2024 Symmetric Tensor Categories and Representation Theory IPAM

Growth in tensor powers

Victor Ostrik

University of Oregon

vostrik@uoregon.edu

January 8-12

arxiv: 2107.02372, 2301.00885, 2301.09804 (jt with Kevin Coulembier, Pavel Etingof)

Victor Ostrik (U of O)

F – any field

- F any field
- Γ any of the following:
 - group or group scheme
 - Lie algebra,
 - semigroup,
 - super group or super Lie algebra

- F any field
- Γ any of the following:
 - group or group scheme
 - Lie algebra,
 - semigroup,
 - super group or super Lie algebra
- V finite dimensional representation of Γ

perhaps V is an object of a Tannakian category

- F any field
- Γ any of the following:
 - group or group scheme
 - Lie algebra,
 - semigroup,
 - super group or super Lie algebra
- V- finite dimensional representation of Γ perhaps V is an object of a Tannakian category

 $b_n(V) =$ number of indecomposable summands in $V^{\otimes n}$

- F any field
- Γ any of the following:
 - group or group scheme
 - Lie algebra,
 - semigroup,
 - super group or super Lie algebra
- V finite dimensional representation of Γ perhaps V is an object of a *Tannakian category*

 $b_n(V) =$ number of indecomposable summands in $V^{\otimes n}$

Theorem (K. Coulembier, V. O., D. Tubbenhauer)

For any group Γ , field F, representation V we have

$$\lim_{n\to\infty}\sqrt[n]{b_n(V)}=\dim(V)$$

- F any field
- Γ any of the following:
 - group or group scheme
 - Lie algebra,
 - semigroup,
 - super group or super Lie algebra
- V finite dimensional representation of Γ perhaps V is an object of a *Tannakian category*

 $b_n(V) =$ number of indecomposable summands in $V^{\otimes n}$

Theorem (K. Coulembier, V. O., D. Tubbenhauer)

For any group Γ , field F, representation V we have

$$\lim_{n\to\infty}\sqrt[n]{b_n(V)}=\dim(V)$$

Warning: counterexamples for comodules over Hopf algebras

Victor Ostrik (U of O)

Victor Ostrik (U of O)

D. Benson, P. Symonds: Γ finite, char F = p > 0

D. Benson, P. Symonds: Γ finite, char F = p > 0

D. Benson, P. Symonds: Γ finite, char F = p > 0

$$\gamma(V) := \lim_{n \to \infty} \sqrt[n]{c_n(V)}$$

D. Benson, P. Symonds: Γ finite, char F = p > 0

 $c_n(V) =$ total dimension of non-projective summands in $V^{\otimes n}$

$$\gamma(V) := \lim_{n \to \infty} \sqrt[n]{c_n(V)}$$

• The limit exists! but difficult to compute...

D. Benson, P. Symonds: Γ finite, char F = p > 0

$$\gamma(V) := \lim_{n \to \infty} \sqrt[n]{c_n(V)}$$

- The limit exists! but difficult to compute...
- $\gamma(V)$ is not necessarily an integer

D. Benson, P. Symonds: Γ finite, char F = p > 0

$$\gamma(V) := \lim_{n \to \infty} \sqrt[n]{c_n(V)}$$

- The limit exists! but difficult to compute...
- $\gamma(V)$ is not necessarily an integer
- $0 \leq \gamma(V) \leq \dim(V), \ \gamma(V) = 0 \Leftrightarrow V$ is projective

D. Benson, P. Symonds: Γ finite, char F = p > 0

$$\gamma(V) := \lim_{n \to \infty} \sqrt[n]{c_n(V)}$$

- The limit exists! but difficult to compute...
- $\gamma(V)$ is not necessarily an integer
- $0 \leq \gamma(V) \leq \dim(V), \ \gamma(V) = 0 \Leftrightarrow V$ is projective
- $\gamma(V) > 0 \Rightarrow \gamma(V) \ge 1$, $\gamma(V) > 1 \Rightarrow \gamma(V) \ge \sqrt{2}$

D. Benson, P. Symonds: Γ finite, char F = p > 0

$$\gamma(V) := \lim_{n \to \infty} \sqrt[n]{c_n(V)}$$

- The limit exists! but difficult to compute...
- $\gamma(V)$ is not necessarily an integer
- $0 \leq \gamma(V) \leq \dim(V), \ \gamma(V) = 0 \Leftrightarrow V$ is projective
- $\gamma(V) > 0 \Rightarrow \gamma(V) \ge 1$, $\gamma(V) > 1 \Rightarrow \gamma(V) \ge \sqrt{2}$
- Conjecture: $\gamma(V)$ is an algebraic integer

D. Benson, P. Symonds: Γ finite, char F = p > 0

$$\gamma(V) := \lim_{n \to \infty} \sqrt[n]{c_n(V)}$$

- The limit exists! but difficult to compute...
- $\gamma(V)$ is not necessarily an integer
- $0 \leq \gamma(V) \leq \dim(V), \ \gamma(V) = 0 \Leftrightarrow V$ is projective
- $\gamma(V) > 0 \Rightarrow \gamma(V) \ge 1$, $\gamma(V) > 1 \Rightarrow \gamma(V) \ge \sqrt{2}$
- **Conjecture:** $\gamma(V)$ is an algebraic integer
- $\gamma(V \oplus W) \neq \gamma(V) + \gamma(W)$ and $\gamma(V \otimes W) \neq \gamma(V)\gamma(W)$ in general

D. Benson, P. Symonds: Γ finite, char F = p > 0

$$\gamma(V) := \lim_{n \to \infty} \sqrt[n]{c_n(V)}$$

- The limit exists! but difficult to compute...
- $\gamma(V)$ is not necessarily an integer
- $0 \leq \gamma(V) \leq \dim(V), \ \gamma(V) = 0 \Leftrightarrow V$ is projective
- $\gamma(V) > 0 \Rightarrow \gamma(V) \ge 1$, $\gamma(V) > 1 \Rightarrow \gamma(V) \ge \sqrt{2}$
- Conjecture: γ(V) is an algebraic integer
- $\gamma(V \oplus W) \neq \gamma(V) + \gamma(W)$ and $\gamma(V \otimes W) \neq \gamma(V)\gamma(W)$ in general
- can reduce to Γ elementary abelian

D. Benson, P. Symonds: Γ finite, char F = p > 0

 $c_n(V) =$ total dimension of non-projective summands in $V^{\otimes n}$

$$\gamma(V) := \lim_{n \to \infty} \sqrt[n]{c_n(V)}$$

- The limit exists! but difficult to compute...
- $\gamma(V)$ is not necessarily an integer
- $0 \leq \gamma(V) \leq \dim(V), \ \gamma(V) = 0 \Leftrightarrow V$ is projective
- $\gamma(V) > 0 \Rightarrow \gamma(V) \ge 1$, $\gamma(V) > 1 \Rightarrow \gamma(V) \ge \sqrt{2}$
- Conjecture: γ(V) is an algebraic integer
- $\gamma(V \oplus W) \neq \gamma(V) + \gamma(W)$ and $\gamma(V \otimes W) \neq \gamma(V)\gamma(W)$ in general
- can reduce to Γ elementary abelian

Consider $c'_n(V) =$ number of non-projective summands in $V^{\otimes n}$

D. Benson, P. Symonds: Γ finite, char F = p > 0

 $c_n(V) =$ total dimension of non-projective summands in $V^{\otimes n}$

$$\gamma(V) := \lim_{n \to \infty} \sqrt[n]{c_n(V)}$$

- The limit exists! but difficult to compute...
- $\gamma(V)$ is not necessarily an integer
- $0 \leq \gamma(V) \leq \dim(V)$, $\gamma(V) = 0 \Leftrightarrow V$ is projective
- $\gamma(V) > 0 \Rightarrow \gamma(V) \ge 1$, $\gamma(V) > 1 \Rightarrow \gamma(V) \ge \sqrt{2}$
- Conjecture: γ(V) is an algebraic integer
- $\gamma(V \oplus W) \neq \gamma(V) + \gamma(W)$ and $\gamma(V \otimes W) \neq \gamma(V)\gamma(W)$ in general
- can reduce to Γ elementary abelian

Consider $c'_n(V) =$ number of non-projective summands in $V^{\otimes n}$ and define $\gamma'(V) = \lim_{n \to \infty} \sqrt[n]{c'_n(V)}$

D. Benson, P. Symonds: Γ finite, char F = p > 0

 $c_n(V) =$ total dimension of non-projective summands in $V^{\otimes n}$

$$\gamma(V) := \lim_{n \to \infty} \sqrt[n]{c_n(V)}$$

- The limit exists! but difficult to compute...
- $\gamma(V)$ is not necessarily an integer
- $0 \leq \gamma(V) \leq \dim(V), \ \gamma(V) = 0 \Leftrightarrow V$ is projective
- $\gamma(V) > 0 \Rightarrow \gamma(V) \ge 1$, $\gamma(V) > 1 \Rightarrow \gamma(V) \ge \sqrt{2}$
- Conjecture: $\gamma(V)$ is an algebraic integer
- $\gamma(V \oplus W) \neq \gamma(V) + \gamma(W)$ and $\gamma(V \otimes W) \neq \gamma(V)\gamma(W)$ in general
- $\bullet\,$ can reduce to Γ elementary abelian

Consider $c'_n(V) =$ number of non-projective summands in $V^{\otimes n}$ and define $\gamma'(V) = \lim_{n \to \infty} \sqrt[n]{c'_n(V)}$ • Open True/False question: is $\gamma(V) = \gamma'(V)$ for all V?

Victor Ostrik (U of O)

$\Gamma = \mathbb{Z}/5\mathbb{Z}$, p = 5, representation: $1 \mapsto A$, $A^5 = \mathsf{Id} \Leftrightarrow (A - \mathsf{Id})^5 = 0$

 $\Gamma = \mathbb{Z}/5\mathbb{Z}$, p = 5, representation: $1 \mapsto A$, $A^5 = Id \Leftrightarrow (A - Id)^5 = 0$ Indecomposable representations: Jordan cells J_1, J_2, J_3, J_4, J_5

 $\Gamma = \mathbb{Z}/5\mathbb{Z}$, p = 5, representation: $1 \mapsto A$, $A^5 = Id \Leftrightarrow (A - Id)^5 = 0$ Indecomposable representations: Jordan cells J_1, J_2, J_3, J_4, J_5

$$J_3: 1 \mapsto \left(\begin{array}{rrr} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{array} \right)$$

 $\Gamma = \mathbb{Z}/5\mathbb{Z}$, p = 5, representation: $1 \mapsto A$, $A^5 = \mathsf{Id} \Leftrightarrow (A - \mathsf{Id})^5 = 0$ Indecomposable representations: Jordan cells J_1, J_2, J_3, J_4, J_5

$$J_3: 1 \mapsto \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

$$I_1 \text{ is trivial and the only simple$$

 J_1 is trivial and the only simple

 $\Gamma = \mathbb{Z}/5\mathbb{Z}$, p = 5, representation: $1 \mapsto A$, $A^5 = Id \Leftrightarrow (A - Id)^5 = 0$ Indecomposable representations: Jordan cells J_1, J_2, J_3, J_4, J_5

 $J_3: 1 \mapsto \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$ $J_1 \text{ is trivial and the only simple}$ $J_5 \text{ is the only projective}$

$$\begin{split} &\Gamma = \mathbb{Z}/5\mathbb{Z}, \ p = 5, \ \text{representation:} \ 1 \mapsto A, \ A^5 = \text{Id} \Leftrightarrow (A - \text{Id})^5 = 0 \\ &\text{Indecomposable representations:} \ \text{Jordan cells} \ J_1, \ J_2, \ J_3, \ J_4, \ J_5 \\ &J_3 : 1 \mapsto \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \\ &J_1 \ \text{is trivial and the only simple} \end{split}$$

 J_5 is the only projective

Tensor products:
$$J_1 \otimes J_i = J_i$$
 $J_3 \otimes J_3 = J_1 + J_3 + J_5$ $J_3 \otimes J_5 = 3J_5$

 $\Gamma = \mathbb{Z}/5\mathbb{Z}$, p = 5, representation: $1 \mapsto A$, $A^5 = Id \Leftrightarrow (A - Id)^5 = 0$ Indecomposable representations: Jordan cells J_1, J_2, J_3, J_4, J_5

 $J_3: 1 \mapsto \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$ $J_1 \text{ is trivial and the only simple}$ $J_5 \text{ is the only projective}$

Tensor products:
$$J_1 \otimes J_i = J_i$$
 $J_3 \otimes J_3 = J_1 + J_3 + J_5$ $J_3 \otimes J_5 = 3J_5$

Take $V = J_3$ and let $V^{\otimes n} = A_n J_1 + B_n J_3 + C_n J_5$

 $\Gamma = \mathbb{Z}/5\mathbb{Z}$, p = 5, representation: $1 \mapsto A$, $A^5 = Id \Leftrightarrow (A - Id)^5 = 0$ Indecomposable representations: Jordan cells J_1, J_2, J_3, J_4, J_5

 $J_3: 1 \mapsto \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$ $J_1 \text{ is trivial and the only simple}$ $J_5 \text{ is the only projective}$

Tensor products:
$$J_1 \otimes J_i = J_i$$
 $J_3 \otimes J_3 = J_1 + J_3 + J_5$ $J_3 \otimes J_5 = 3J_5$

Take $V = J_3$ and let $V^{\otimes n} = A_n J_1 + B_n J_3 + C_n J_5$

Then
$$A_{n+1} = B_n$$
 (so $A_n = B_{n-1}$) $B_{n+1} = A_n + B_n$ $C_{n+1} = B_n + 3C_n$

 $\Gamma = \mathbb{Z}/5\mathbb{Z}$, p = 5, representation: $1 \mapsto A$, $A^5 = Id \Leftrightarrow (A - Id)^5 = 0$ Indecomposable representations: Jordan cells J_1, J_2, J_3, J_4, J_5

 $J_3: 1 \mapsto \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$ $J_1 \text{ is trivial and the only simple}$ $J_5 \text{ is the only projective}$

Tensor products:
$$J_1 \otimes J_i = J_i$$
 $J_3 \otimes J_3 = J_1 + J_3 + J_5$ $J_3 \otimes J_5 = 3J_5$

Take $V = J_3$ and let $V^{\otimes n} = A_n J_1 + B_n J_3 + C_n J_5$

Then
$$A_{n+1} = B_n$$
 (so $A_n = B_{n-1}$) $B_{n+1} = A_n + B_n$ $C_{n+1} = B_n + 3C_n$

Hence $B_{n+1} = B_{n-1} + B_n = F_n = c'_n(V)$ (Fibonacci number)

 $\Gamma = \mathbb{Z}/5\mathbb{Z}$, p = 5, representation: $1 \mapsto A$, $A^5 = Id \Leftrightarrow (A - Id)^5 = 0$ Indecomposable representations: Jordan cells J_1, J_2, J_3, J_4, J_5

 $J_3: 1 \mapsto \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$ $J_1 \text{ is trivial and the only simple}$ $J_5 \text{ is the only projective}$

Tensor products:
$$J_1 \otimes J_i = J_i$$
 $J_3 \otimes J_3 = J_1 + J_3 + J_5$ $J_3 \otimes J_5 = 3J_5$

Take $V = J_3$ and let $V^{\otimes n} = A_n J_1 + B_n J_3 + C_n J_5$

Then
$$A_{n+1} = B_n$$
 (so $A_n = B_{n-1}$) $B_{n+1} = A_n + B_n$ $C_{n+1} = B_n + 3C_n$

Hence $B_{n+1} = B_{n-1} + B_n = F_n = c'_n(V)$ (Fibonacci number) and $c_n(V) = A_n + 3B_n = B_{n+2} + B_n$ (Lucas number)

 $\Gamma = \mathbb{Z}/5\mathbb{Z}$, p = 5, representation: $1 \mapsto A$, $A^5 = Id \Leftrightarrow (A - Id)^5 = 0$ Indecomposable representations: Jordan cells J_1, J_2, J_3, J_4, J_5

 $J_3: 1 \mapsto \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$ $J_1 \text{ is trivial and the only simple}$ $J_5 \text{ is the only projective}$

Tensor products:
$$J_1 \otimes J_i = J_i$$
 $J_3 \otimes J_3 = J_1 + J_3 + J_5$ $J_3 \otimes J_5 = 3J_5$

Take $V = J_3$ and let $V^{\otimes n} = A_n J_1 + B_n J_3 + C_n J_5$

Then
$$A_{n+1} = B_n$$
 (so $A_n = B_{n-1}$) $B_{n+1} = A_n + B_n$ $C_{n+1} = B_n + 3C_n$

Hence $B_{n+1} = B_{n-1} + B_n = F_n = c'_n(V)$ (Fibonacci number) and $c_n(V) = A_n + 3B_n = B_{n+2} + B_n$ (Lucas number) $\Rightarrow \gamma(V) = \frac{1+\sqrt{5}}{2}$

 $\Gamma = \mathbb{Z}/5\mathbb{Z}$, p = 5, representation: $1 \mapsto A$, $A^5 = Id \Leftrightarrow (A - Id)^5 = 0$ Indecomposable representations: Jordan cells J_1, J_2, J_3, J_4, J_5

 $\begin{array}{c} J_3:1\mapsto \left(\begin{array}{ccc} 1&1&0\\ 0&1&1\\ 0&0&1 \end{array}\right)\\ J_1 \text{ is trivial and the only simple}\\ J_5 \text{ is the only projective} \end{array}$

Tensor products:
$$J_1 \otimes J_i = J_i$$
 $J_3 \otimes J_3 = J_1 + J_3 + J_5$ $J_3 \otimes J_5 = 3J_5$

Take $V = J_3$ and let $V^{\otimes n} = A_n J_1 + B_n J_3 + C_n J_5$

Then
$$A_{n+1} = B_n$$
 (so $A_n = B_{n-1}$) $B_{n+1} = A_n + B_n$ $C_{n+1} = B_n + 3C_n$

Hence $B_{n+1} = B_{n-1} + B_n = F_n = c'_n(V)$ (Fibonacci number) and $c_n(V) = A_n + 3B_n = B_{n+2} + B_n$ (Lucas number) $\Rightarrow \gamma(V) = \frac{1+\sqrt{5}}{2} = \delta(V)$

 $\Gamma = \mathbb{Z}/5\mathbb{Z}$, p = 5, representation: $1 \mapsto A$, $A^5 = Id \Leftrightarrow (A - Id)^5 = 0$ Indecomposable representations: Jordan cells J_1, J_2, J_3, J_4, J_5

 $J_3: 1 \mapsto \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$ $J_1 \text{ is trivial and the only simple}$ $J_5 \text{ is the only projective}$

Tensor products:
$$J_1 \otimes J_i = J_i$$
 $J_3 \otimes J_3 = J_1 + J_3 + J_5$ $J_3 \otimes J_5 = 3J_5$

Take $V = J_3$ and let $V^{\otimes n} = A_n J_1 + B_n J_3 + C_n J_5$

Then
$$A_{n+1} = B_n$$
 (so $A_n = B_{n-1}$) $B_{n+1} = A_n + B_n$ $C_{n+1} = B_n + 3C_n$

Hence $B_{n+1} = B_{n-1} + B_n = F_n = c'_n(V)$ (Fibonacci number) and $c_n(V) = A_n + 3B_n = B_{n+2} + B_n$ (Lucas number) $\Rightarrow \gamma(V) = \frac{1+\sqrt{5}}{2} = \delta(V)$

Exercise. Compute $\gamma(J_2)$ and $\gamma(J_4)$ (of course $\gamma(J_1) = 1$ and $\gamma(J_5) = 0$)

Victor Ostrik (U of O)

Assume F is algebraically closed, char $F = p \ge 0$, $V^{\otimes n} = \bigoplus_{i=1}^{b_n(V)} W_i$

Assume F is algebraically closed, char $F = p \ge 0$, $V^{\otimes n} = \bigoplus_{i=1}^{b_n(V)} W_i$

 $d_n(V) = \text{total number}$ of summands W_i in $V^{\otimes n}$ with $\dim(W_i) \neq 0 \in F$

Assume F is algebraically closed, char $F = p \ge 0$, $V^{\otimes n} = \bigoplus_{i=1}^{b_n(V)} W_i$

 $d_n(V) = \text{total number}$ of summands W_i in $V^{\otimes n}$ with $\dim(W_i) \neq 0 \in F$

Observation: $d_{n+m}(V) \ge d_n(V)d_m(V)$ and $d_n(V) \le \dim(V)^n$

Assume F is algebraically closed, char $F = p \ge 0$, $V^{\otimes n} = \bigoplus_{i=1}^{b_n(V)} W_i$

 $d_n(V) = \text{total number of summands } W_i \text{ in } V^{\otimes n} \text{ with } \dim(W_i) \neq 0 \in F$

Observation: $d_{n+m}(V) \ge d_n(V)d_m(V)$ and $d_n(V) \le \dim(V)^n$

Fekete's Lemma implies that
$$\delta(V) := \lim_{n \to \infty} \sqrt[n]{d_n(V)}$$
 exists

Assume F is algebraically closed, char $F = p \ge 0$, $V^{\otimes n} = \bigoplus_{i=1}^{b_n(V)} W_i$

 $d_n(V) = \text{total number of summands } W_i \text{ in } V^{\otimes n} \text{ with } \dim(W_i) \neq 0 \in F$

Observation: $d_{n+m}(V) \ge d_n(V)d_m(V)$ and $d_n(V) \le \dim(V)^n$

Fekete's Lemma implies that
$$\delta(V) := \lim_{n \to \infty} \sqrt[n]{d_n(V)}$$
 exists

W – <u>indecomposable</u> representation of a group Γ (or super group scheme)

Assume F is algebraically closed, char $F = p \ge 0$, $V^{\otimes n} = \bigoplus_{i=1}^{b_n(V)} W_i$

 $d_n(V) = \text{total number of summands } W_i \text{ in } V^{\otimes n} \text{ with } \dim(W_i) \neq 0 \in F$

Observation: $d_{n+m}(V) \ge d_n(V)d_m(V)$ and $d_n(V) \le \dim(V)^n$

Fekete's Lemma implies that
$$\delta(V) := \lim_{n \to \infty} \sqrt[n]{d_n(V)}$$
 exists

W - indecomposable representation of a group Γ (or super group scheme)

Definition

W is negligible if dim $(W) = 0 \in F$ (take sdim(W) for super groups)

Assume F is algebraically closed, char $F = p \ge 0$, $V^{\otimes n} = \bigoplus_{i=1}^{b_n(V)} W_i$

 $d_n(V) = \text{total number of summands } W_i \text{ in } V^{\otimes n} \text{ with } \dim(W_i) \neq 0 \in F$

Observation: $d_{n+m}(V) \ge d_n(V)d_m(V)$ and $d_n(V) \le \dim(V)^n$

Fekete's Lemma implies that
$$\delta(V) := \lim_{n \to \infty} \sqrt[n]{d_n(V)}$$
 exists

W - indecomposable representation of a group Γ (or super group scheme)

Definition

W is negligible if dim $(W) = 0 \in F$ (take sdim(W) for super groups) W is non-negligible if dim $(W) \neq 0 \in F$

Assume F is algebraically closed, char $F = p \ge 0$, $V^{\otimes n} = \bigoplus_{i=1}^{b_n(V)} W_i$

 $d_n(V) = \text{total number of summands } W_i \text{ in } V^{\otimes n} \text{ with } \dim(W_i) \neq 0 \in F$

Observation: $d_{n+m}(V) \ge d_n(V)d_m(V)$ and $d_n(V) \le \dim(V)^n$

Fekete's Lemma implies that
$$\delta(V) := \lim_{n \to \infty} \sqrt[n]{d_n(V)}$$
 exists

W - indecomposable representation of a group Γ (or super group scheme)

Definition

W is negligible if dim $(W) = 0 \in F$ (take sdim(W) for super groups) W is non-negligible if dim $(W) \neq 0 \in F$

More generally, (possibly decomposable) ${\cal W}$ is negligible if every indecomposable summand is negligible

Assume F is algebraically closed, char $F = p \ge 0$, $V^{\otimes n} = \bigoplus_{i=1}^{b_n(V)} W_i$

 $d_n(V) = \text{total number of summands } W_i \text{ in } V^{\otimes n} \text{ with } \dim(W_i) \neq 0 \in F$

Observation: $d_{n+m}(V) \ge d_n(V)d_m(V)$ and $d_n(V) \le \dim(V)^n$

Fekete's Lemma implies that
$$\delta(V) := \lim_{n \to \infty} \sqrt[n]{d_n(V)}$$
 exists

W - indecomposable representation of a group Γ (or super group scheme)

Definition

W is negligible if dim $(W) = 0 \in F$ (take sdim(W) for super groups) W is non-negligible if dim $(W) \neq 0 \in F$

More generally, (possibly decomposable) ${\cal W}$ is negligible if every indecomposable summand is negligible

Fact (D.Benson): Negligible representations form tensor ideal

Assume F is algebraically closed, char $F = p \ge 0$, $V^{\otimes n} = \bigoplus_{i=1}^{b_n(V)} W_i$

 $d_n(V) = \text{total number of summands } W_i \text{ in } V^{\otimes n} \text{ with } \dim(W_i) \neq 0 \in F$

Observation: $d_{n+m}(V) \ge d_n(V)d_m(V)$ and $d_n(V) \le \dim(V)^n$

Fekete's Lemma implies that
$$\delta(V) := \lim_{n \to \infty} \sqrt[n]{d_n(V)}$$
 exists

W - indecomposable representation of a group Γ (or super group scheme)

Definition

W is negligible if dim $(W) = 0 \in F$ (take sdim(W) for super groups) W is non-negligible if dim $(W) \neq 0 \in F$

More generally, (possibly decomposable) W is negligible if every indecomposable summand is negligible

Fact (D.Benson): Negligible representations form tensor ideal $d_n(V) = \text{total number of <u>non-negligible</u> summands in <math>V^{\otimes n}$

Victor Ostrik (U of O)

Growth in tensor powers

Victor Ostrik (U of O)

Obvious properties:

• $\delta(V \oplus W) \ge \delta(V) + \delta(W)$

Obvious properties:

• $\delta(V \oplus W) \ge \delta(V) + \delta(W)$ • $\delta(V \otimes W) \ge \delta(V)\delta(W)$

Obvious properties:

- $\delta(V \oplus W) \ge \delta(V) + \delta(W)$
- $\delta(V \otimes W) \geq \delta(V)\delta(W)$
- $\delta(V) = 0 \Leftrightarrow V$ is negligible

Obvious properties:

- $\delta(V \oplus W) \ge \delta(V) + \delta(W)$
- $\delta(V \otimes W) \geq \delta(V)\delta(W)$
- $\delta(V) = 0 \Leftrightarrow V$ is negligible
- $\delta(V) > 0 \Rightarrow 1 \le \delta(V) \le \dim(V)$

Obvious properties:

- $\delta(V \oplus W) \ge \delta(V) + \delta(W)$
- $\delta(V \otimes W) \geq \delta(V)\delta(W)$
- $\delta(V) = 0 \Leftrightarrow V$ is negligible
- $\delta(V) > 0 \Rightarrow 1 \le \delta(V) \le \dim(V)$

Theorem (K. Coulembier, P. Etingof, V. O.)

1.
$$\delta(V \oplus W) = \delta(V) + \delta(W)$$
 and $\delta(V \otimes W) = \delta(V)\delta(W)$.

Obvious properties:

- $\delta(V \oplus W) \ge \delta(V) + \delta(W)$
- $\delta(V \otimes W) \geq \delta(V)\delta(W)$
- $\delta(V) = 0 \Leftrightarrow V$ is negligible
- $\delta(V) > 0 \Rightarrow 1 \le \delta(V) \le \dim(V)$

Theorem (K. Coulembier, P. Etingof, V. O.) 1. $\delta(V \oplus W) = \delta(V) + \delta(W)$ and $\delta(V \otimes W) = \delta(V)\delta(W)$. 2. Let $q = q_p = e^{\frac{\pi i}{p}}$ and $[m]_q := \frac{q^m - q^{-m}}{q - q^{-1}} = q^{m-1} + \ldots + q^{1-m}$ for $m \in \mathbb{N}$. Then $\delta(V) =$ linear combination of $[m]_q, 1 \le m \le \frac{p}{2}$ with nonnegative integer coefficients.

Obvious properties:

- $\delta(V \oplus W) \ge \delta(V) + \delta(W)$
- $\delta(V \otimes W) \geq \delta(V)\delta(W)$
- $\delta(V) = 0 \Leftrightarrow V$ is negligible
- $\delta(V) > 0 \Rightarrow 1 \le \delta(V) \le \dim(V)$

Theorem (K. Coulembier, P. Etingof, V. O.)

1. $\delta(V \oplus W) = \delta(V) + \delta(W)$ and $\delta(V \otimes W) = \delta(V)\delta(W)$. 2. Let $q = q_p = e^{\frac{\pi i}{p}}$ and $[m]_q := \frac{q^m - q^{-m}}{q - q^{-1}} = q^{m-1} + \ldots + q^{1-m}$ for $m \in \mathbb{N}$. Then $\delta(V) =$ linear combination of $[m]_q, 1 \le m \le \frac{p}{2}$ with nonnegative integer coefficients.

Example

For p=2 or p=3 we say that $\delta(V)\in\mathbb{Z}_{\geq0}$

Obvious properties:

- $\delta(V \oplus W) \ge \delta(V) + \delta(W)$
- $\delta(V \otimes W) \geq \delta(V)\delta(W)$
- $\delta(V) = 0 \Leftrightarrow V$ is negligible
- $\delta(V) > 0 \Rightarrow 1 \le \delta(V) \le \dim(V)$

Theorem (K. Coulembier, P. Etingof, V. O.)

1. $\delta(V \oplus W) = \delta(V) + \delta(W)$ and $\delta(V \otimes W) = \delta(V)\delta(W)$. 2. Let $q = q_p = e^{\frac{\pi i}{p}}$ and $[m]_q := \frac{q^m - q^{-m}}{q - q^{-1}} = q^{m-1} + \ldots + q^{1-m}$ for $m \in \mathbb{N}$. Then $\delta(V) =$ linear combination of $[m]_q, 1 \le m \le \frac{p}{2}$ with nonnegative integer coefficients.

Example

For
$$p = 2$$
 or $p = 3$ we say that $\delta(V) \in \mathbb{Z}_{\geq 0}$
For $p = 5$, $\delta(V) = a + b\frac{1+\sqrt{5}}{2}$ where $a, b \in \mathbb{Z}_{\geq 0}$ (since $[2]_{q_5} = \frac{1+\sqrt{5}}{2}$)

Victor Ostrik (U of O)

	Г	р	V	$\dim(V)$	$\gamma(V)$	$\delta(V)$	$d_n(V)$	note
	$\mathbb{Z}/5\mathbb{Z}$	5	J_3	3	$\frac{1+\sqrt{5}}{2}$	$\frac{1+\sqrt{5}}{2}$	F _n	$= c'_n(V)$
_								

Г	р	V	$\dim(V)$	$\gamma(V)$	$\delta(V)$	$d_n(V)$	note
$\mathbb{Z}/5\mathbb{Z}$	5	J_3	3	$\frac{1+\sqrt{5}}{2}$	$\frac{1+\sqrt{5}}{2}$	F _n	$=c'_n(V)$
$\mathbb{Z}/8\mathbb{Z}$	2	J_5	5	3	1	1	

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Г	р	V	$\dim(V)$	$\gamma(V)$	$\delta(V)$	$d_n(V)$	note
$\mathbb{Z}/8\mathbb{Z}$ 2 J_5 5 3 1 1	$\mathbb{Z}/5\mathbb{Z}$	5	J_3	3	$\frac{1+\sqrt{5}}{2}$	$\frac{1+\sqrt{5}}{2}$	F _n	$= c'_n(V)$
$\frac{\pi}{0}$	$\mathbb{Z}/8\mathbb{Z}$	12	J_5	5	3	1	1	
$ \mathbb{Z}/9\mathbb{Z} $ 3 $ J_5 $ 3 $ S $ 3 $ Z $ 3 $ Z $ 4 $ \overline{3}(Z + (-1)) = a_n(WS_3)$	$\mathbb{Z}/9\mathbb{Z}$	3	J_5	5	3	2	$\frac{1}{3}(2^{n+1}+(-1)^n)$	$= d_n(W_{S_3})$

Г	p	V	$\dim(V)$	$\gamma(V)$	$\delta(V)$	$d_n(V)$	note
$\mathbb{Z}/5\mathbb{Z}$	5	J_3	3	$\frac{1+\sqrt{5}}{2}$	$\frac{1+\sqrt{5}}{2}$	F _n	$= c'_n(V)$
$\mathbb{Z}/8\mathbb{Z}$	2	J_5	5	3	1	1	
$\mathbb{Z}/9\mathbb{Z}$	3	J_5	5	3	2	$\frac{1}{3}(2^{n+1}+(-1)^n)$	$= d_n(W_{S_3})$

Г	p	V	$\dim(V)$	$\gamma(V)$	$\delta(V)$	$d_n(V)$	note
$\mathbb{Z}/5\mathbb{Z}$	5	J_3	3	$\frac{1+\sqrt{5}}{2}$	$\frac{1+\sqrt{5}}{2}$	F _n	$=c_n'(V)$
$\mathbb{Z}/8\mathbb{Z}$	2	J_5	5	3	1	1	
$\mathbb{Z}/9\mathbb{Z}$	3	J_5	5	3	2	$\frac{1}{3}(2^{n+1}+(-1)^n)$	$= d_n(W_{S_3})$

Assume
$$p = 2$$
 and dim $(V) = 3$ or $p = 3$ and dim $(V) = 2$

Г	p	V	$\dim(V)$	$\gamma(V)$	$\delta(V)$	$d_n(V)$	note
$\mathbb{Z}/5\mathbb{Z}$	5	J_3	3	$\frac{1+\sqrt{5}}{2}$	$\frac{1+\sqrt{5}}{2}$	F _n	$=c_n'(V)$
$\mathbb{Z}/8\mathbb{Z}$	2	J_5	5	3	1	1	
$\mathbb{Z}/9\mathbb{Z}$	3	J_5	5	3	2	$\frac{1}{3}(2^{n+1}+(-1)^n)$	$= d_n(W_{S_3})$

Example

Assume p = 2 and dim(V) = 3 or p = 3 and dim(V) = 2Then exactly one of the following is true:

Г	p	V	$\dim(V)$	$\gamma(V)$	$\delta(V)$	$d_n(V)$	note
$\mathbb{Z}/5\mathbb{Z}$	5	J_3	3	$\frac{1+\sqrt{5}}{2}$	$\frac{1+\sqrt{5}}{2}$	F _n	$= c'_n(V)$
$\mathbb{Z}/8\mathbb{Z}$	2	J_5	5	3	1	1	
$\mathbb{Z}/9\mathbb{Z}$	3	J_5	5	3	2	$\frac{1}{3}(2^{n+1}+(-1)^n)$	$= d_n(W_{S_3})$

Example

Assume
$$p = 2$$
 and dim $(V) = 3$ or $p = 3$ and dim $(V) = 2$

Then exactly one of the following is true: (a) all summands of $V^{\otimes n}$ are non-negligible for all *n*

- (a) an summand of each $V^{\otimes n}$ is non-medicible for
- (b) exactly one summand of each $V^{\otimes n}$ is non-negligible for all n

Г	p	V	$\dim(V)$	$\gamma(V)$	$\delta(V)$	$d_n(V)$	note
$\mathbb{Z}/5\mathbb{Z}$	5	J_3	3	$\frac{1+\sqrt{5}}{2}$	$\frac{1+\sqrt{5}}{2}$	F _n	$= c'_n(V)$
$\mathbb{Z}/8\mathbb{Z}$	2	J_5	5	3	1	1	
$\mathbb{Z}/9\mathbb{Z}$	3	J_5	5	3	2	$\frac{1}{3}(2^{n+1}+(-1)^n)$	$= d_n(W_{S_3})$

Example

Assume p = 2 and dim(V) = 3 or p = 3 and dim(V) = 2Then exactly one of the following is true: (a) all summands of $V^{\otimes n}$ are non-negligible for all n(b) exactly one summand of each $V^{\otimes n}$ is non-negligible for all n

Define $d'_n(V) = \text{total dimension of non-negligible summands in } V^{\otimes n}$

Г	p	V	$\dim(V)$	$\gamma(V)$	$\delta(V)$	$d_n(V)$	note
$\mathbb{Z}/5\mathbb{Z}$	5	J_3	3	$\frac{1+\sqrt{5}}{2}$	$\frac{1+\sqrt{5}}{2}$	F _n	$= c'_n(V)$
$\mathbb{Z}/8\mathbb{Z}$	2	J_5	5	3	1	1	
$\mathbb{Z}/9\mathbb{Z}$	3	J_5	5	3	2	$\frac{1}{3}(2^{n+1}+(-1)^n)$	$= d_n(W_{S_3})$

Example

Assume p = 2 and dim(V) = 3 or p = 3 and dim(V) = 2Then exactly one of the following is true: (a) all summands of $V^{\otimes n}$ are non-negligible for all n(b) exactly one summand of each $V^{\otimes n}$ is non-negligible for all n

Define $d'_n(V) = \text{total dimension of non-negligible summands in } V^{\otimes n}$ and $\delta'(V) := \lim_{n \to \infty} \sqrt[n]{d'_n(V)}$

Г	p	V	$\dim(V)$	$\gamma(V)$	$\delta(V)$	$d_n(V)$	note
$\mathbb{Z}/5\mathbb{Z}$	5	J_3	3	$\frac{1+\sqrt{5}}{2}$	$\frac{1+\sqrt{5}}{2}$	F _n	$= c'_n(V)$
$\mathbb{Z}/8\mathbb{Z}$	2	J_5	5	3	1	1	
$\mathbb{Z}/9\mathbb{Z}$	3	J_5	5	3	2	$\frac{1}{3}(2^{n+1}+(-1)^n)$	$= d_n(W_{S_3})$

Example

Assume p = 2 and dim(V) = 3 or p = 3 and dim(V) = 2Then exactly one of the following is true: (a) all summands of $V^{\otimes n}$ are non-negligible for all n(b) exactly one summand of each $V^{\otimes n}$ is non-negligible for all n

Define $d'_n(V) = \text{total dimension of non-negligible summands in } V^{\otimes n}$ and $\delta'(V) := \lim_{n \to \infty} \sqrt[n]{d'_n(V)}$

Question: is $\delta(V) = \delta'(V)$ for any V?

Step 1: Semisimplification

Assume ${\mathcal C}$ is $F{\rm -linear}$ monoidal category such that Tr is defined

Step 1: Semisimplification

Assume C is F-linear monoidal category such that Tr is defined

(e.g. any monoidal subcategory of $\operatorname{Rep}(\Gamma)$)

Step 1: Semisimplification

Assume C is F-linear monoidal category such that Tr is defined

(e.g. any monoidal subcategory of $\operatorname{Rep}(\Gamma)$)

Definition

 $f \in \operatorname{Hom}(X, Y)$ is negligible if $\operatorname{Tr}(fg) = 0 \in F$ for any $g \in \operatorname{Hom}(Y, X)$.

Step 1: Semisimplification

Assume C is F-linear monoidal category such that Tr is defined

(e.g. any monoidal subcategory of $\operatorname{Rep}(\Gamma)$)

Definition

 $f \in \text{Hom}(X, Y)$ is negligible if $\text{Tr}(fg) = 0 \in F$ for any $g \in \text{Hom}(Y, X)$. Let $\mathcal{N}(X, Y) \subset \text{Hom}(X, Y)$ denote the subset of negligible morphisms

Step 1: Semisimplification

Assume C is F-linear monoidal category such that Tr is defined

(e.g. any monoidal subcategory of $\operatorname{Rep}(\Gamma)$)

Definition

 $f \in \text{Hom}(X, Y)$ is negligible if $\text{Tr}(fg) = 0 \in F$ for any $g \in \text{Hom}(Y, X)$. Let $\mathcal{N}(X, Y) \subset \text{Hom}(X, Y)$ denote the subset of negligible morphisms

Fact: Collection $\mathcal{N}(X, Y) \subset \text{Hom}(X, Y)$ is tensor ideal

Step 1: Semisimplification

Assume \mathcal{C} is F-linear monoidal category such that Tr is defined

(e.g. any monoidal subcategory of $\operatorname{Rep}(\Gamma)$)

Definition

 $f \in \text{Hom}(X, Y)$ is negligible if $\text{Tr}(fg) = 0 \in F$ for any $g \in \text{Hom}(Y, X)$. Let $\mathcal{N}(X, Y) \subset \text{Hom}(X, Y)$ denote the subset of negligible morphisms

Fact: Collection $\mathcal{N}(X, Y) \subset \text{Hom}(X, Y)$ is tensor ideal

Definition of new category $\overline{\mathcal{C}}$

Objects of \overline{C} = objects of C; Hom_{\overline{C}}(X, Y) = Hom(X, Y)/ $\mathcal{N}(X, Y)$

Step 1: Semisimplification

Assume \mathcal{C} is F-linear monoidal category such that Tr is defined

(e.g. any monoidal subcategory of $\operatorname{Rep}(\Gamma)$)

Definition

 $f \in \text{Hom}(X, Y)$ is negligible if $\text{Tr}(fg) = 0 \in F$ for any $g \in \text{Hom}(Y, X)$. Let $\mathcal{N}(X, Y) \subset \text{Hom}(X, Y)$ denote the subset of negligible morphisms

Fact: Collection $\mathcal{N}(X, Y) \subset \text{Hom}(X, Y)$ is tensor ideal

Definition of new category $\overline{\mathcal{C}}$

Objects of \overline{C} = objects of C; Hom_{\overline{C}}(X, Y) = Hom $(X, Y)/\mathcal{N}(X, Y)$ Monoidal structure on \overline{C} : inherited from CThus we have (symmetric) tensor functor $C \to \overline{C}$, $X \mapsto \overline{X}$

Step 1: Semisimplification

Assume \mathcal{C} is F-linear monoidal category such that Tr is defined

(e.g. any monoidal subcategory of $\operatorname{Rep}(\Gamma)$)

Definition

 $f \in \text{Hom}(X, Y)$ is *negligible* if $\text{Tr}(fg) = 0 \in F$ for any $g \in \text{Hom}(Y, X)$. Let $\mathcal{N}(X, Y) \subset \text{Hom}(X, Y)$ denote the subset of negligible morphisms

Fact: Collection $\mathcal{N}(X, Y) \subset \text{Hom}(X, Y)$ is tensor ideal

Definition of new category $\bar{\mathcal{C}}$

Objects of \overline{C} = objects of C; Hom_{\overline{C}}(X, Y) = Hom $(X, Y)/\mathcal{N}(X, Y)$ Monoidal structure on \overline{C} : inherited from CThus we have (symmetric) tensor functor $C \to \overline{C}$, $X \mapsto \overline{X}$

Fact (D.Benson): Assume C is full Karoubian monoidal subcategory of Rep(Γ). Then \overline{C} is abelian semisimple and { simple objects of \overline{C} } \leftrightarrow { non-negligible indecomposable objects of C} Victor Ostrik (U of O) Growth in tensor powers January 8-12 8 / 15

Corollary:

$$d_n(V) = b_n(\bar{V})$$

Corollary: $d_n(V) = b_n(\bar{V})$

Example

1. $\Gamma = \mathbb{Z}/8\mathbb{Z}$, p = 2, C = full Karoubian monoidal subcategory of Rep(Γ) generated by J_5 . We have

Corollary: $d_n(V) = b_n(\bar{V})$

Example

1. $\Gamma = \mathbb{Z}/8\mathbb{Z}$, p = 2, C = full Karoubian monoidal subcategory of Rep(Γ) generated by J_5 . We have

$$J_5 \otimes J_5 = J_1 \oplus 2J_4 \oplus 2J_8$$

Corollary: $d_n(V) = b_n(\bar{V})$

Example

1. $\Gamma = \mathbb{Z}/8\mathbb{Z}$, p = 2, C = full Karoubian monoidal subcategory of Rep(Γ) generated by J_5 . We have

$$J_5 \otimes J_5 = J_1 \oplus 2J_4 \oplus 2J_8$$

Hence $C = \langle J_1, J_4, J_5, J_8 \rangle$ and $\overline{C} = \langle \overline{J}_1, \overline{J}_5 \rangle = \text{Vec}_{\mathbb{Z}/2\mathbb{Z}}$

Corollary: $d_n(V) = b_n(\bar{V})$

Example

1. $\Gamma = \mathbb{Z}/8\mathbb{Z}$, p = 2, C = full Karoubian monoidal subcategory of Rep(Γ) generated by J_5 . We have

$$J_5 \otimes J_5 = J_1 \oplus 2J_4 \oplus 2J_8$$

Hence $\mathcal{C} = \langle J_1, J_4, J_5, J_8 \rangle$ and $\overline{\mathcal{C}} = \langle \overline{J}_1, \overline{J}_5 \rangle = \mathsf{Vec}_{\mathbb{Z}/2\mathbb{Z}}$

2. $\Gamma = \mathbb{Z}/9\mathbb{Z}$, p = 3, $C = \text{full Karoubian monoidal subcategory of Rep}(\Gamma)$ generated by $J_5 = \langle J_1, J_3, J_5, J_6, J_7, J_9 \rangle$

Corollary: $d_n(V) = b_n(\bar{V})$

Example

1. $\Gamma = \mathbb{Z}/8\mathbb{Z}$, p = 2, C = full Karoubian monoidal subcategory of Rep(Γ) generated by J_5 . We have

 $J_5 \otimes J_5 = J_1 \oplus 2J_4 \oplus 2J_8$ Hence $C = \langle J_1, J_4, J_5, J_8 \rangle$ and $\overline{C} = \langle \overline{J}_1, \overline{J}_5 \rangle = \text{Vec}_{\mathbb{Z}/2\mathbb{Z}}$ 2. $\Gamma = \mathbb{Z}/9\mathbb{Z}$, p = 3, $C = \text{full Karoubian monoidal subcategory of Rep}(\Gamma)$ generated by $J_5 = \langle J_1, J_3, J_5, J_6, J_7, J_9 \rangle$ Then \overline{C} has simple objects $\overline{J}_1, \overline{J}_5, \overline{J}_7$ with

Corollary: $d_n(V) = b_n(\bar{V})$

Example

1. $\Gamma = \mathbb{Z}/8\mathbb{Z}$, p = 2, C = full Karoubian monoidal subcategory of Rep(Γ) generated by J_5 . We have

 $J_5 \otimes J_5 = J_1 \oplus 2J_4 \oplus 2J_8$ Hence $C = \langle J_1, J_4, J_5, J_8 \rangle$ and $\overline{C} = \langle \overline{J}_1, \overline{J}_5 \rangle = \text{Vec}_{\mathbb{Z}/2\mathbb{Z}}$ 2. $\Gamma = \mathbb{Z}/9\mathbb{Z}$, p = 3, $C = \text{full Karoubian monoidal subcategory of Rep}(\Gamma)$ generated by $J_5 = \langle J_1, J_3, J_5, J_6, J_7, J_9 \rangle$ Then \overline{C} has simple objects $\overline{J}_1, \overline{J}_5, \overline{J}_7$ with

$$ar{J}_7\otimesar{J}_7=ar{J}_1,\ ar{J}_7\otimesar{J}_5=ar{J}_5,\ ar{J}_5\otimesar{J}_5=ar{J}_1\oplusar{J}_5\oplusar{J}_7$$

Corollary: $d_n(V) = b_n(\bar{V})$

Example

1. $\Gamma = \mathbb{Z}/8\mathbb{Z}$, p = 2, C = full Karoubian monoidal subcategory of Rep(Γ) generated by J_5 . We have

 $J_5 \otimes J_5 = J_1 \oplus 2J_4 \oplus 2J_8$ Hence $C = \langle J_1, J_4, J_5, J_8 \rangle$ and $\overline{C} = \langle \overline{J}_1, \overline{J}_5 \rangle = \text{Vec}_{\mathbb{Z}/2\mathbb{Z}}$ 2. $\Gamma = \mathbb{Z}/9\mathbb{Z}$, p = 3, $C = \text{full Karoubian monoidal subcategory of Rep}(\Gamma)$ generated by $J_5 = \langle J_1, J_3, J_5, J_6, J_7, J_9 \rangle$ Then \overline{C} has simple objects $\overline{J}_1, \overline{J}_5, \overline{J}_7$ with

$$ar{J}_7\otimesar{J}_7=ar{J}_1,\ ar{J}_7\otimesar{J}_5=ar{J}_5,\ ar{J}_5\otimesar{J}_5=ar{J}_1\oplusar{J}_5\oplusar{J}_7\ {\sf Rep}(S_3)_{\mathbb C}!$$

Corollary: $d_n(V) = b_n(\bar{V})$

Example

1. $\Gamma = \mathbb{Z}/8\mathbb{Z}$, p = 2, C = full Karoubian monoidal subcategory of Rep(Γ) generated by J_5 . We have

 $J_5 \otimes J_5 = J_1 \oplus 2J_4 \oplus 2J_8$ Hence $C = \langle J_1, J_4, J_5, J_8 \rangle$ and $\overline{C} = \langle \overline{J}_1, \overline{J}_5 \rangle = \text{Vec}_{\mathbb{Z}/2\mathbb{Z}}$ 2. $\Gamma = \mathbb{Z}/9\mathbb{Z}$, p = 3, $C = \text{full Karoubian monoidal subcategory of Rep}(\Gamma)$ generated by $J_5 = \langle J_1, J_3, J_5, J_6, J_7, J_9 \rangle$ Then \overline{C} has simple objects $\overline{J}_1, \overline{J}_5, \overline{J}_7$ with

$$\bar{J}_7\otimes \bar{J}_7=\bar{J}_1,\ \bar{J}_7\otimes \bar{J}_5=\bar{J}_5,\ \bar{J}_5\otimes \bar{J}_5=\bar{J}_1\oplus \bar{J}_5\oplus \bar{J}_7\ \mathsf{Rep}(S_3)_{\mathbb{C}}!$$

This is $\mathbb{Z}/2\mathbb{Z}$ -equivariantization of $\operatorname{Vec}_{\mathbb{Z}/3\mathbb{Z}}$ = semisimple reduction of $\operatorname{Rep}(S_3)$ to characteristic 3.

Victor Ostrik (U of O)

Example

3. $C = \operatorname{Rep}(\mathbb{Z}/p\mathbb{Z})$. Simple objects of \overline{C} : $\overline{J}_1 = \mathbb{1} =: L_1, \overline{J}_2 =: L_2, \dots, \overline{J}_{p-1} =: L_{p-1}$

$$L_m \otimes L_n = \bigoplus_{i=1}^{\min(m,n,p-m,p-n)} L_{|m-n|+2i-1}$$

Example

3. $C = \operatorname{Rep}(\mathbb{Z}/p\mathbb{Z})$. Simple objects of \overline{C} : $\overline{J}_1 = \mathbb{1} =: L_1, \overline{J}_2 =: L_2, \dots, \overline{J}_{p-1} =: L_{p-1}$

$$L_m \otimes L_n = \bigoplus_{i=1}^{\min(m,n,p-m,p-n)} L_{|m-n|+2i-1}$$

 \bar{C} is Verlinde category Ver_p

Example

3. $C = \operatorname{Rep}(\mathbb{Z}/p\mathbb{Z})$. Simple objects of \overline{C} : $\overline{J}_1 = \mathbb{1} =: L_1, \overline{J}_2 =: L_2, \dots, \overline{J}_{p-1} =: L_{p-1}$

$$L_m \otimes L_n = \bigoplus_{i=1}^{\min(m,n,p-m,p-n)} L_{|m-n|+2i-1}$$

 \bar{C} is Verlinde category Ver_p Ver₂ = Vec,

Example

3. $C = \operatorname{Rep}(\mathbb{Z}/p\mathbb{Z})$. Simple objects of \overline{C} : $\overline{J_1} = \mathbb{1} =: L_1, \overline{J_2} =: L_2, \dots, \overline{J_{p-1}} =: L_{p-1}$

$$L_m \otimes L_n = \bigoplus_{i=1}^{\min(m,n,p-m,p-n)} L_{|m-n|+2i-1}$$

 \bar{C} is Verlinde category Ver_p Ver₂ = Vec, Ver₃ = sVec

Example

3. $C = \operatorname{Rep}(\mathbb{Z}/p\mathbb{Z})$. Simple objects of \overline{C} : $\overline{J}_1 = \mathbb{1} =: L_1, \overline{J}_2 =: L_2, \dots, \overline{J}_{p-1} =: L_{p-1}$

$$L_m \otimes L_n = \bigoplus_{i=1}^{\min(m,n,p-m,p-n)} L_{|m-n|+2i-1}$$

 \overline{C} is Verlinde category Ver_p $\operatorname{Ver}_2 = \operatorname{Vec}, \quad \operatorname{Ver}_3 = \operatorname{sVec}$ $\operatorname{Ver}_5 = \operatorname{sVec} \boxtimes$ Fib where Fib = $\langle \mathbb{1}, X \rangle$, $X \otimes X = \mathbb{1} \oplus X$

Example

3. $C = \operatorname{Rep}(\mathbb{Z}/p\mathbb{Z})$. Simple objects of \overline{C} : $\overline{J}_1 = \mathbb{1} =: L_1, \overline{J}_2 =: L_2, \dots, \overline{J}_{p-1} =: L_{p-1}$

$$L_m \otimes L_n = \bigoplus_{i=1}^{\min(m,n,p-m,p-n)} L_{|m-n|+2i-1}$$

 \overline{C} is Verlinde category Ver_p $\operatorname{Ver}_2 = \operatorname{Vec}$, $\operatorname{Ver}_3 = \operatorname{sVec}$ $\operatorname{Ver}_5 = \operatorname{sVec} \boxtimes$ Fib where $\operatorname{Fib} = \langle \mathbb{1}, X \rangle$, $X \otimes X = \mathbb{1} \oplus X$ Generally $\operatorname{FPdim}(L_m) = [m]_{q_p} = \operatorname{FPdim}(L_{p-m})$

Example

3. $C = \operatorname{Rep}(\mathbb{Z}/p\mathbb{Z})$. Simple objects of \overline{C} : $\overline{J}_1 = \mathbb{1} =: L_1, \overline{J}_2 =: L_2, \dots, \overline{J}_{p-1} =: L_{p-1}$

$$L_m \otimes L_n = \bigoplus_{i=1}^{\min(m,n,p-m,p-n)} L_{|m-n|+2i-1}$$

 \overline{C} is Verlinde category Ver_p $\operatorname{Ver}_2 = \operatorname{Vec}$, $\operatorname{Ver}_3 = \operatorname{sVec}$ $\operatorname{Ver}_5 = \operatorname{sVec} \boxtimes \operatorname{Fib}$ where $\operatorname{Fib} = \langle \mathbb{1}, X \rangle$, $X \otimes X = \mathbb{1} \oplus X$ Generally $\operatorname{FPdim}(L_m) = [m]_{q_p} = \operatorname{FPdim}(L_{p-m})$

Step 2: Let C =full Karoubian monoidal subcategory of Rep(Γ) generated by some object V (and V^*).

Example

3. $C = \operatorname{Rep}(\mathbb{Z}/p\mathbb{Z})$. Simple objects of \overline{C} : $\overline{J}_1 = \mathbb{1} =: L_1, \overline{J}_2 =: L_2, \dots, \overline{J}_{p-1} =: L_{p-1}$

$$L_m \otimes L_n = \bigoplus_{i=1}^{\min(m,n,p-m,p-n)} L_{|m-n|+2i-1}$$

 \overline{C} is Verlinde category Ver_p $\operatorname{Ver}_2 = \operatorname{Vec}$, $\operatorname{Ver}_3 = \operatorname{sVec}$ $\operatorname{Ver}_5 = \operatorname{sVec} \boxtimes$ Fib where $\operatorname{Fib} = \langle \mathbb{1}, X \rangle$, $X \otimes X = \mathbb{1} \oplus X$ Generally $\operatorname{FPdim}(L_m) = [m]_{q_p} = \operatorname{FPdim}(L_{p-m})$

Step 2: Let C =full Karoubian monoidal subcategory of Rep(Γ) generated by some object V (and V^*). Then the semisimplification \overline{C} is semisimple rigid tensor (i.e. pre-Tannakian) category of moderate growth

Example

3. $C = \operatorname{Rep}(\mathbb{Z}/p\mathbb{Z})$. Simple objects of \overline{C} : $\overline{J}_1 = \mathbb{1} =: L_1, \overline{J}_2 =: L_2, \dots, \overline{J}_{p-1} =: L_{p-1}$

$$L_m \otimes L_n = \bigoplus_{i=1}^{\min(m,n,p-m,p-n)} L_{|m-n|+2i-1}$$

 \overline{C} is Verlinde category Ver_p $\operatorname{Ver}_2 = \operatorname{Vec}$, $\operatorname{Ver}_3 = \operatorname{sVec}$ $\operatorname{Ver}_5 = \operatorname{sVec} \boxtimes \operatorname{Fib}$ where $\operatorname{Fib} = \langle \mathbb{1}, X \rangle$, $X \otimes X = \mathbb{1} \oplus X$ Generally $\operatorname{FPdim}(L_m) = [m]_{q_p} = \operatorname{FPdim}(L_{p-m})$

Step 2: Let C =full Karoubian monoidal subcategory of Rep(Γ) generated by some object V (and V^*). Then the semisimplification \overline{C} is semisimple rigid tensor (i.e. pre-Tannakian) category of moderate growth $b_n(\overline{W}) = d_n(W) \le b_n(W) \le \dim(W)^n$

Victor Ostrik (U of O)

Victor Ostrik (U of O)

Assume D is a semisimple pre-Tannakian category of moderate growth. Then there exists an additive tensor functor $F : D \to Ver_p$.

Assume \mathcal{D} is a semisimple pre-Tannakian category of moderate growth. Then there exists an additive tensor functor $F : \mathcal{D} \to Ver_p$.

Corollary. (P. Deligne) There is a group scheme S in the category Ver_p and an equivalence $\mathcal{D} \simeq \operatorname{Rep}(S, \epsilon)$.

Assume \mathcal{D} is a semisimple pre-Tannakian category of moderate growth. Then there exists an additive tensor functor $F : \mathcal{D} \to Ver_p$.

Corollary. (P. Deligne) There is a group scheme S in the category Ver_p and an equivalence $\mathcal{D} \simeq \operatorname{Rep}(S, \epsilon)$.

Example

Assume p = 2 and D is finitely generated. Then $D \simeq \text{Rep}(S)$ where S is linearly reductive (and of finite type).

Assume \mathcal{D} is a semisimple pre-Tannakian category of moderate growth. Then there exists an additive tensor functor $F : \mathcal{D} \to Ver_p$.

Corollary. (P. Deligne) There is a group scheme S in the category Ver_p and an equivalence $\mathcal{D} \simeq \operatorname{Rep}(S, \epsilon)$.

Example

Assume p = 2 and D is finitely generated. Then $D \simeq \text{Rep}(S)$ where S is linearly reductive (and of finite type).

Corollary. $\lim_{n\to\infty} \sqrt[n]{b_n(V)} = \operatorname{FPdim}(F(V)).$

Assume \mathcal{D} is a semisimple pre-Tannakian category of moderate growth. Then there exists an additive tensor functor $F : \mathcal{D} \to Ver_p$.

Corollary. (P. Deligne) There is a group scheme S in the category Ver_p and an equivalence $\mathcal{D} \simeq \operatorname{Rep}(S, \epsilon)$.

Example

Assume p = 2 and D is finitely generated. Then $D \simeq \text{Rep}(S)$ where S is linearly reductive (and of finite type).

Corollary. $\lim_{n\to\infty} \sqrt[n]{b_n(V)} = \operatorname{FPdim}(F(V)).$

Case p = 2

Assume \mathcal{D} is a semisimple pre-Tannakian category of moderate growth. Then there exists an additive tensor functor $F : \mathcal{D} \to Ver_p$.

Corollary. (P. Deligne) There is a group scheme S in the category Ver_p and an equivalence $\mathcal{D} \simeq \operatorname{Rep}(S, \epsilon)$.

Example

Assume p = 2 and D is finitely generated. Then $D \simeq \text{Rep}(S)$ where S is linearly reductive (and of finite type).

Corollary. $\lim_{n\to\infty} \sqrt[n]{b_n(V)} = \operatorname{FPdim}(F(V)).$

Case p = 2

By Nagata's theorem S is an extension of finite group $\pi_0(S)$ by a diagonalizable group.

Assume \mathcal{D} is a semisimple pre-Tannakian category of moderate growth. Then there exists an additive tensor functor $F : \mathcal{D} \to Ver_p$.

Corollary. (P. Deligne) There is a group scheme S in the category Ver_p and an equivalence $\mathcal{D} \simeq \operatorname{Rep}(S, \epsilon)$.

Example

Assume p = 2 and D is finitely generated. Then $D \simeq \text{Rep}(S)$ where S is linearly reductive (and of finite type).

Corollary. $\lim_{n\to\infty} \sqrt[n]{b_n(V)} = \operatorname{FPdim}(F(V)).$

Case p = 2

By Nagata's theorem S is an extension of finite group $\pi_0(S)$ by a diagonalizable group. Thus there is a <u>uniform</u> bound $FPdim(F(L)) = dim(F(L)) \le |\pi_0(S)|$ for any simple object $L \in \mathcal{D}$.

Victor Ostrik (U of O)

Theorem (K. Coulembier, P. Etingof, V. O.)

There are constants K', K'' > 0 such that

 $K'\delta(V)^n \leq d_n(V) \leq K''\delta(V)^n$

Theorem (K. Coulembier, P. Etingof, V. O.)

There are constants K', K'' > 0 such that

 $K'\delta(V)^n \leq d_n(V) \leq K''\delta(V)^n$

In fact we can take ${\cal K}''=1$ (elementary) and we prove that for p>0

$$c(V) = \liminf_{n \to \infty} \frac{d_n(V)}{\delta(V)^n} > 0$$

Theorem (K. Coulembier, P. Etingof, V. O.)

There are constants K', K'' > 0 such that

 $K'\delta(V)^n \leq d_n(V) \leq K''\delta(V)^n$

In fact we can take ${\cal K}''=1$ (elementary) and we prove that for p>0

$$c(V) = \liminf_{n \to \infty} \frac{d_n(V)}{\delta(V)^n} > 0$$

Conjecture: $c(V) \ge e^{-a_p \delta(V)}$ for some $a_p \in \mathbb{R}_{>0}$.

Theorem (K. Coulembier, P. Etingof, V. O.)

There are constants K', K'' > 0 such that

 $K'\delta(V)^n \leq d_n(V) \leq K''\delta(V)^n$

In fact we can take ${\cal K}''=1$ (elementary) and we prove that for p>0

$$c(V) = \liminf_{n \to \infty} \frac{d_n(V)}{\delta(V)^n} > 0$$

Conjecture: $c(V) \ge e^{-a_p\delta(V)}$ for some $a_p \in \mathbb{R}_{>0}$. This is true for p = 2 and p = 3 with

$$a_2 = rac{4\ln(3)}{3} \approx 1.464, \ a_3 = 24$$

Theorem (K. Coulembier, P. Etingof, V. O.)

There are constants K', K'' > 0 such that

 $K'\delta(V)^n \leq d_n(V) \leq K''\delta(V)^n$

In fact we can take ${\cal K}''=1$ (elementary) and we prove that for p>0

$$c(V) = \liminf_{n \to \infty} \frac{d_n(V)}{\delta(V)^n} > 0$$

Conjecture: $c(V) \ge e^{-a_p \delta(V)}$ for some $a_p \in \mathbb{R}_{>0}$. This is true for p = 2 and p = 3 with

$$a_2 = rac{4\ln(3)}{3} pprox 1.464, \;\; a_3 = 24$$

For $p \ge 5$ we have $c(V) \ge \exp(-a_p \delta(V) - \frac{\pi \ln(2)}{2}(p-2)\delta(V)^2)$

Theorem (K. Coulembier, P. Etingof, V. O.)

There are constants K', K'' > 0 such that

 $K'\delta(V)^n \leq d_n(V) \leq K''\delta(V)^n$

In fact we can take ${\cal K}''=1$ (elementary) and we prove that for p>0

$$c(V) = \liminf_{n \to \infty} \frac{d_n(V)}{\delta(V)^n} > 0$$

Conjecture: $c(V) \ge e^{-a_p \delta(V)}$ for some $a_p \in \mathbb{R}_{>0}$. This is true for p = 2 and p = 3 with

$$a_2 = rac{4\ln(3)}{3} pprox 1.464, \;\; a_3 = 24$$

For $p \ge 5$ we have $c(V) \ge \exp(-a_p \delta(V) - \frac{\pi \ln(2)}{2}(p-2)\delta(V)^2)$

Theorem (K. Coulembier, P. Etingof, V. O.)

There are constants K', K'' > 0 such that

 $K'\delta(V)^n \leq d_n(V) \leq K''\delta(V)^n$

In fact we can take ${\cal K}''=1$ (elementary) and we prove that for p>0

$$c(V) = \liminf_{n \to \infty} \frac{d_n(V)}{\delta(V)^n} > 0$$

Conjecture: $c(V) \ge e^{-a_p \delta(V)}$ for some $a_p \in \mathbb{R}_{>0}$. This is true for p = 2 and p = 3 with

$$a_2 = rac{4\ln(3)}{3} pprox 1.464, \;\; a_3 = 24$$

For $p \ge 5$ we have $c(V) \ge \exp(-a_p \delta(V) - \frac{\pi \ln(2)}{2}(p-2)\delta(V)^2)$

Theorem (K. Coulembier, P. Etingof, V. O.)

There are constants K', K'' > 0 such that

 $K'\delta(V)^n \leq d_n(V) \leq K''\delta(V)^n$

In fact we can take ${\cal K}''=1$ (elementary) and we prove that for p>0

$$c(V) = \liminf_{n \to \infty} \frac{d_n(V)}{\delta(V)^n} > 0$$

Conjecture: $c(V) \ge e^{-a_p\delta(V)}$ for some $a_p \in \mathbb{R}_{>0}$. This is true for p = 2 and p = 3 with

$$a_2=rac{4\ln(3)}{3}pprox 1.464, \ a_3=24$$

For $p \ge 5$ we have $c(V) \ge \exp(-a_p \delta(V) - \frac{\pi \ln(2)}{2} (p-2) \delta(V)^2)$

Corollary: $\delta(V)$ is finitely computable (finitely many $d_n(V)$ are required)

Victor Ostrik (U of O)

Plan: Let \mathcal{D} be the semisimplification of the subcategory generated by V.

Plan: Let \mathcal{D} be the semisimplification of the subcategory generated by V. We will prove that there is a function $a(\delta)$ such that for any simple object L of \mathcal{D} we have $\delta(L) \leq a(\delta(V))$. Then we can take $K' = \frac{1}{a(\delta(V))}$.

Plan: Let \mathcal{D} be the semisimplification of the subcategory generated by V. We will prove that there is a function $a(\delta)$ such that for any simple object L of \mathcal{D} we have $\delta(L) \leq a(\delta(V))$. Then we can take $K' = \frac{1}{a(\delta(V))}$. **Step 1. Translation:** Let $d = \delta(V)$.

Plan: Let \mathcal{D} be the semisimplification of the subcategory generated by V. We will prove that there is a function $a(\delta)$ such that for any simple object L of \mathcal{D} we have $\delta(L) \leq a(\delta(V))$. Then we can take $K' = \frac{1}{a(\delta(V))}$. **Step 1. Translation:** Let $d = \delta(V)$. Then $\mathcal{D} \simeq \operatorname{Rep}(S)$ where $S \subset GL(d)$ is linearly reductive subgroup (since $\overline{V} \in \operatorname{Rep}(S)$ is faithful).

Plan: Let \mathcal{D} be the semisimplification of the subcategory generated by V. We will prove that there is a function $a(\delta)$ such that for any simple object L of \mathcal{D} we have $\delta(L) \leq a(\delta(V))$. Then we can take $K' = \frac{1}{a(\delta(V))}$. **Step 1. Translation:** Let $d = \delta(V)$. Then $\mathcal{D} \simeq \operatorname{Rep}(S)$ where $S \subset GL(d)$ is linearly reductive subgroup (since $\overline{V} \in \operatorname{Rep}(S)$ is faithful). We want to find abelian subgroup of S of index $\leq a(d)$.

Plan: Let \mathcal{D} be the semisimplification of the subcategory generated by V. We will prove that there is a function $a(\delta)$ such that for any simple object L of \mathcal{D} we have $\delta(L) \leq a(\delta(V))$. Then we can take $K' = \frac{1}{a(\delta(V))}$. **Step 1. Translation:** Let $d = \delta(V)$. Then $\mathcal{D} \simeq \operatorname{Rep}(S)$ where $S \subset GL(d)$ is linearly reductive subgroup (since $\overline{V} \in \operatorname{Rep}(S)$ is faithful). We want to find abelian subgroup of S of index $\leq a(d)$. **Step 2:** S contains a normal diagonalzable subgroup D of finite index.

Plan: Let \mathcal{D} be the semisimplification of the subcategory generated by V. We will prove that there is a function $a(\delta)$ such that for any simple object L of \mathcal{D} we have $\delta(L) \leq a(\delta(V))$. Then we can take $K' = \frac{1}{a(\delta(V))}$. **Step 1. Translation:** Let $d = \delta(V)$. Then $\mathcal{D} \simeq \operatorname{Rep}(S)$ where $S \subset GL(d)$ is linearly reductive subgroup (since $\overline{V} \in \operatorname{Rep}(S)$ is faithful). We want to find abelian subgroup of S of index $\leq a(d)$. **Step 2:** S contains a normal diagonalzable subgroup D of finite index. Also S contains finite subgroup (of odd order) F such that $S = F \cdot D$.

Plan: Let \mathcal{D} be the semisimplification of the subcategory generated by V. We will prove that there is a function $a(\delta)$ such that for any simple object L of \mathcal{D} we have $\delta(L) \leq a(\delta(V))$. Then we can take $K' = \frac{1}{a(\delta(V))}$. **Step 1. Translation:** Let $d = \delta(V)$. Then $\mathcal{D} \simeq \operatorname{Rep}(S)$ where $S \subset GL(d)$ is linearly reductive subgroup (since $\overline{V} \in \text{Rep}(S)$ is faithful). We want to find *abelian* subgroup of S of index $\leq a(d)$. **Step 2:** S contains a normal diagonalzable subgroup D of finite index. Also S contains finite subgroup (of odd order) F such that $S = F \cdot D$. **Step 3. Jordan's theorem:** There is a bound J(d) such that F contains (normal) abelian subgroup N of index $\leq J(d)$.

Plan: Let \mathcal{D} be the semisimplification of the subcategory generated by V. We will prove that there is a function $a(\delta)$ such that for any simple object L of \mathcal{D} we have $\delta(L) \leq a(\delta(V))$. Then we can take $K' = \frac{1}{a(\delta(V))}$. **Step 1. Translation:** Let $d = \delta(V)$. Then $\mathcal{D} \simeq \operatorname{Rep}(S)$ where $S \subset GL(d)$ is linearly reductive subgroup (since $\overline{V} \in \text{Rep}(S)$ is faithful). We want to find *abelian* subgroup of S of index $\leq a(d)$. **Step 2:** S contains a normal diagonalzable subgroup D of finite index. Also S contains finite subgroup (of odd order) F such that $S = F \cdot D$. **Step 3. Jordan's theorem:** There is a bound J(d) such that F contains (normal) abelian subgroup N of index $\leq J(d)$. **Step 4:** The group of characters D^{\vee} is generated by the set $\Pi = \{ \text{weights of } \overline{V} \} \text{ of size } < d.$

Plan: Let \mathcal{D} be the semisimplification of the subcategory generated by V. We will prove that there is a function $a(\delta)$ such that for any simple object L of \mathcal{D} we have $\delta(L) \leq a(\delta(V))$. Then we can take $K' = \frac{1}{a(\delta(V))}$. **Step 1. Translation:** Let $d = \delta(V)$. Then $\mathcal{D} \simeq \text{Rep}(S)$ where $S \subset GL(d)$ is linearly reductive subgroup (since $\overline{V} \in \text{Rep}(S)$ is faithful). We want to find *abelian* subgroup of S of index $\leq a(d)$. **Step 2:** S contains a normal diagonalzable subgroup D of finite index. Also S contains finite subgroup (of odd order) F such that $S = F \cdot D$. **Step 3. Jordan's theorem:** There is a bound J(d) such that F contains (normal) abelian subgroup N of index < J(d). **Step 4:** The group of characters D^{\vee} is generated by the set $\Pi = \{ \text{weights of } \overline{V} \} \text{ of size } \leq d. \text{ The group } N \text{ acts on } \Pi, \text{ hence } N \supset N_1 \}$ such that N_1 acts trivially on D^{\vee} and $[N: N_1] < 3^{d/3}$.

Plan: Let \mathcal{D} be the semisimplification of the subcategory generated by V. We will prove that there is a function $a(\delta)$ such that for any simple object L of \mathcal{D} we have $\delta(L) \leq a(\delta(V))$. Then we can take $K' = \frac{1}{a(\delta(V))}$. **Step 1. Translation:** Let $d = \delta(V)$. Then $\mathcal{D} \simeq \text{Rep}(S)$ where $S \subset GL(d)$ is linearly reductive subgroup (since $\overline{V} \in \text{Rep}(S)$ is faithful). We want to find *abelian* subgroup of S of index $\leq a(d)$. **Step 2:** S contains a normal diagonalzable subgroup D of finite index. Also S contains finite subgroup (of odd order) F such that $S = F \cdot D$. **Step 3. Jordan's theorem:** There is a bound J(d) such that F contains (normal) abelian subgroup N of index < J(d). **Step 4:** The group of characters D^{\vee} is generated by the set $\Pi = \{ \text{weights of } \overline{V} \} \text{ of size } \leq d. \text{ The group } N \text{ acts on } \Pi, \text{ hence } N \supset N_1 \}$ such that N_1 acts trivially on D^{\vee} and $[N:N_1] < 3^{d/3}$. **Step 5:** The subgroup $N_1 \cdot D \subset S$ is abelian of index $\leq J(d)3^{d/3}$.

Plan: Let \mathcal{D} be the semisimplification of the subcategory generated by V. We will prove that there is a function $a(\delta)$ such that for any simple object L of \mathcal{D} we have $\delta(L) \leq a(\delta(V))$. Then we can take $K' = \frac{1}{a(\delta(V))}$. **Step 1. Translation:** Let $d = \delta(V)$. Then $\mathcal{D} \simeq \operatorname{Rep}(S)$ where $S \subset GL(d)$ is linearly reductive subgroup (since $\overline{V} \in \text{Rep}(S)$ is faithful). We want to find *abelian* subgroup of S of index $\leq a(d)$. **Step 2:** S contains a normal diagonalzable subgroup D of finite index. Also S contains finite subgroup (of odd order) F such that $S = F \cdot D$. **Step 3. Jordan's theorem:** There is a bound J(d) such that F contains (normal) abelian subgroup N of index < J(d). **Step 4:** The group of characters D^{\vee} is generated by the set $\Pi = \{ \text{weights of } \overline{V} \} \text{ of size } \leq d. \text{ The group } N \text{ acts on } \Pi, \text{ hence } N \supset N_1 \}$ such that N_1 acts trivially on D^{\vee} and $[N:N_1] < 3^{d/3}$. **Step 5:** The subgroup $N_1 \cdot D \subset S$ is abelian of index $(J(d))^{d/3}$. Best possible bound for J(d) in the literature: $J(d) \leq 3^{d-1}$ (G. Robinson).

Plan: Let \mathcal{D} be the semisimplification of the subcategory generated by V. We will prove that there is a function $a(\delta)$ such that for any simple object L of \mathcal{D} we have $\delta(L) \leq a(\delta(V))$. Then we can take $K' = \frac{1}{a(\delta(V))}$. **Step 1. Translation:** Let $d = \delta(V)$. Then $\mathcal{D} \simeq \text{Rep}(S)$ where $S \subset GL(d)$ is linearly reductive subgroup (since $\overline{V} \in \text{Rep}(S)$ is faithful). We want to find *abelian* subgroup of S of index $\leq a(d)$. **Step 2:** S contains a normal diagonalzable subgroup D of finite index. Also S contains finite subgroup (of odd order) F such that $S = F \cdot D$. **Step 3. Jordan's theorem:** There is a bound J(d) such that F contains (normal) abelian subgroup N of index $\leq J(d)$. **Step 4:** The group of characters D^{\vee} is generated by the set $\Pi = \{ \text{weights of } \overline{V} \} \text{ of size } \leq d. \text{ The group } N \text{ acts on } \Pi, \text{ hence } N \supset N_1 \}$ such that N_1 acts trivially on D^{\vee} and $[N:N_1] < 3^{d/3}$. **Step 5:** The subgroup $N_1 \cdot D \subset S$ is abelian of index $(J(d))^{d/3}$. Best possible bound for J(d) in the literature: $J(d) \leq 3^{d-1}$ (G. Robinson).

$$a(d) = 3^{4/3d-1}$$

Benson's conjecture

Challenge:

Assume p = 2 and Γ is a finite 2-group.

Conjecture (D. Benson): Any object of $\overline{\text{Rep}(\Gamma)}$ is invertible.

Challenge:

Assume p = 2 and Γ is a finite 2-group.

Conjecture (D. Benson): Any object of $\overline{\text{Rep}(\Gamma)}$ is invertible.

True when Γ is cyclic or $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$

Thanks for listening!