname{Rep}(\Gamma)$)

Definition

$f \in \operatorname{Hom}(X, Y)$ is negligible if $\operatorname{Tr}(f g)=0 \in F$ for any $g \in \operatorname{Hom}(Y, X)$. Let $\mathcal{N}(X, Y) \subset \operatorname{Hom}(X, Y)$ denote the subset of negligible morphisms

Fact: Collection $\mathcal{N}(X, Y) \subset \operatorname{Hom}(X, Y)$ is tensor ideal

Comments on proof

Step 1: Semisimplification
Assume \mathcal{C} is F-linear monoidal category such that Tr is defined (e.g. any monoidal subcategory of $\operatorname{Rep}(\Gamma)$)

Definition

$f \in \operatorname{Hom}(X, Y)$ is negligible if $\operatorname{Tr}(f g)=0 \in F$ for any $g \in \operatorname{Hom}(Y, X)$. Let $\mathcal{N}(X, Y) \subset \operatorname{Hom}(X, Y)$ denote the subset of negligible morphisms

Fact: Collection $\mathcal{N}(X, Y) \subset \operatorname{Hom}(X, Y)$ is tensor ideal
Definition of new category $\overline{\mathcal{C}}$
Objects of $\overline{\mathcal{C}}=$ objects of $\mathcal{C} ; \operatorname{Hom}_{\overline{\mathcal{C}}}(X, Y)=\operatorname{Hom}(X, Y) / \mathcal{N}(X, Y)$

Comments on proof

Step 1: Semisimplification
Assume \mathcal{C} is F-linear monoidal category such that Tr is defined (e.g. any monoidal subcategory of $\operatorname{Rep}(\Gamma)$)

Definition

$f \in \operatorname{Hom}(X, Y)$ is negligible if $\operatorname{Tr}(f g)=0 \in F$ for any $g \in \operatorname{Hom}(Y, X)$. Let $\mathcal{N}(X, Y) \subset \operatorname{Hom}(X, Y)$ denote the subset of negligible morphisms

Fact: Collection $\mathcal{N}(X, Y) \subset \operatorname{Hom}(X, Y)$ is tensor ideal

Definition of new category $\overline{\mathcal{C}}$

Objects of $\overline{\mathcal{C}}=$ objects of $\mathcal{C} ; \operatorname{Hom}_{\overline{\mathcal{C}}}(X, Y)=\operatorname{Hom}(X, Y) / \mathcal{N}(X, Y)$ Monoidal structure on $\overline{\mathcal{C}}$: inherited from \mathcal{C} Thus we have (symmetric) tensor functor $\mathcal{C} \rightarrow \overline{\mathcal{C}}, X \mapsto \bar{X}$

Comments on proof

Step 1: Semisimplification
Assume \mathcal{C} is F-linear monoidal category such that Tr is defined (e.g. any monoidal subcategory of $\operatorname{Rep}(\Gamma)$)

Definition

$f \in \operatorname{Hom}(X, Y)$ is negligible if $\operatorname{Tr}(f g)=0 \in F$ for any $g \in \operatorname{Hom}(Y, X)$. Let $\mathcal{N}(X, Y) \subset \operatorname{Hom}(X, Y)$ denote the subset of negligible morphisms

Fact: Collection $\mathcal{N}(X, Y) \subset \operatorname{Hom}(X, Y)$ is tensor ideal

Definition of new category $\overline{\mathcal{C}}$

Objects of $\overline{\mathcal{C}}=$ objects of $\mathcal{C} ; \operatorname{Hom}_{\overline{\mathcal{C}}}(X, Y)=\operatorname{Hom}(X, Y) / \mathcal{N}(X, Y)$ Monoidal structure on $\overline{\mathcal{C}}$: inherited from \mathcal{C} Thus we have (symmetric) tensor functor $\mathcal{C} \rightarrow \overline{\mathcal{C}}, X \mapsto \bar{X}$

Fact (D.Benson): Assume \mathcal{C} is full Karoubian monoidal subcategory of $\operatorname{Rep}(\Gamma)$. Then $\overline{\mathcal{C}}$ is abelian semisimple and $\{$ simple objects of $\overline{\mathcal{C}}\} \leftrightarrow\{$ non-negligible indecomposable objects of $\mathcal{C}\}$

Comments on proof, 2

Corollary: $d_{n}(V)=b_{n}(\bar{V})$

Comments on proof, 2

Corollary: $d_{n}(V)=b_{n}(\bar{V})$

Example

1. $\Gamma=\mathbb{Z} / 8 \mathbb{Z}, p=2, \mathcal{C}=$ full Karoubian monoidal subcategory of $\operatorname{Rep}(\Gamma)$ generated by J_{5}. We have

Comments on proof, 2

Corollary: $d_{n}(V)=b_{n}(\bar{V})$

Example

1. $\Gamma=\mathbb{Z} / 8 \mathbb{Z}, p=2, \mathcal{C}=$ full Karoubian monoidal subcategory of $\operatorname{Rep}(\Gamma)$ generated by J_{5}. We have

$$
J_{5} \otimes J_{5}=J_{1} \oplus 2 J_{4} \oplus 2 J_{8}
$$

Comments on proof, 2

Corollary: $d_{n}(V)=b_{n}(\bar{V})$

Example

1. $\Gamma=\mathbb{Z} / 8 \mathbb{Z}, p=2, \mathcal{C}=$ full Karoubian monoidal subcategory of $\operatorname{Rep}(\Gamma)$ generated by J_{5}. We have

$$
J_{5} \otimes J_{5}=J_{1} \oplus 2 J_{4} \oplus 2 J_{8}
$$

Hence $\mathcal{C}=\left\langle J_{1}, J_{4}, J_{5}, J_{8}\right\rangle$ and $\overline{\mathcal{C}}=\left\langle\bar{J}_{1}, \bar{J}_{5}\right\rangle=\mathrm{Vec}_{\mathbb{Z}} / 2 \mathbb{Z}$

Comments on proof, 2

Corollary: $d_{n}(V)=b_{n}(\bar{V})$

Example

1. $\Gamma=\mathbb{Z} / 8 \mathbb{Z}, p=2, \mathcal{C}=$ full Karoubian monoidal subcategory of $\operatorname{Rep}(\Gamma)$ generated by J_{5}. We have

$$
J_{5} \otimes J_{5}=J_{1} \oplus 2 J_{4} \oplus 2 J_{8}
$$

Hence $\mathcal{C}=\left\langle J_{1}, J_{4}, J_{5}, J_{8}\right\rangle$ and $\overline{\mathcal{C}}=\left\langle\bar{J}_{1}, \bar{J}_{5}\right\rangle=\mathrm{Vec}_{\mathbb{Z}} / 2 \mathbb{Z}$
2. $\Gamma=\mathbb{Z} / 9 \mathbb{Z}, p=3, \mathcal{C}=$ full Karoubian monoidal subcategory of $\operatorname{Rep}(\Gamma)$ generated by $J_{5}=\left\langle J_{1}, J_{3}, J_{5}, J_{6}, J_{7}, J_{9}\right\rangle$

Comments on proof, 2

Corollary: $d_{n}(V)=b_{n}(\bar{V})$

Example

1. $\Gamma=\mathbb{Z} / 8 \mathbb{Z}, p=2, \mathcal{C}=$ full Karoubian monoidal subcategory of $\operatorname{Rep}(\Gamma)$ generated by J_{5}. We have

$$
J_{5} \otimes J_{5}=J_{1} \oplus 2 J_{4} \oplus 2 J_{8}
$$

Hence $\mathcal{C}=\left\langle J_{1}, J_{4}, J_{5}, J_{8}\right\rangle$ and $\overline{\mathcal{C}}=\left\langle\bar{J}_{1}, \bar{J}_{5}\right\rangle=\mathrm{Vec}_{\mathbb{Z} / 2 \mathbb{Z}}$
2. $\Gamma=\mathbb{Z} / 9 \mathbb{Z}, p=3, \mathcal{C}=$ full Karoubian monoidal subcategory of $\operatorname{Rep}(\Gamma)$ generated by $J_{5}=\left\langle J_{1}, J_{3}, J_{5}, J_{6}, J_{7}, J_{9}\right\rangle$
Then $\overline{\mathcal{C}}$ has simple objects $\bar{J}_{1}, \bar{J}_{5}, \bar{J}_{7}$ with

Comments on proof, 2

Corollary: $d_{n}(V)=b_{n}(\bar{V})$

Example

1. $\Gamma=\mathbb{Z} / 8 \mathbb{Z}, p=2, \mathcal{C}=$ full Karoubian monoidal subcategory of $\operatorname{Rep}(\Gamma)$ generated by J_{5}. We have

$$
J_{5} \otimes J_{5}=J_{1} \oplus 2 J_{4} \oplus 2 J_{8}
$$

Hence $\mathcal{C}=\left\langle J_{1}, J_{4}, J_{5}, J_{8}\right\rangle$ and $\overline{\mathcal{C}}=\left\langle\bar{J}_{1}, \bar{J}_{5}\right\rangle=\mathrm{Vec}_{\mathbb{Z} / 2 \mathbb{Z}}$
2. $\Gamma=\mathbb{Z} / 9 \mathbb{Z}, p=3, \mathcal{C}=$ full Karoubian monoidal subcategory of $\operatorname{Rep}(\Gamma)$ generated by $J_{5}=\left\langle J_{1}, J_{3}, J_{5}, J_{6}, J_{7}, J_{9}\right\rangle$
Then $\overline{\mathcal{C}}$ has simple objects $\bar{J}_{1}, \bar{J}_{5}, \bar{J}_{7}$ with

$$
\bar{J}_{7} \otimes \bar{J}_{7}=\bar{J}_{1}, \bar{J}_{7} \otimes \bar{J}_{5}=\bar{J}_{5}, \bar{J}_{5} \otimes \bar{J}_{5}=\bar{J}_{1} \oplus \bar{J}_{5} \oplus \bar{J}_{7}
$$

Comments on proof, 2

Corollary: $d_{n}(V)=b_{n}(\bar{V})$

Example

1. $\Gamma=\mathbb{Z} / 8 \mathbb{Z}, p=2, \mathcal{C}=$ full Karoubian monoidal subcategory of $\operatorname{Rep}(\Gamma)$ generated by J_{5}. We have

$$
J_{5} \otimes J_{5}=J_{1} \oplus 2 J_{4} \oplus 2 J_{8}
$$

Hence $\mathcal{C}=\left\langle J_{1}, J_{4}, J_{5}, J_{8}\right\rangle$ and $\overline{\mathcal{C}}=\left\langle\bar{J}_{1}, \bar{J}_{5}\right\rangle=\mathrm{Vec}_{\mathbb{Z} / 2 \mathbb{Z}}$
2. $\Gamma=\mathbb{Z} / 9 \mathbb{Z}, p=3, \mathcal{C}=$ full Karoubian monoidal subcategory of $\operatorname{Rep}(\Gamma)$ generated by $J_{5}=\left\langle J_{1}, J_{3}, J_{5}, J_{6}, J_{7}, J_{9}\right\rangle$
Then $\overline{\mathcal{C}}$ has simple objects $\bar{J}_{1}, \bar{J}_{5}, \bar{J}_{7}$ with

$$
\bar{J}_{7} \otimes \bar{J}_{7}=\bar{J}_{1}, \bar{J}_{7} \otimes \bar{J}_{5}=\bar{J}_{5}, \bar{J}_{5} \otimes \bar{J}_{5}=\bar{J}_{1} \oplus \bar{J}_{5} \oplus \bar{J}_{7} \operatorname{Rep}\left(S_{3}\right)_{\mathbb{C}}!
$$

Comments on proof, 2

Corollary: $d_{n}(V)=b_{n}(\bar{V})$

Example

1. $\Gamma=\mathbb{Z} / 8 \mathbb{Z}, p=2, \mathcal{C}=$ full Karoubian monoidal subcategory of $\operatorname{Rep}(\Gamma)$ generated by J_{5}. We have

$$
J_{5} \otimes J_{5}=J_{1} \oplus 2 J_{4} \oplus 2 J_{8}
$$

Hence $\mathcal{C}=\left\langle J_{1}, J_{4}, J_{5}, J_{8}\right\rangle$ and $\overline{\mathcal{C}}=\left\langle\bar{J}_{1}, \bar{J}_{5}\right\rangle=\mathrm{Vec}_{\mathbb{Z} / 2 \mathbb{Z}}$
2. $\Gamma=\mathbb{Z} / 9 \mathbb{Z}, p=3, \mathcal{C}=$ full Karoubian monoidal subcategory of $\operatorname{Rep}(\Gamma)$ generated by $J_{5}=\left\langle J_{1}, J_{3}, J_{5}, J_{6}, J_{7}, J_{9}\right\rangle$ Then $\overline{\mathcal{C}}$ has simple objects $\bar{J}_{1}, \bar{J}_{5}, \bar{J}_{7}$ with

$$
\bar{J}_{7} \otimes \bar{J}_{7}=\bar{J}_{1}, \bar{J}_{7} \otimes \bar{J}_{5}=\bar{J}_{5}, \bar{J}_{5} \otimes \bar{J}_{5}=\bar{J}_{1} \oplus \bar{J}_{5} \oplus \bar{J}_{7} \operatorname{Rep}\left(S_{3}\right)_{\mathbb{C}}!
$$

This is $\mathbb{Z} / 2 \mathbb{Z}$-equivariantization of $\mathrm{Vec}_{\mathbb{Z}} / 3 \mathbb{Z}=$ semisimple reduction of $\operatorname{Rep}\left(S_{3}\right)$ to characteristic 3.

Comments on proof, 3

Comments on proof, 3

Example

3. $\mathcal{C}=\operatorname{Rep}(\mathbb{Z} / p \mathbb{Z})$.

Simple objects of $\overline{\mathcal{C}}: \bar{J}_{1}=\mathbb{1}=: L_{1}, \bar{J}_{2}=: L_{2}, \ldots, \bar{J}_{p-1}=: L_{p-1}$

$$
L_{m} \otimes L_{n}=\bigoplus_{i=1}^{\min (m, n, p-m, p-n)} L_{|m-n|+2 i-1}
$$

Comments on proof, 3

Example

3. $\mathcal{C}=\operatorname{Rep}(\mathbb{Z} / p \mathbb{Z})$.

Simple objects of $\overline{\mathcal{C}}: \bar{J}_{1}=\mathbb{1}=: L_{1}, \bar{J}_{2}=: L_{2}, \ldots, \bar{J}_{p-1}=: L_{p-1}$

$$
L_{m} \otimes L_{n}=\bigoplus_{i=1}^{\min (m, n, p-m, p-n)} L_{|m-n|+2 i-1}
$$

$\overline{\mathcal{C}}$ is Verlinde category Ver $_{p}$

Comments on proof, 3

Example

3. $\mathcal{C}=\operatorname{Rep}(\mathbb{Z} / p \mathbb{Z})$.

Simple objects of $\overline{\mathcal{C}}: \bar{J}_{1}=\mathbb{1}=: L_{1}, \bar{J}_{2}=: L_{2}, \ldots, \bar{J}_{p-1}=: L_{p-1}$

$$
L_{m} \otimes L_{n}=\bigoplus_{i=1}^{\min (m, n, p-m, p-n)} L_{|m-n|+2 i-1}
$$

$\overline{\mathcal{C}}$ is Verlinde category Ver $_{p}$
Ver $_{2}=\mathrm{Vec}$,

Comments on proof, 3

Example

3. $\mathcal{C}=\operatorname{Rep}(\mathbb{Z} / p \mathbb{Z})$.

Simple objects of $\overline{\mathcal{C}}: \bar{J}_{1}=\mathbb{1}=: L_{1}, \bar{J}_{2}=: L_{2}, \ldots, \bar{J}_{p-1}=: L_{p-1}$

$$
L_{m} \otimes L_{n}=\bigoplus_{i=1}^{\min (m, n, p-m, p-n)} L_{|m-n|+2 i-1}
$$

$\overline{\mathcal{C}}$ is Verlinde category Ver $_{p}$
Ver $_{2}=\mathrm{Vec}, \quad$ Ver $_{3}=\mathrm{sVec}$

Comments on proof, 3

Example

3. $\mathcal{C}=\operatorname{Rep}(\mathbb{Z} / p \mathbb{Z})$.

Simple objects of $\overline{\mathcal{C}}: \bar{J}_{1}=\mathbb{1}=: L_{1}, \bar{J}_{2}=: L_{2}, \ldots, \bar{J}_{p-1}=: L_{p-1}$

$$
L_{m} \otimes L_{n}=\bigoplus_{i=1}^{\min (m, n, p-m, p-n)} L_{|m-n|+2 i-1}
$$

$\overline{\mathcal{C}}$ is Verlinde category Ver $_{p}$
$\operatorname{Ver}_{2}=\mathrm{Vec}, \quad$ Ver $_{3}=\mathrm{sVec}$
Ver $_{5}=\mathrm{sVec} \boxtimes$ Fib where Fib $=\langle\mathbb{1}, X\rangle, X \otimes X=\mathbb{1} \oplus X$

Comments on proof, 3

Example

3. $\mathcal{C}=\operatorname{Rep}(\mathbb{Z} / p \mathbb{Z})$.

Simple objects of $\overline{\mathcal{C}}: \bar{J}_{1}=\mathbb{1}=: L_{1}, \bar{J}_{2}=: L_{2}, \ldots, \bar{J}_{p-1}=: L_{p-1}$

$$
L_{m} \otimes L_{n}=\bigoplus_{i=1}^{\min (m, n, p-m, p-n)} L_{|m-n|+2 i-1}
$$

$\overline{\mathcal{C}}$ is Verlinde category Ver $_{p}$
Ver $_{2}=\mathrm{Vec}, \quad$ Ver $_{3}=\mathrm{sVec}$
Ver $_{5}=\mathrm{sVec} \boxtimes$ Fib where Fib $=\langle\mathbb{1}, X\rangle, X \otimes X=\mathbb{1} \oplus X$ Generally $\operatorname{FPdim}\left(L_{m}\right)=[m]_{q_{p}}=\operatorname{FPdim}\left(L_{p-m}\right)$

Comments on proof, 3

Example

3. $\mathcal{C}=\operatorname{Rep}(\mathbb{Z} / p \mathbb{Z})$.

Simple objects of $\overline{\mathcal{C}}: \bar{J}_{1}=\mathbb{1}=: L_{1}, \bar{J}_{2}=: L_{2}, \ldots, \bar{J}_{p-1}=: L_{p-1}$

$$
L_{m} \otimes L_{n}=\bigoplus_{i=1}^{\min (m, n, p-m, p-n)} L_{|m-n|+2 i-1}
$$

$\overline{\mathcal{C}}$ is Verlinde category Ver $_{p}$
$\mathrm{Ver}_{2}=\mathrm{Vec}, \quad$ Ver $_{3}=\mathrm{sVec}$
Ver $_{5}=\mathrm{sVec} \boxtimes$ Fib where Fib $=\langle\mathbb{1}, X\rangle, X \otimes X=\mathbb{1} \oplus X$ Generally FPdim $\left(L_{m}\right)=[m]_{q_{p}}=\operatorname{FPdim}\left(L_{p-m}\right)$

Step 2: Let $\mathcal{C}=$ full Karoubian monoidal subcategory of $\operatorname{Rep}(\Gamma)$ generated by some object V (and $\left.V^{*}\right)$.

Comments on proof, 3

Example

3. $\mathcal{C}=\operatorname{Rep}(\mathbb{Z} / p \mathbb{Z})$.

Simple objects of $\overline{\mathcal{C}}: \bar{J}_{1}=\mathbb{1}=: L_{1}, \bar{J}_{2}=: L_{2}, \ldots, \bar{J}_{p-1}=: L_{p-1}$

$$
L_{m} \otimes L_{n}=\bigoplus_{i=1}^{\min (m, n, p-m, p-n)} L_{|m-n|+2 i-1}
$$

$\overline{\mathcal{C}}$ is Verlinde category Ver $_{p}$
$\mathrm{Ver}_{2}=\mathrm{Vec}, \quad$ Ver $_{3}=\mathrm{sVec}$
Ver $_{5}=\mathrm{sVec} \boxtimes$ Fib where Fib $=\langle\mathbb{1}, X\rangle, X \otimes X=\mathbb{1} \oplus X$ $\operatorname{Generally} \operatorname{FPdim}\left(L_{m}\right)=[m]_{q_{p}}=\operatorname{FPdim}\left(L_{p-m}\right)$

Step 2: Let $\mathcal{C}=$ full Karoubian monoidal subcategory of $\operatorname{Rep}(\Gamma)$ generated by some object V (and V^{*}). Then the semisimplification $\overline{\mathcal{C}}$ is semisimple rigid tensor (i.e. pre-Tannakian) category of moderate growth

Comments on proof, 3

Example

3. $\mathcal{C}=\operatorname{Rep}(\mathbb{Z} / p \mathbb{Z})$.

Simple objects of $\overline{\mathcal{C}}: \bar{J}_{1}=\mathbb{1}=: L_{1}, \bar{J}_{2}=: L_{2}, \ldots, \bar{J}_{p-1}=: L_{p-1}$

$$
L_{m} \otimes L_{n}=\bigoplus_{i=1}^{\min (m, n, p-m, p-n)} L_{|m-n|+2 i-1}
$$

$\overline{\mathcal{C}}$ is Verlinde category Ver $_{p}$
$\mathrm{Ver}_{2}=\mathrm{Vec}, \quad$ Ver $_{3}=\mathrm{sVec}$
Ver $_{5}=\mathrm{sVec} \boxtimes$ Fib where Fib $=\langle\mathbb{1}, X\rangle, X \otimes X=\mathbb{1} \oplus X$ $\operatorname{Generally} \operatorname{FPdim}\left(L_{m}\right)=[m]_{q_{p}}=\operatorname{FPdim}\left(L_{p-m}\right)$

Step 2: Let $\mathcal{C}=$ full Karoubian monoidal subcategory of Rep (Γ) generated by some object V (and V^{*}). Then the semisimplification $\overline{\mathcal{C}}$ is semisimple rigid tensor (i.e. pre-Tannakian) category of moderate growth

$$
b_{n}(\bar{W})=d_{n}(W) \leq b_{n}(W) \leq \operatorname{dim}(W)^{n}
$$

Comments on proof, 4

Comments on proof, 4

Theorem (K. Coulembier, P. Etingof, V. O.)

Assume \mathcal{D} is a semisimple pre-Tannakian category of moderate growth. Then there exists an additive tensor functor $F: \mathcal{D} \rightarrow$ Ver $_{p}$.

Comments on proof, 4

Theorem (K. Coulembier, P. Etingof, V. O.)

Assume \mathcal{D} is a semisimple pre-Tannakian category of moderate growth. Then there exists an additive tensor functor $F: \mathcal{D} \rightarrow$ Ver $_{p}$.

Corollary. (P. Deligne) There is a group scheme S in the category Ver $_{p}$ and an equivalence $\mathcal{D} \simeq \operatorname{Rep}(S, \epsilon)$.

Comments on proof, 4

Theorem (K. Coulembier, P. Etingof, V. O.)

Assume \mathcal{D} is a semisimple pre-Tannakian category of moderate growth. Then there exists an additive tensor functor $F: \mathcal{D} \rightarrow$ Ver $_{p}$.

Corollary. (P. Deligne) There is a group scheme S in the category Ver $_{p}$ and an equivalence $\mathcal{D} \simeq \operatorname{Rep}(S, \epsilon)$.

Example

Assume $p=2$ and \mathcal{D} is finitely generated. Then $\mathcal{D} \simeq \operatorname{Rep}(S)$ where S is linearly reductive (and of finite type).

Comments on proof, 4

Theorem (K. Coulembier, P. Etingof, V. O.)

Assume \mathcal{D} is a semisimple pre-Tannakian category of moderate growth. Then there exists an additive tensor functor $F: \mathcal{D} \rightarrow$ Ver $_{p}$.

Corollary. (P. Deligne) There is a group scheme S in the category Ver $_{p}$ and an equivalence $\mathcal{D} \simeq \operatorname{Rep}(S, \epsilon)$.

Example

Assume $p=2$ and \mathcal{D} is finitely generated. Then $\mathcal{D} \simeq \operatorname{Rep}(S)$ where S is linearly reductive (and of finite type).

Corollary. $\lim _{n \rightarrow \infty} \sqrt[n]{b_{n}(V)}=\operatorname{FPdim}(F(V))$.

Comments on proof, 4

Theorem (K. Coulembier, P. Etingof, V. O.)

Assume \mathcal{D} is a semisimple pre-Tannakian category of moderate growth. Then there exists an additive tensor functor $F: \mathcal{D} \rightarrow$ Ver $_{p}$.

Corollary. (P. Deligne) There is a group scheme S in the category Ver $_{p}$ and an equivalence $\mathcal{D} \simeq \operatorname{Rep}(S, \epsilon)$.

Example

Assume $p=2$ and \mathcal{D} is finitely generated. Then $\mathcal{D} \simeq \operatorname{Rep}(S)$ where S is linearly reductive (and of finite type).

Corollary. $\lim _{n \rightarrow \infty} \sqrt[n]{b_{n}(V)}=\operatorname{FPdim}(F(V))$.

$$
\text { Case } p=2
$$

Comments on proof, 4

Theorem (K. Coulembier, P. Etingof, V. O.)

Assume \mathcal{D} is a semisimple pre-Tannakian category of moderate growth. Then there exists an additive tensor functor $F: \mathcal{D} \rightarrow$ Ver $_{p}$.

Corollary. (P. Deligne) There is a group scheme S in the category Ver $_{p}$ and an equivalence $\mathcal{D} \simeq \operatorname{Rep}(S, \epsilon)$.

Example

Assume $p=2$ and \mathcal{D} is finitely generated. Then $\mathcal{D} \simeq \operatorname{Rep}(S)$ where S is linearly reductive (and of finite type).

Corollary. $\lim _{n \rightarrow \infty} \sqrt[n]{b_{n}(V)}=\operatorname{FPdim}(F(V))$.

Case $p=2$

By Nagata's theorem S is an extension of finite group $\pi_{0}(S)$ by a diagonalizable group.

Comments on proof, 4

Theorem (K. Coulembier, P. Etingof, V. O.)

Assume \mathcal{D} is a semisimple pre-Tannakian category of moderate growth. Then there exists an additive tensor functor $F: \mathcal{D} \rightarrow$ Ver $_{p}$.

Corollary. (P. Deligne) There is a group scheme S in the category Ver $_{p}$ and an equivalence $\mathcal{D} \simeq \operatorname{Rep}(S, \epsilon)$.

Example

Assume $p=2$ and \mathcal{D} is finitely generated. Then $\mathcal{D} \simeq \operatorname{Rep}(S)$ where S is linearly reductive (and of finite type).

Corollary. $\lim _{n \rightarrow \infty} \sqrt[n]{b_{n}(V)}=\operatorname{FPdim}(F(V))$.

Case $p=2$

By Nagata's theorem S is an extension of finite group $\pi_{0}(S)$ by a diagonalizable group. Thus there is a uniform bound FPdim $(F(L))=\operatorname{dim}(F(L)) \leq\left|\pi_{0}(S)\right|$ for any simple object $L \in \mathcal{D}$.

More bounds

More bounds

Theorem (K. Coulembier, P. Etingof, V. O.)
There are constants $K^{\prime}, K^{\prime \prime}>0$ such that

$$
K^{\prime} \delta(V)^{n} \leq d_{n}(V) \leq K^{\prime \prime} \delta(V)^{n}
$$

More bounds

Theorem (K. Coulembier, P. Etingof, V. O.)

There are constants $K^{\prime}, K^{\prime \prime}>0$ such that

$$
K^{\prime} \delta(V)^{n} \leq d_{n}(V) \leq K^{\prime \prime} \delta(V)^{n}
$$

In fact we can take $K^{\prime \prime}=1$ (elementary) and we prove that for $p>0$

$$
c(V)=\liminf _{n \rightarrow \infty} \frac{d_{n}(V)}{\delta(V)^{n}}>0
$$

More bounds

Theorem (K. Coulembier, P. Etingof, V. O.)

There are constants $K^{\prime}, K^{\prime \prime}>0$ such that

$$
K^{\prime} \delta(V)^{n} \leq d_{n}(V) \leq K^{\prime \prime} \delta(V)^{n}
$$

In fact we can take $K^{\prime \prime}=1$ (elementary) and we prove that for $p>0$

$$
c(V)=\liminf _{n \rightarrow \infty} \frac{d_{n}(V)}{\delta(V)^{n}}>0
$$

Conjecture: $c(V) \geq e^{-a_{p} \delta(V)}$ for some $a_{p} \in \mathbb{R}_{>0}$.

More bounds

Theorem (K. Coulembier, P. Etingof, V. O.)

There are constants $K^{\prime}, K^{\prime \prime}>0$ such that

$$
K^{\prime} \delta(V)^{n} \leq d_{n}(V) \leq K^{\prime \prime} \delta(V)^{n}
$$

In fact we can take $K^{\prime \prime}=1$ (elementary) and we prove that for $p>0$

$$
c(V)=\liminf _{n \rightarrow \infty} \frac{d_{n}(V)}{\delta(V)^{n}}>0
$$

Conjecture: $c(V) \geq e^{-a_{p} \delta(V)}$ for some $a_{p} \in \mathbb{R}_{>0}$.
This is true for $p=2$ and $p=3$ with

$$
a_{2}=\frac{4 \ln (3)}{3} \approx 1.464, \quad a_{3}=24
$$

More bounds

Theorem (K. Coulembier, P. Etingof, V. O.)

There are constants $K^{\prime}, K^{\prime \prime}>0$ such that

$$
K^{\prime} \delta(V)^{n} \leq d_{n}(V) \leq K^{\prime \prime} \delta(V)^{n}
$$

In fact we can take $K^{\prime \prime}=1$ (elementary) and we prove that for $p>0$

$$
c(V)=\liminf _{n \rightarrow \infty} \frac{d_{n}(V)}{\delta(V)^{n}}>0
$$

Conjecture: $c(V) \geq e^{-a_{p} \delta(V)}$ for some $a_{p} \in \mathbb{R}_{>0}$.
This is true for $p=2$ and $p=3$ with

$$
a_{2}=\frac{4 \ln (3)}{3} \approx 1.464, \quad a_{3}=24
$$

For $p \geq 5$ we have $c(V) \geq \exp \left(-a_{p} \delta(V)-\frac{\pi \ln (2)}{2}(p-2) \delta(V)^{2}\right)$

More bounds

Theorem (K. Coulembier, P. Etingof, V. O.)

There are constants $K^{\prime}, K^{\prime \prime}>0$ such that

$$
K^{\prime} \delta(V)^{n} \leq d_{n}(V) \leq K^{\prime \prime} \delta(V)^{n}
$$

In fact we can take $K^{\prime \prime}=1$ (elementary) and we prove that for $p>0$

$$
c(V)=\liminf _{n \rightarrow \infty} \frac{d_{n}(V)}{\delta(V)^{n}}>0
$$

Conjecture: $c(V) \geq e^{-a_{p} \delta(V)}$ for some $a_{p} \in \mathbb{R}_{>0}$.
This is true for $p=2$ and $p=3$ with

$$
a_{2}=\frac{4 \ln (3)}{3} \approx 1.464, \quad a_{3}=24
$$

For $p \geq 5$ we have $c(V) \geq \exp \left(-a_{p} \delta(V)-\frac{\pi \ln (2)}{2}(p-2) \delta(V)^{2}\right)$

More bounds

Theorem (K. Coulembier, P. Etingof, V. O.)

There are constants $K^{\prime}, K^{\prime \prime}>0$ such that

$$
K^{\prime} \delta(V)^{n} \leq d_{n}(V) \leq K^{\prime \prime} \delta(V)^{n}
$$

In fact we can take $K^{\prime \prime}=1$ (elementary) and we prove that for $p>0$

$$
c(V)=\liminf _{n \rightarrow \infty} \frac{d_{n}(V)}{\delta(V)^{n}}>0
$$

Conjecture: $c(V) \geq e^{-a_{p} \delta(V)}$ for some $a_{p} \in \mathbb{R}_{>0}$.
This is true for $p=2$ and $p=3$ with

$$
a_{2}=\frac{4 \ln (3)}{3} \approx 1.464, \quad a_{3}=24
$$

For $p \geq 5$ we have $c(V) \geq \exp \left(-a_{p} \delta(V)-\frac{\pi \ln (2)}{2}(p-2) \delta(V)^{2}\right)$

More bounds

Theorem (K. Coulembier, P. Etingof, V. O.)

There are constants $K^{\prime}, K^{\prime \prime}>0$ such that

$$
K^{\prime} \delta(V)^{n} \leq d_{n}(V) \leq K^{\prime \prime} \delta(V)^{n}
$$

In fact we can take $K^{\prime \prime}=1$ (elementary) and we prove that for $p>0$

$$
c(V)=\liminf _{n \rightarrow \infty} \frac{d_{n}(V)}{\delta(V)^{n}}>0
$$

Conjecture: $c(V) \geq e^{-a_{p} \delta(V)}$ for some $a_{p} \in \mathbb{R}_{>0}$.
This is true for $p=2$ and $p=3$ with

$$
a_{2}=\frac{4 \ln (3)}{3} \approx 1.464, \quad a_{3}=24
$$

For $p \geq 5$ we have $c(V) \geq \exp \left(-a_{p} \delta(V)-\frac{\pi \ln (2)}{2}(p-2) \delta(V)^{2}\right)$
Corollary: $\delta(V)$ is finitely computable (finitely many $d_{n}(V)$ are required)

Proof for $p=2$

Proof for $p=2$

Plan: Let \mathcal{D} be the semisimplification of the subcategory generated by V.

Proof for $p=2$

Plan: Let \mathcal{D} be the semisimplification of the subcategory generated by V. We will prove that there is a function $a(\delta)$ such that for any simple object L of \mathcal{D} we have $\delta(L) \leq a(\delta(V))$. Then we can take $K^{\prime}=\frac{1}{a(\delta(V))}$.

Proof for $p=2$

Plan: Let \mathcal{D} be the semisimplification of the subcategory generated by V. We will prove that there is a function $a(\delta)$ such that for any simple object L of \mathcal{D} we have $\delta(L) \leq a(\delta(V))$. Then we can take $K^{\prime}=\frac{1}{a(\delta(V))}$.
Step 1. Translation: Let $d=\delta(V)$.

Proof for $p=2$

Plan: Let \mathcal{D} be the semisimplification of the subcategory generated by V. We will prove that there is a function $a(\delta)$ such that for any simple object L of \mathcal{D} we have $\delta(L) \leq a(\delta(V))$. Then we can take $K^{\prime}=\frac{1}{a(\delta(V))}$.
Step 1. Translation: Let $d=\delta(V)$. Then $\mathcal{D} \simeq \operatorname{Rep}(S)$ where $S \subset G L(d)$ is linearly reductive subgroup (since $\bar{V} \in \operatorname{Rep}(S)$ is faithful).

Proof for $p=2$

Plan: Let \mathcal{D} be the semisimplification of the subcategory generated by V. We will prove that there is a function $a(\delta)$ such that for any simple object L of \mathcal{D} we have $\delta(L) \leq a(\delta(V))$. Then we can take $K^{\prime}=\frac{1}{a(\delta(V))}$.
Step 1. Translation: Let $d=\delta(V)$. Then $\mathcal{D} \simeq \operatorname{Rep}(S)$ where $S \subset G L(d)$ is linearly reductive subgroup (since $\bar{V} \in \operatorname{Rep}(S)$ is faithful). We want to find abelian subgroup of S of index $\leq a(d)$.

Proof for $p=2$

Plan: Let \mathcal{D} be the semisimplification of the subcategory generated by V. We will prove that there is a function $a(\delta)$ such that for any simple object L of \mathcal{D} we have $\delta(L) \leq a(\delta(V))$. Then we can take $K^{\prime}=\frac{1}{a(\delta(V))}$.
Step 1. Translation: Let $d=\delta(V)$. Then $\mathcal{D} \simeq \operatorname{Rep}(S)$ where $S \subset G L(d)$ is linearly reductive subgroup (since $\bar{V} \in \operatorname{Rep}(S)$ is faithful). We want to find abelian subgroup of S of index $\leq a(d)$.
Step 2: S contains a normal diagonalzable subgroup D of finite index.

Proof for $p=2$

Plan: Let \mathcal{D} be the semisimplification of the subcategory generated by V. We will prove that there is a function $a(\delta)$ such that for any simple object L of \mathcal{D} we have $\delta(L) \leq a(\delta(V))$. Then we can take $K^{\prime}=\frac{1}{a(\delta(V))}$. Step 1. Translation: Let $d=\delta(V)$. Then $\mathcal{D} \simeq \operatorname{Rep}(S)$ where $S \subset G L(d)$ is linearly reductive subgroup (since $\bar{V} \in \operatorname{Rep}(S)$ is faithful). We want to find abelian subgroup of S of index $\leq a(d)$.
Step 2: S contains a normal diagonalzable subgroup D of finite index. Also S contains finite subgroup (of odd order) F such that $S=F \cdot D$.

Proof for $p=2$

Plan: Let \mathcal{D} be the semisimplification of the subcategory generated by V. We will prove that there is a function $a(\delta)$ such that for any simple object L of \mathcal{D} we have $\delta(L) \leq a(\delta(V))$. Then we can take $K^{\prime}=\frac{1}{a(\delta(V))}$.
Step 1. Translation: Let $d=\delta(V)$. Then $\mathcal{D} \simeq \operatorname{Rep}(S)$ where $S \subset G L(d)$ is linearly reductive subgroup (since $\bar{V} \in \operatorname{Rep}(S)$ is faithful). We want to find abelian subgroup of S of index $\leq a(d)$.
Step 2: S contains a normal diagonalzable subgroup D of finite index. Also S contains finite subgroup (of odd order) F such that $S=F \cdot D$.
Step 3. Jordan's theorem: There is a bound $J(d)$ such that F contains (normal) abelian subgroup N of index $\leq J(d)$.

Proof for $p=2$

Plan: Let \mathcal{D} be the semisimplification of the subcategory generated by V. We will prove that there is a function $a(\delta)$ such that for any simple object L of \mathcal{D} we have $\delta(L) \leq a(\delta(V))$. Then we can take $K^{\prime}=\frac{1}{a(\delta(V))}$.
Step 1. Translation: Let $d=\delta(V)$. Then $\mathcal{D} \simeq \operatorname{Rep}(S)$ where $S \subset G L(d)$ is linearly reductive subgroup (since $\bar{V} \in \operatorname{Rep}(S)$ is faithful). We want to find abelian subgroup of S of index $\leq a(d)$.
Step 2: S contains a normal diagonalzable subgroup D of finite index. Also S contains finite subgroup (of odd order) F such that $S=F \cdot D$.
Step 3. Jordan's theorem: There is a bound $J(d)$ such that F contains (normal) abelian subgroup N of index $\leq J(d)$.
Step 4: The group of characters D^{\vee} is generated by the set $\Pi=\{$ weights of $\bar{V}\}$ of size $\leq d$.

Proof for $p=2$

Plan: Let \mathcal{D} be the semisimplification of the subcategory generated by V. We will prove that there is a function $a(\delta)$ such that for any simple object L of \mathcal{D} we have $\delta(L) \leq a(\delta(V))$. Then we can take $K^{\prime}=\frac{1}{a(\delta(V))}$.
Step 1. Translation: Let $d=\delta(V)$. Then $\mathcal{D} \simeq \operatorname{Rep}(S)$ where $S \subset G L(d)$ is linearly reductive subgroup (since $\bar{V} \in \operatorname{Rep}(S)$ is faithful). We want to find abelian subgroup of S of index $\leq a(d)$.
Step 2: S contains a normal diagonalzable subgroup D of finite index. Also S contains finite subgroup (of odd order) F such that $S=F \cdot D$.
Step 3. Jordan's theorem: There is a bound $J(d)$ such that F contains (normal) abelian subgroup N of index $\leq J(d)$.
Step 4: The group of characters D^{\vee} is generated by the set $\Pi=\{$ weights of $\bar{V}\}$ of size $\leq d$. The group N acts on Π, hence $N \supset N_{1}$ such that N_{1} acts trivially on D^{\vee} and $\left[N: N_{1}\right] \leq 3^{d / 3}$.

Proof for $p=2$

Plan: Let \mathcal{D} be the semisimplification of the subcategory generated by V. We will prove that there is a function $a(\delta)$ such that for any simple object L of \mathcal{D} we have $\delta(L) \leq a(\delta(V))$. Then we can take $K^{\prime}=\frac{1}{a(\delta(V))}$.
Step 1. Translation: Let $d=\delta(V)$. Then $\mathcal{D} \simeq \operatorname{Rep}(S)$ where $S \subset G L(d)$ is linearly reductive subgroup (since $\bar{V} \in \operatorname{Rep}(S)$ is faithful). We want to find abelian subgroup of S of index $\leq a(d)$.
Step 2: S contains a normal diagonalzable subgroup D of finite index. Also S contains finite subgroup (of odd order) F such that $S=F \cdot D$.
Step 3. Jordan's theorem: There is a bound $J(d)$ such that F contains (normal) abelian subgroup N of index $\leq J(d)$.
Step 4: The group of characters D^{\vee} is generated by the set $\Pi=\{$ weights of $\bar{V}\}$ of size $\leq d$. The group N acts on Π, hence $N \supset N_{1}$ such that N_{1} acts trivially on D^{\vee} and $\left[N: N_{1}\right] \leq 3^{d / 3}$.
Step 5: The subgroup $N_{1} \cdot D \subset S$ is abelian of index $\leq J(d) 3^{d / 3}$.

Proof for $p=2$

Plan: Let \mathcal{D} be the semisimplification of the subcategory generated by V. We will prove that there is a function $a(\delta)$ such that for any simple object L of \mathcal{D} we have $\delta(L) \leq a(\delta(V))$. Then we can take $K^{\prime}=\frac{1}{a(\delta(V))}$.
Step 1. Translation: Let $d=\delta(V)$. Then $\mathcal{D} \simeq \operatorname{Rep}(S)$ where $S \subset G L(d)$ is linearly reductive subgroup (since $\bar{V} \in \operatorname{Rep}(S)$ is faithful). We want to find abelian subgroup of S of index $\leq a(d)$.
Step 2: S contains a normal diagonalzable subgroup D of finite index. Also S contains finite subgroup (of odd order) F such that $S=F \cdot D$.
Step 3. Jordan's theorem: There is a bound $J(d)$ such that F contains (normal) abelian subgroup N of index $\leq J(d)$.
Step 4: The group of characters D^{\vee} is generated by the set $\Pi=\{$ weights of $\bar{V}\}$ of size $\leq d$. The group N acts on Π, hence $N \supset N_{1}$ such that N_{1} acts trivially on D^{\vee} and $\left[N: N_{1}\right] \leq 3^{d / 3}$.
Step 5: The subgroup $N_{1} \cdot D \subset S$ is abelian of index $\leq J(d) 3^{d / 3}$. Best possible bound for $J(d)$ in the literature: $J(d) \leq 3^{d-1}$ (G. Robinson).

Proof for $p=2$

Plan: Let \mathcal{D} be the semisimplification of the subcategory generated by V. We will prove that there is a function $a(\delta)$ such that for any simple object L of \mathcal{D} we have $\delta(L) \leq a(\delta(V))$. Then we can take $K^{\prime}=\frac{1}{a(\delta(V))}$.
Step 1. Translation: Let $d=\delta(V)$. Then $\mathcal{D} \simeq \operatorname{Rep}(S)$ where $S \subset G L(d)$ is linearly reductive subgroup (since $\bar{V} \in \operatorname{Rep}(S)$ is faithful). We want to find abelian subgroup of S of index $\leq a(d)$.
Step 2: S contains a normal diagonalzable subgroup D of finite index. Also S contains finite subgroup (of odd order) F such that $S=F \cdot D$.
Step 3. Jordan's theorem: There is a bound $J(d)$ such that F contains (normal) abelian subgroup N of index $\leq J(d)$.
Step 4: The group of characters D^{\vee} is generated by the set
$\Pi=\{$ weights of $\bar{V}\}$ of size $\leq d$. The group N acts on Π, hence $N \supset N_{1}$ such that N_{1} acts trivially on D^{\vee} and $\left[N: N_{1}\right] \leq 3^{d / 3}$.
Step 5: The subgroup $N_{1} \cdot D \subset S$ is abelian of index $\leq J(d) 3^{d / 3}$. Best possible bound for $J(d)$ in the literature: $J(d) \leq 3^{d-1}$ (G. Robinson).

$$
a(d)=3^{4 / 3 d-1}
$$

Benson's conjecture

Benson's conjecture

Challenge:

Assume $p=2$ and Γ is a finite 2-group.
Conjecture (D. Benson): Any object of $\overline{\operatorname{Rep}(\Gamma)}$ is invertible.

Benson's conjecture

Challenge:

Assume $p=2$ and Γ is a finite 2-group.
Conjecture (D. Benson): Any object of $\overline{\operatorname{Rep}(\Gamma)}$ is invertible.
True when Γ is cyclic or $\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$

Thanks for listening!

