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Reminder (from Daniel’s talk):

F – any field
Γ – any of the following:

group or group scheme
Lie algebra,
semigroup,
super group or super Lie algebra

V – finite dimensional representation of Γ
perhaps V is an object of a Tannakian category

bn(V ) = number of indecomposable summands in V⊗n

Theorem (K. Coulembier, V. O., D. Tubbenhauer)

For any group Γ, field F , representation V we have

lim
n→∞

n
√

bn(V ) = dim(V )

Warning: counterexamples for comodules over Hopf algebras
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Other counts: non-projective summands

D. Benson, P. Symonds: Γ finite, char F = p > 0

cn(V ) = total dimension of non-projective summands in V⊗n

γ(V ) := lim
n→∞

n
√
cn(V )

The limit exists! but difficult to compute...
γ(V ) is not necessarily an integer
0 ≤ γ(V ) ≤ dim(V ), γ(V ) = 0⇔ V is projective
γ(V ) > 0⇒ γ(V ) ≥ 1, γ(V ) > 1⇒ γ(V ) ≥

√
2

Conjecture: γ(V ) is an algebraic integer
γ(V ⊕W ) 6= γ(V ) + γ(W ) and γ(V ⊗W ) 6= γ(V )γ(W ) in general
can reduce to Γ elementary abelian

Consider c ′n(V ) = number of non-projective summands in V⊗n

and define γ′(V ) = limn→∞
n
√
c ′n(V )

• Open True/False question: is γ(V ) = γ′(V ) for all V ?
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Example

Γ = Z/5Z, p = 5, representation: 1 7→ A, A5 = Id⇔ (A− Id)5 = 0
Indecomposable representations: Jordan cells J1, J2, J3, J4, J5

J3 : 1 7→

 1 1 0
0 1 1
0 0 1


J1 is trivial and the only simple
J5 is the only projective

Tensor products: J1 ⊗ Ji = Ji J3 ⊗ J3 = J1 + J3 + J5 J3 ⊗ J5 = 3J5

Take V = J3 and let V⊗n = AnJ1 + BnJ3 + CnJ5

Then An+1 = Bn (so An = Bn−1) Bn+1 = An + Bn Cn+1 = Bn + 3Cn

Hence Bn+1 = Bn−1 + Bn = Fn = c ′n(V ) (Fibonacci number) and

cn(V ) = An + 3Bn = Bn+2 + Bn (Lucas number)⇒ γ(V ) = 1+
√

5
2 = δ(V )

Exercise. Compute γ(J2) and γ(J4) (of course γ(J1) = 1 and γ(J5) = 0)
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Other counts: non-negligible summands

Assume F is algebraically closed, char F = p ≥ 0, V⊗n =
⊕bn(V )

i=1 Wi

dn(V ) = total number of summands Wi in V⊗n with dim(Wi ) 6= 0 ∈ F

Observation: dn+m(V ) ≥ dn(V )dm(V ) and dn(V ) ≤ dim(V )n

Fekete’s Lemma implies that δ(V ) := lim
n→∞

n
√
dn(V ) exists

W – indecomposable representation of a group Γ (or super group scheme)

Definition

W is negligible if dim(W ) = 0 ∈ F (take sdim(W ) for super groups)
W is non-negligible if dim(W ) 6= 0 ∈ F

More generally, (possibly decomposable) W is negligible if every
indecomposable summand is negligible

Fact (D.Benson): Negligible representations form tensor ideal

dn(V ) = total number of non-negligible summands in V⊗n
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Properties of δ

Obvious properties:

δ(V ⊕W ) ≥ δ(V ) + δ(W )

δ(V ⊗W ) ≥ δ(V )δ(W )

δ(V ) = 0⇔ V is negligible

δ(V ) > 0⇒ 1 ≤ δ(V ) ≤ dim(V )

Theorem (K. Coulembier, P. Etingof, V. O.)

1. δ(V ⊕W ) = δ(V ) + δ(W ) and δ(V ⊗W ) = δ(V )δ(W ).

2. Let q = qp = e
πi
p and [m]q := qm−q−m

q−q−1 = qm−1 + . . .+ q1−m for m ∈ N.

Then δ(V ) = linear combination of [m]q, 1 ≤ m ≤ p
2 with nonnegative

integer coefficients.

Example

For p = 2 or p = 3 we say that δ(V ) ∈ Z≥0

For p = 5, δ(V ) = a + b 1+
√

5
2 where a, b ∈ Z≥0 (since [2]q5 = 1+

√
5

2 )
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Example

Γ p V dim(V ) γ(V ) δ(V ) dn(V ) note

Z/5Z 5 J3 3 1+
√

5
2

1+
√

5
2 Fn = c ′n(V )

Z/8Z 2 J5 5 3 1 1

Z/9Z 3 J5 5 3 2 1
3 (2n+1 + (−1)n) = dn(WS3)

WS3 - 2-dimensional representation of S3 over C

Example

Assume p = 2 and dim(V ) = 3 or p = 3 and dim(V ) = 2
Then exactly one of the following is true:
(a) all summands of V⊗n are non-negligible for all n
(b) exactly one summand of each V⊗n is non-negligible for all n

Define d ′n(V ) = total dimension of non-negligible summands in V⊗n

and δ′(V ) := limn→∞
n
√
d ′n(V )

Question: is δ(V ) = δ′(V ) for any V ?
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Comments on proof

Step 1: Semisimplification
Assume C is F−linear monoidal category such that Tr is defined
(e.g. any monoidal subcategory of Rep(Γ))

Definition

f ∈ Hom(X ,Y ) is negligible if Tr(fg) = 0 ∈ F for any g ∈ Hom(Y ,X ).
Let N (X ,Y ) ⊂ Hom(X ,Y ) denote the subset of negligible morphisms

Fact: Collection N (X ,Y ) ⊂ Hom(X ,Y ) is tensor ideal

Definition of new category C̄
Objects of C̄ = objects of C; HomC̄(X ,Y ) = Hom(X ,Y )/N (X ,Y )
Monoidal structure on C̄: inherited from C
Thus we have (symmetric) tensor functor C → C̄, X 7→ X̄

Fact (D.Benson): Assume C is full Karoubian monoidal subcategory of
Rep(Γ). Then C̄ is abelian semisimple and
{ simple objects of C̄} ↔ { non-negligible indecomposable objects of C}
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Comments on proof, 2

Corollary: dn(V ) = bn(V̄ )

Example

1. Γ = Z/8Z, p = 2, C = full Karoubian monoidal subcategory of Rep(Γ)
generated by J5. We have

J5 ⊗ J5 = J1 ⊕ 2J4 ⊕ 2J8

Hence C = 〈J1, J4, J5, J8〉 and C̄ = 〈J̄1, J̄5〉 = VecZ/2Z

2. Γ = Z/9Z, p = 3, C = full Karoubian monoidal subcategory of Rep(Γ)
generated by J5 = 〈J1, J3, J5, J6, J7, J9〉
Then C̄ has simple objects J̄1, J̄5, J̄7 with

J̄7 ⊗ J̄7 = J̄1, J̄7 ⊗ J̄5 = J̄5, J̄5 ⊗ J̄5 = J̄1 ⊕ J̄5 ⊕ J̄7 Rep(S3)C!

This is Z/2Z−equivariantization of VecZ/3Z = semisimple reduction of
Rep(S3) to characteristic 3.
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J̄7 ⊗ J̄7 = J̄1, J̄7 ⊗ J̄5 = J̄5, J̄5 ⊗ J̄5 = J̄1 ⊕ J̄5 ⊕ J̄7 Rep(S3)C!

This is Z/2Z−equivariantization of VecZ/3Z = semisimple reduction of
Rep(S3) to characteristic 3.
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Comments on proof, 3

Example

3. C = Rep(Z/pZ).
Simple objects of C̄: J̄1 = 1 =: L1, J̄2 =: L2, . . . , J̄p−1 =: Lp−1

Lm ⊗ Ln =

min(m,n,p−m,p−n)⊕
i=1

L|m−n|+2i−1

C̄ is Verlinde category Verp
Ver2 = Vec, Ver3 = sVec
Ver5 = sVec � Fib where Fib = 〈1,X 〉, X ⊗ X = 1⊕ X
Generally FPdim(Lm) = [m]qp = FPdim(Lp−m)

Step 2: Let C =full Karoubian monoidal subcategory of Rep(Γ) generated
by some object V (and V ∗). Then the semisimplification C̄ is
semisimple rigid tensor (i.e. pre-Tannakian) category of moderate growth

bn(W̄ ) = dn(W ) ≤ bn(W ) ≤ dim(W )n
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Comments on proof, 4

Theorem (K. Coulembier, P. Etingof, V. O.)

Assume D is a semisimple pre-Tannakian category of moderate growth.
Then there exists an additive tensor functor F : D → Verp.

Corollary. (P. Deligne) There is a group scheme S in the category Verp
and an equivalence D ' Rep(S , ε).

Example

Assume p = 2 and D is finitely generated. Then D ' Rep(S) where S is
linearly reductive (and of finite type).

Corollary. limn→∞
n
√
bn(V ) = FPdim(F (V )).

Case p = 2

By Nagata’s theorem S is an extension of finite group π0(S) by a
diagonalizable group. Thus there is a uniform bound
FPdim(F (L)) = dim(F (L)) ≤ |π0(S)| for any simple object L ∈ D.
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More bounds

Theorem (K. Coulembier, P. Etingof, V. O.)

There are constants K ′,K ′′ > 0 such that

K ′δ(V )n ≤ dn(V ) ≤ K ′′δ(V )n

In fact we can take K ′′ = 1 (elementary) and we prove that for p > 0

c(V ) = lim inf
n→∞

dn(V )

δ(V )n
> 0

Conjecture: c(V ) ≥ e−apδ(V ) for some ap ∈ R>0.
This is true for p = 2 and p = 3 with

a2 =
4 ln(3)

3
≈ 1.464, a3 = 24

For p ≥ 5 we have

Corollary: δ(V ) is finitely computable (finitely many dn(V ) are required)
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Proof for p = 2

Plan: Let D be the semisimplification of the subcategory generated by V .
We will prove that there is a function a(δ) such that for any simple object
L of D we have δ(L) ≤ a(δ(V )). Then we can take K ′ = 1

a(δ(V )) .

Step 1. Translation: Let d = δ(V ). Then D ' Rep(S) where
S ⊂ GL(d) is linearly reductive subgroup (since V̄ ∈ Rep(S) is faithful).
We want to find abelian subgroup of S of index ≤ a(d).
Step 2: S contains a normal diagonalzable subgroup D of finite index.
Also S contains finite subgroup (of odd order) F such that S = F · D.
Step 3. Jordan’s theorem: There is a bound J(d) such that F contains
(normal) abelian subgroup N of index ≤ J(d).
Step 4: The group of characters D∨ is generated by the set
Π = {weights of V̄ } of size ≤ d . The group N acts on Π, hence N ⊃ N1

such that N1 acts trivially on D∨ and [N : N1] ≤ 3d/3.
Step 5: The subgroup N1 · D ⊂ S is abelian of index ≤ J(d)3d/3. Best
possible bound for J(d) in the literature: J(d) ≤ 3d−1 (G. Robinson).

a(d) = 34/3d−1
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Benson’s conjecture

Challenge:

Assume p = 2 and Γ is a finite 2-group.

Conjecture (D. Benson): Any object of Rep(Γ) is invertible.

True when Γ is cyclic or Z/2Z⊕ Z/2Z
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Thanks for listening!
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