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Symplectic triple systems

Let g be a Lie algebra over a field F, containing a subalgebra isomorphic
to sl2(F) that admits a Z/2-grading of the form:

g =
(
sl2(F) ⊕ d

)
⊕

(
F2 ⊗ T ).

In this case, T becomes a so-called symplectic triple system, and the
bracket of odd elements works as follows:

[u ⊗ x, v ⊗ y] = (x | y)γu,v + ⟨u | v⟩dx,y

for all u, v ∈ F2 and x, y ∈ T , for a skew-symmetric bilinear form (· | ·)
on T and a symmetric bilinear map T × T → d, (x, y) 7→ dx,y; where
⟨u | v⟩ is, up to scalars, the unique sl2(F)-invariant bilinear form on F2,
and γu,v = ⟨u | ·⟩v + ⟨v | ·⟩u.
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Symplectic triple systems and Lie superalgebras

It was realized (E. 2006) that, in case the characteristic of F is 3, then
the Z/2-graded vector space d⊕T , with bracket given by the bracket in
d, the action of d in T , and by [x, y] = dx,y for x, y ∈ T , endows d⊕T
with a structure of Lie superalgebra.

This led to the construction of a family of new simple contragredient Lie
superalgebras specific of characteristic 3.
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A surprising generalization
Arun S. Kannan has considered recently (2022) a much more general
and surprising way of passing from Lie algebras to Lie superalgebras.

Kannan considered, over fields of characteristic 3, exceptional simple Lie
algebras endowed with a nilpotent derivation d with d3 = 0.
In the situation in the previous slide, one may take d equal to the adjoint
action of ( 0 1

0 0 ) ∈ sl2(F).
This allows to view the Lie algebra as a Lie algebra in the category
Rep α3 of representations of the affine group scheme

α3 : R 7→ {r ∈ R | r3 = 0}

(that is, the kernel of the Frobenius endomorphism of the additive group
scheme Ga).
The semisimplification of Rep α3 is the Verlinde category Ver3, which is
equivalent to the category of vector superspaces, obtaining in this way a
path from Lie algebras to Lie superalgebras.
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Monoidal categories

A monoidal category is a category C with a bifunctor

⊗ : C × C → C

such that:
There is a unit object 1 with natural isomorphisms (unitors)

X ⊗ 1 ≃ X ≃ 1 ⊗ X.

There are natural isomorphisms (associators)

aX,Y,Z : (X ⊗ Y ) ⊗ Z ≃ X ⊗ (Y ⊗ Z).

Natural coherence conditions for the unitors and associators hold.

The extended Freudenthal magic square via tensor categories 7/42



Monoidal functors

A functor F : C → D between monoidal categories is a monoidal functor
if F (1) ≃ 1 and there are natural isomorphisms

JX,Y : F (X) ⊗ F (Y ) −→ F (X ⊗ Y )

with natural coherence conditions with associators.

The extended Freudenthal magic square via tensor categories 8/42



Symmetric monoidal categories

A braiding in a monoidal category C is a natural isomorphism

cX,Y : X ⊗ Y −→ Y ⊗ X

satisfying natural compatibility conditions with unitors and associators.

A symmetric monoidal category is a monoidal category endowed with a
symmetric braiding: cY,X ◦ cX,Y = idX⊗Y .
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Rigid symmetric monoidal categories

A symmetric monoidal category is rigid if every object X has a dual
object X∗ with

an evaluation evX : X∗ ⊗ X → 1,
a coevaluation coevX : 1 → X ⊗ X∗,

such that the following compositions are the identity morphisms:

X
coevX⊗idX−−−−−−−→ X ⊗ X∗ ⊗ X

idX⊗evX−−−−−−→ X

X∗ idX∗ ⊗coevX−−−−−−−−→ X∗ ⊗ X ⊗ X∗ evX⊗idX∗−−−−−−→ X∗

(Unitor and associator morphisms are omitted.)
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Symmetric tensor categories

A symmetric tensor category C over a field F is a rigid symmetric
monoidal category with the following extra properties:

It is abelian and even more: it is F-linear and ⊗ is ‘bilinear’.

It is locally finite: objects have ‘finite length’ and morphism spaces
are finite-dimensional.

EndC(1) = F id1.
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Examples

VecF: The category of finite-dimensional vector spaces.

RepH: The category of finite-dimensional representations of a
triangular Hopf algebra.

Rep G: The category of finite-dimensional representations of an
affine group scheme.

sVecF: The category of finite-dimensional vector superspaces.
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Algebras in a symmetric tensor category
An algebra in a symmetric tensor category C is an object A endowed
with a morphism µ : A ⊗ A → A.

The algebra (A, µ) is
commutative if µ ◦ cA,A = µ,
associative if µ ◦ (µ ⊗ idA) = µ ◦ (idA ⊗ µ) (associator morphisms
are omitted),
Lie if it is anticommutative: µ ◦ cA,A = −µ, and

µ ◦ (µ ⊗ idA) ◦ (idA⊗A⊗A + cA⊗A,A + cA,A⊗A) = 0,

Jordan if ....
.......

Superalgebras are algebras in sVecF.

The extended Freudenthal magic square via tensor categories 13/42



The extended Freudenthal magic square via tensor
categories

1 Symmetric tensor categories

2 Semisimplification

3 From algebras to superalgebras in characteristic 3

4 From octonions to composition superalgebras

5 The extended Freudenthal magic square

The extended Freudenthal magic square via tensor categories 14/42



Traces in symmetric tensor categories

Given a morphism f ∈ EndC(X) in a symmetric tensor category, its
trace trX(f) is the following element in EndC(1) ≃ F:

1 coevX−−−−→ X ⊗ X∗ f⊗idX∗−−−−−→ X ⊗ X∗ cX,X∗
−−−−→ X∗ ⊗ X

evX−−→ 1

The dimension of an object X is dimC(X) := trX(idX).
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Negligible morphisms

A morphism f ∈ HomC(X, Y ) in a symmetric tensor category is said to
be negligible if

trY (f ◦ g) = 0 for all g ∈ HomC(Y, X).

Denote by N (X, Y ) be the subspace of negligible morphims in
HomC(X, Y ).

The subspaces N (X, Y ) form a tensor ideal.
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Semisimplification of a symmetric tensor category

This means that we can define a new category Css with the same objects
as C, but with morphisms given by the quotient with the subspace of
negligible morphisms:

HomCss(X, Y ) := HomC(X, Y )/N (X, Y ).

Css is called the semisimplification of C.

The natural functor S : C → Css which is the identity on objects, and
sends any morphism to its class modulo negligible morphisms is a
braided, monoidal, F-linear functor.
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Semisimplification

The semisimplification Css is semisimple: any object is a direct sum of
finitely many simple objects.

The simple objects in Css correspond to the indecomposable objects in C
of nonzero dimension.

Any object in C with dimC(X) = 0 becomes isomorphic to the zero
object in Css.
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Verlinde category

Definition
Let F be a field of characteristic p > 0 and let Rep Cp be the category of
finite-dimensional representations of the cyclic group of order p (or of
the associated constant group scheme).
This is a symmetric tensor category and its semisimplification is called
the Verlinde category Verp.

The Verlinde category Verp also appears as the semisimplification of
Rep αp.
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Semisimplification of Rep C3 (charF = 3)

Fix a generator σ of C3.

The indecomposable objects in Rep C3 are, up to isomorphism,

V0 = F, V1 = Fv0 + Fv1, V2 = Fw0 + Fw1 + Fw2,

where the action of σ is trivial on V0, and

σ(v0) = v0 +v1, σ(v1) = v1; σ(w0) = w0 +w1, σ(w1) = w1 +w2, σ(w2) = w2.

Any object A in Rep C3 decomposes, nonuniquely, as

A = A0 ⊕ A1 ⊕ A2,

where Ai is a direct sum of copies of Vi, i = 0, 1, 2.
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Semisimplification of Rep C3 (charF = 3). Properties

EndVer3(Vi) = F[idVi ] ̸= 0 for i = 0, 1, EndVer3(V2) = 0,
HomVer3(Vi, Vj) = 0 for i ̸= j.

V0 and V1 are simple objects in Ver3, while V2 is isomorphic to 0.

Ver3 is semisimple: any object is isomorphic to a direct sum of
copies of V0 and V1.

V0 ⊗ Vi and Vi ⊗ V0 are isomorphic to Vi, for i = 0, 1, both in
Rep C3 and in Ver3; while V1 ⊗ V1 is isomorphic to V0 in Ver3.

The braiding in Ver3, for objects X, Y , is given by [cX,Y ], where
cX,Y is the (swap) braiding in Rep C3. Then, identifying
V0 ⊗ V0 ≃ V0, V0 ⊗ V1 ≃ V1 ≃ V1 ⊗ V0, and V1 ⊗ V1 ≃ V0, we have

[cV0,V0 ] = [idV0 ], [cV0,V1 ] = [idV1 ] = [cV1,V0 ], [cV1,V1 ] = −[idV0 ].
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Ver3 ≃ sVecF

The categories sVecF and Ver3 are equivalent through the (F-linear
braided monoidal) functor

F : sVecF −→ Ver3

X0̄ ⊕ X1̄ 7→ X0̄ ⊕ (X1̄ ⊗ V1)
f0̄ ⊕ f1̄ 7→ [f0̄ ⊕ (f1̄ ⊗ idV1)],

F is a monoidal functor with natural isomorphism

J : F (·) ⊗ F (·) → F (· ⊗ ·)

given by JX,Y = [jX,Y ], where jX,Y is the following morphism in Rep C3:
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Ver3 ≃ sVecF

jX,Y :
(

X0̄ ⊕ (X1̄ ⊗ V1)
)

⊗
(

Y0̄ ⊕ (Y1̄ ⊗ V1)
)

−→(
(X0̄ ⊗ Y0̄) ⊕ (X1̄ ⊗ Y1̄)

)
⊕

((
(X0̄ ⊗ Y1̄) ⊕ (X1̄ ⊗ Y0̄)

)
⊗ V1

)
x0̄ ⊗ y0̄ 7→ x0̄ ⊗ y0̄,

x0̄ ⊗ (y1̄ ⊗ v) 7→ (x0̄ ⊗ y1̄) ⊗ v,

(x1̄ ⊗ v) ⊗ y0̄ 7→ (x1̄ ⊗ y0̄) ⊗ v,

(x1̄ ⊗ u) ⊗ (y1̄ ⊗ v) 7→ λ(u ⊗ v)x1̄ ⊗ y1̄,

where λ sends symmetric tensors to 0, and v0 ⊗ v1 to 1.
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From algebras in Rep C3 to superalgebras
If (A, µ) is an algebra in Rep C3 (i.e., an algebra endowed with an
automorphism of order 3), then (A, [µ]) is an algebra in Ver3 and, up
to isomorphism, there is a unique superalgebra (A = A0̄ ⊕ A1̄, m) such
that F (A), with the product given by

F (A) ⊗ F (A)
JA,A−−−→ F (A ⊗ A) F (m)−−−→ F (A)

is isomorphic to (A, [µ]).

To obtain this superalgebra, fix a splitting

A = A0̄ ⊕ A1̄ ⊕ (σ − id)(A1̄) ⊕ A2

where
A0̄ is a direct sum of copies of V0,
A1̄ ⊕ (σ − id)(A1̄) is a direct sum of copies of V1,
A2 is a direct sum of copies of V2, and hence trivial in Ver3.
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From algebras in Rep C3 to superalgebras

Recipe
Take projections relative to this splitting, and define a multiplication m
on A := A0̄ ⊕ A1̄ as follows:

m(x0̄ ⊗ y0̄) = projA0̄
µ(x0̄ ⊗ y0̄)

m(x0̄ ⊗ y1̄) = projA1̄
µ(x0̄ ⊗ y1̄)

m(x1̄ ⊗ y0̄) = projA1̄
µ(x1̄ ⊗ y0̄)

m(x1̄ ⊗ y1̄) = projA0̄
µ

(
x1̄ ⊗ (σ − id)(y1̄)

)

Theorem
The superalgebra (A, m) is, up to isomorphism, the unique superalgebra
such that (A, [µ]) and

(
F (A), F (m) ◦ JA,A

)
are isomorphic algebras in

Ver3.
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The Verlinde category Verp, p > 3

If p > 3, the Verlinde category Verp is no longer equivalent to sVecF, but
contains a full subcategory equivalent to sVecF, generated by the
indecomposable objects in Rep Cp of dimension 1 and p − 1.

This was used by Kannan to obtain the simple Lie superalgebra el(5; 5)
by semisimplification of the simple Lie algebra of type E8.

In characteristic 3, Kannan has obtained all the exceptional simple
contragredient Lie superalgebras. These include mostly the superalgebras
in the extended Freudenthal magic square (Cunha-E. 2007).
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Composition algebras

A composition algebra over a field F is a triple (C, µ, n), where
µ : C ⊗ C → C, µ(x ⊗ y) = xy is the multiplication of C,
n : C → F is a nonsingular multiplicative quadratic form, called the
norm.

Unital composition algebras (also termed Hurwitz algebras) over a field
are the analogues of the classical algebras or real and complex numbers,
quaternions, and octonions. In particular their dimension is restricted to
1, 2, 4 or 8.

Hurwitz algebras of dimension 8 are called Cayley algebras or octonion
algebras.
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Composition algebras in a symmetric tensor category
(char ̸= 2)

A composition algebra in a symmetric tensor category C is an object A
endowed with morphisms µ : A ⊗ A → A and n : A ⊗ A → 1, such that
the following conditions are satisfied:

Symmetry: n ◦ cA,A = n, where cA,A ∈ EndC(A ⊗ A) is the symmetric
braiding.

Multiplicativity: The following equality of morphisms A⊗4 → 1 holds:

n ◦ (µ ⊗ µ) ◦ (id + c13) = (n ⊗ n) ◦ c23

Nondegeneracy: The composition

A idA⊗coevA−−−−−−−→ A ⊗ A ⊗ A∗ n⊗idA∗−−−−−→ A∗

is an isomorphism.
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Order 3 automorphisms of Cayley algebras (charF = 3)

If a Cayley algebra C over a field of characteristic 3 has an order 3
automorphism, then it is split (isotropic norm), and hence it contains a
canonical basis with multiplication:

e1 e2 u1 u2 u3 v1 v2 v3

e1 e1 0 u1 u2 u3 0 0 0
e2 0 e2 0 0 0 v1 v2 v3
u1 0 u1 0 v3 −v2 −e1 0 0
u2 0 u2 −v3 0 v1 0 −e1 0
u3 0 u3 v2 −v1 0 0 0 −e1
v1 v1 0 −e2 0 0 0 u3 −u2
v2 v2 0 0 −e2 0 −u3 0 u1
v3 v3 0 0 0 −e2 u2 −u1 0

The ‘Peirce component’ Fu1 + Fu2 + Fu3 generates C.
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Order 3 automorphisms of Cayley algebras (charF = 3)

Theorem (E. 2018)
Let (C, µ, n) be a Cayley algebra over a field F of characteristic 3, and let
σ be an order 3 automorphism of (C, µ, n). Then (C, µ, n) is the split
Cayley algebra and one of the following conditions holds, up to
conjugation:

1. (σ − id)2 = 0 and σ(ui) = ui, i = 1, 2, σ(u3) = u3 + u2.
2. There is a quadratic étale subalgebra K of C fixed elementwise by σ.

If F is algebraically closed, we have σ(ui) = ui+1 (indices modulo
3).

3. σ(ui) = ui, i = 1, 2, σ(u3) = u3 + v3 − (e1 − e2).
4. σ(ui) = ui, i = 1, 2, σ(u3) = u3 + u2 + v3 − (e1 − e2).
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Semisimplification of Cayley algebras (charF = 3)

Each order 3 automorphism of a Cayley algebra allows us to look at it as
an algebra in Rep C3, and hence apply our recipe to get a unital
composition superalgebra, obtaining the following possibilities, according
to the type of the automorphism in the previous slide:

1. The six-dimensional composition superalgebra B(4, 2).

2. A two-dimensional composition algebra.

3. The three-dimensional composition superalgebra B(1, 2).

4. Again the three-dimensional composition superalgebra B(1, 2).

B(4, 2) and B(1, 2) were ‘discovered’ by Shestakov (1997) in his
classification of the prime alternative superalgebras.
They are the only ‘exceptional’ unital composition superalgebras
(E.-Okubo 2002).
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Triality Lie algebra

Let (C, µ, n) be a Hurwitz algebra over a field F of characteristic not 2.

Its triality Lie algebra is

tri(C, •, n) := {(d0, d1, d2) ∈ so(C, n)3 |
d0(x • y) = d1(x) • y + x • d2(y) ∀x, y ∈ C}

with x • y = x y. (x = n(x, 1) − x is the canonical involution.)

This is a Lie algebra with componentwise Lie bracket, and the cyclic
permutation

θ : (d0, d1, d2) 7→ (d2, d0, d1)

is an automorphism (triality automorphism).
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Symmetric construction of Freudenthal magic square

The vector space

g(C, C′) =
(
tri(C) ⊕ tri(C′)

)
⊕

(
⊕2

i=0ιi(C ⊗ C′)
)
,

where ιi(C ⊗ C′) is just a copy of C ⊗ C′ (i = 0, 1, 2) becomes a Lie
algebra with:

the Lie bracket in tri(C) ⊕ tri(C′) (a Lie subalgebra of g),
[(d0, d1, d2), ιi(x ⊗ x′)] = ιi

(
di(x) ⊗ x′),

[(d′
0, d′

1, d′
2), ιi(x ⊗ x′)] = ιi

(
x ⊗ d′

i(x′)
)
,

[ιi(x ⊗ x′), ιi+1(y ⊗ y′)] = ιi+2
(
(x • y) ⊗ (x′ • y′)

)
,

[ιi(x ⊗ x′), ιi(y ⊗ y′)] = n′(x′, y′)θi(tx,y) + n(x, y)θ′i(t′
x′,y′) ∈

tri(C) ⊕ tri(C′),
(tx,y :=

(
sx,y, 1

2
(
rylx − rxly

)
, 1

2
(
lyrx − lxry

))
, with

sx,y : z 7→ n(x, z)y − n(y, z)x, lx : z 7→ x • z, and rx : z 7→ z • x).
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Freudenthal magic square

dim C′

g(C, C′) 1 2 4 8

1 A1 A2 C3 F4

2 A2 A2 ⊕ A2 A5 E6
dim C

4 C3 A5 D6 E7

8 F4 E6 E7 E8

(Vinberg, Allison-Faulkner, Barton-Sudbery, Landsberg-Manivel)
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Extended Freudenthal magic square in characteristic 3

The previous symmetric construction of Freudenthal magic square works
if the Hurwitz algebras are replaced by Hurwitz superalgebras:

g(C, C′) F K Q C B(1, 2) B(4, 2)

F A1 Ã2 C3 F4 6|8 21|14

K Ã2 ⊕ Ã2 Ã5 Ẽ6 11|14 35|20

Q D6 E7 24|26 66|32

C E8 55|50 133|56

B(1, 2) 21|16 36|40

B(4, 2) 78|64
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Lie superalgebras in the extended magic square

B(1, 2) B(4, 2)

F psl2,2 sp6 ⊕(14)

K
(
sl2 ⊕ pgl3

)
⊕

(
(2) ⊗ psl3

)
pgl6 ⊕(20)

Q
(
sl2 ⊕ sp6

)
⊕

(
(2) ⊗ (13)

)
so12 ⊕spin12

C
(
sl2 ⊕f4

)
⊕

(
(2) ⊗ (25)

)
e7 ⊕ (56)

B(1, 2) so7 ⊕2spin7 sp8 ⊕(40)

B(4, 2) sp8 ⊕(40) so13 ⊕spin13
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g(C, C ′) as a Lie algebra in Rep C3

Any order 3 automorphism of a Cayley algebra (C, µ, n) induces an order
3 automorphism of its triality Lie algebra tri(C, •, n) commuting with the
triality automorphism.

Therefore, starting with an order 3 automorphism σ of a Cayley algebra
(C, µ, n) such that its semisimplification is isomorphic to either B(1, 2) or
B(4, 2), there is an order 3 automorphism induced in g(C, C′), where we
combine the order 3 automorphism on C and the identity automorphism
in C′. This allows us to consider g(C, C′) as a Lie algebra in Rep C3.

The same arguments work if both C and C′ are Cayley algebras endowed
with order 3 automorphisms. We also get an induced order 3
automorphism of g(C, C′). These order 3 automorphisms allow us to see
g(C, C′) as a Lie algebra in Rep C3.
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g(C, C ′) as a Lie algebra in Rep C3

Theorem
g(C, C′)ss and g(Css, C′ss) are isomorphic.

Corollary
All the Lie superalgebras in the extended Freudenthal magic square are
thus obtained, in a unified way, by semisimplification of Lie algebras in
Freudenthal magic square.

Remark
The Lie superalgebras g(B(1, 2), B(1, 2)), g(B(1, 2), B(4, 2)), and
g(B(4, 2), B(4.2)), are all obtained here by semisimplification of the Lie
algebra g(C, C′) of type E8.
Arun Kannan, using Rep α3 instead of Rep C3, obtained
g(B(1, 2), B(1, 2)) by semisimplification of E6.
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Thank you!
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