Interpolation categories for finite linear groups

Thorsten Heidersdorf

January 10, 2024

Newcastle University

Let $S_{\infty} = \cup_n S_n$.

Let $\operatorname{Rep}(S_{\infty})$ be the category of algebraic representations of S_{∞} in the sense of Sam and Snowden: All subquotients of direct sums of tensor powers of \mathbb{C}^{∞} (the permutation representation of S_{∞}).

This is a symmetric monoidal (SM) abelian category generated by \mathbb{C}^{∞} .

Question. How does this relate to Deligne's $Rep(S_t)$?

To relate these two we have to replace $Rep(S_t)$ by its abelian envelope if $t \in \mathbb{N}$.

Let *I* be a *k*-linear SM functor from an additive karoubian *k*-linear rigid symmetric monoidal category C to a tensor category V over *k*.

Definition: A pair $(\mathcal{V}, I : \mathcal{C} \to \mathcal{V})$ as above is an abelian envelope of \mathcal{C} if for any *k*-linear tensor category \mathcal{A} the functor

$$-\circ I: \operatorname{\mathit{Fun}^{ex}}(\mathcal{V},\mathcal{A})
ightarrow \operatorname{\mathit{Fun}^{faith}}(\mathcal{C},\mathcal{A})$$

is an equivalence of categories between

- $Fun^{ex}(\mathcal{V}, \mathcal{A})$, the category of exact SM *k*-linear functors $\mathcal{V} \to \mathcal{A}$,
- $Fun^{faith}(\mathcal{C}, \mathcal{A})$, the category of faithful SM *k*-linear functors $\mathcal{C} \to \mathcal{A}$.

Example. The category $Rep(S_t)$ has an abelian envelope $Rep(S_t)^{ab}$ (Comes-Ostrik).

Why we care about abelian envelopes for Deligne categories:

- Satisfy again some universal property.
- Richer structure, e.g. highest weight category for $Rep(S_t)^{ab}$.
- Connection to other settings of stable representation theory, e.g. $Rep(GL_{\infty}(\mathbb{F}_q)).$
- Extension property very useful

Existence criteria and explicit constructions:

- Some ad-hoc constructions, e.g. by Comes-Ostrik for $Rep(S_t)$.
- Coulembier: General existence criteria for abelian envelopes, but difficult to verify in practice
- Benson-Etingof-Ostrik: More restrictive criteria, but yield (if possible to verify) more explicit description of the hypothetical envelope.

Theorem. [Barter-Entova-Aizenbud-H.] There is a \mathbb{C} -linear symmetric monoidal functor $\mathbf{\Gamma}_t : \operatorname{Rep}(S_\infty) \to \operatorname{Rep}^{ab}(S_t) \hookrightarrow \operatorname{Rep}(S_t)$.

- The functor Γ_t is faithful and exact.
- The functor Γ_t takes simple objects in $\operatorname{Rep}(S_{\infty})$ to standard objects in the highest-weight category $\operatorname{Rep}^{ab}(S_t)$, and injective objects to tilting objects (these are precisely the objects coming from the Deligne category $\operatorname{Rep}(S_t)$).

Aim. Develop a similar theory for complex representations of $GL_n(\mathbb{F}_q)$ (joint work with Inna Entova-Aizenbud) and possibly $O_n(\mathbb{F}_q)$ and $Sp_{2n}(\mathbb{F}_q)$.

One recipe to build a Deligne category for some infinite family of groups G_n like $GL_n(\mathbb{F}_q)$:

- Choose your favorite faithful representation V_n for some fixed G_n .
- Need an explicit description of $End(V_n^{\otimes r})$ for all r.
- Should expect that there is some nice algebra A_r(n) such that (i) A_r(n) always surjects onto End(V^{⊗r}_n) and is an iso for r small compared n.
- The composition rule in A_r(n) should depend polynomially on n so that A_r(t), t ∈ C, also makes sense.
- Start with a skeletal subcategory of objects $[0], [1], [2], \ldots$ and define $End([r], [r]) = A_r(t)$.
- Take the additive idempotent completion of this skeletal subcategory.

Analog of the permutation representation: $\mathbf{V} = \mathbb{CF}_{a}^{n}$, $V = \mathbb{F}_{a}^{n}$ and hence

$$\mathbf{V}_n^{\otimes s} = \mathbb{C} V^{\times s}.$$

Notation: For sums over \mathbb{F}_q we write $\dot{+}$ instead of +. For $v_1, \ldots, v_s \in V$, we write $(v_1|\ldots|v_s) \in V^{\times s}$. Morphisms from $\mathbf{V}_n^{\otimes s}$ to $\mathbf{V}_n^{\otimes k}$:

Let $s, k \in \mathbb{Z}_{\geq 0}$. Let $R \subset \mathbb{F}_q^{s+k} = \mathbb{F}_q^s \times \mathbb{F}_q^k$ be a linear \mathbb{F}_q -subspace. We define a *G*-invariant subspace

$$R^{\perp} = \{ (v_1 | \dots | v_{s+k}) \in V^{\times (s+k)} \mid \forall u = (u_1, \dots, u_{s+k}) \in R, \sum_i u_i v_i = 0 \}$$

in $V^{\times(s+k)}$. This allows us to define a map

$$f_R: \mathbf{V}_n^{\otimes s} \to \mathbf{V}_n^{\otimes k}, \ v_1 \otimes \ldots \otimes v_s \mapsto \sum_{\substack{(w_1| \ldots | w_k) \in V^{\times k} \\ (v_1| \ldots | v_s | w_1 | \ldots | w_k) \in R^{\perp}}} w_1 \otimes \ldots \otimes w_k.$$

Examples of morphisms f_R

Consider the following morphisms ($v, w \in V$):

1. Morphisms

$$\begin{split} \varepsilon &:= f_{\{\dot{0}\}} : \mathbf{1} \to \mathbf{V}_n, \ , \mathbf{1} \mapsto \sum_{v \in V} v, \\ \varepsilon^* &:= f_{\{\dot{0}\}} : \mathbf{V}_n \to \mathbf{1}, \ , v \to \mathbf{1} \ , \\ m &:= f_{\{(a+b,-a,-b)|a,b \in \mathbb{F}_q\}} : \mathbf{V}_n \otimes \mathbf{V}_n \to \mathbf{V}_n, \ v \otimes w \mapsto \delta_{v,w} v \ , \\ m^* &:= f_{\{(a+b,-a,-b)|a,b \in \mathbb{F}_q\}} : \mathbf{V}_n \to \mathbf{V}_n \otimes \mathbf{V}_n, \ v \mapsto v \otimes v \ , \\ \sigma &:= f_{\{(a,b,-b,-a)|a,b \in \mathbb{F}_q\}} : \mathbf{V}_n \otimes \mathbf{V}_n \to \mathbf{V}_n \otimes \mathbf{V}_n, \ v \otimes w \mapsto w \otimes v \ . \end{split}$$

2. Morphisms

$$\begin{split} z &:= f_{\mathbb{F}_q^1} : \mathbf{1} \to \mathbf{V}_n, \ \mathbf{1} \mapsto \dot{\mathbf{0}}, \\ \forall a \in \mathbb{F}_q, \ \mu_a &:= f_{\{(-ab,b)|b \in \mathbb{F}_q\}} : \mathbf{V}_n \to \mathbf{V}_n, \ v \mapsto \dot{a}v \quad \text{for } v \in V, \\ \dot{+} &:= f_{\{(b,b,-b)|b \in \mathbb{F}_q\}} : \mathbf{V}_n \otimes \mathbf{V}_n \to \mathbf{V}_n, \ v \otimes w \mapsto v \dot{+}w \quad \text{for } v, w \in V. \end{split}$$

Interpretation:

- The morphisms μ_a , $\dot{+}$ give \mathbf{V}_n the structure of vector space over \mathbb{F}_q , with $z : \mathbf{1} \to \mathbf{V}_n$ defining the zero vector $\dot{\mathbf{0}} \in \mathbf{V}_n$;
- The rest of the morphisms make \mathbf{V}_n into a commutative Frobenius algebra in $\operatorname{Rep}(GL_n(\mathbb{F}_q))$. The algebra is self-dual, via the pairings

$$ev := f_{\{(a,-a)|a \in \mathbb{F}_q\}} : \mathbf{V}_n \otimes \mathbf{V}_n \to \mathbf{1}, \quad v \otimes w \mapsto \delta_{v,w} \quad \text{for } v, w \in V,$$
$$coev := f_{\{(a,-a)|a \in \mathbb{F}_q\}} : \mathbf{1} \to \mathbf{V}_n \otimes \mathbf{V}_n, \quad \mathbf{1} \mapsto \sum_{v \in V} v \otimes v.$$

where

$$ev = \varepsilon^* \circ m$$
, $coev = m^* \circ \varepsilon$.

Lemma. [Entova-Aizenbud-H.] The set $\{f_R | R \subset \mathbb{F}_q^{s+k}\}$ spans the space $Hom_G(\mathbf{V}_n^{\otimes s}, \mathbf{V}_n^{\otimes k})$. Furthermore, if $n \geq s + k$ then this set is a basis of $Hom_G(\mathbf{V}_n^{\otimes s}, \mathbf{V}_n^{\otimes k})$. The composition $f_S \circ f_R : \mathbf{V}_n^{\otimes s} \to \mathbf{V}_n^{\otimes l}$ is polynomial in q^n (and equals

 $q^{n \cdot d(R,S)} f_{S \star R}$

for some explicitly given d(R, S)).

Define the skeletal subcategory $\mathcal{T}(\underline{GL}_t)$: Objects [k], $k \in \mathbb{N}$. Define

 $Rel_{s,k} = \{R \subset \mathbb{F}_q^{s+k} \text{ linear subspace }\}, \quad Hom_{\mathcal{T}(\underline{GL}_t)}([s], [k]) = \mathbb{C}Rel_{s,k}$

Composition: for $R \in Rel_{s,k}$, $S \in Rel_{k,l}$ we set

 $S \circ R := t^{d(R,S)}S \star R.$

Monoidal structure of $\mathcal{T}(\underline{GL}_t)$: put $[I] \otimes [k] := [I + k]$.

We define $Rep(GL_t(\mathbb{F}_q))$ as the additive Karoubi envelope of $\mathcal{T}(\underline{GL}_t)$.

Knop: Defined $Rep(GL_t(\mathbb{F}_q))$ (but differently). Proved:

- 1. $Rep(GL_t(\mathbb{F}_q))$ is abelian and semisimple iff $t \neq q^n$ for some $n \in \mathbb{N}$.
- 2. For $t = q^n$ there is a specialization functor

$$F_{\mathbf{V}}: Rep(GL_t(\mathbb{F}_q)) \to Rep(GL_n(\mathbb{F}_q))$$

(the semisimplification functor).

For t ≠ qⁿ, the simple objects are up to isomorphism in bijection with U_n Irr_n where Irr_n are the iso classes of irreducible GL_n(𝔽_q)-representations.

Let ${\mathcal C}$ be a ${\mathbb C}\text{-linear}$ rigid SM category.

Definition. Let $\textbf{V} \in \mathcal{C}$ be an object equipped with the following structures:

- V is equipped with the structure of a Frobenius algebra object in C. That is, V is equipped with maps m: V^{⊗2} → V, ε : 1 → V, m*: V → V^{⊗2}, ε*: V → 1 such that:
 - It is a commutative unital algebra object with multiplication m and unit ε , and a cocommutative counital coalgebra object with comultiplication m^* and counit ε^* ,
 - Frobenius Relations:

 $m^* \circ m = (id \otimes m) \circ (m^* \otimes id) = (m \otimes id) \circ (id \otimes m^*)$, and Speciality Relation: $m \circ m^* = id$. • **V** is a module over the field \mathbb{F}_q : **V** is equipped with maps

$$\begin{split} &\dot{+}: \mathbf{V} \otimes \mathbf{V} \to \mathbf{V}, \\ &\mu: (\mathbb{F}_q, \cdot) \to (\mathit{End}_{\mathcal{C}}(\mathbf{V}), \circ), \ a \mapsto \mu_a, \\ &z: \mathbf{1} \to \mathbf{V} \end{split}$$

satisfying the following conditions:

- $\dot{+}$ is associative and commutative: $\dot{+} \circ (\dot{+} \otimes id) = \dot{+} \circ (id \otimes \dot{+}),$ $\dot{+} \circ \sigma = \dot{+}$ where $\sigma \in End(\mathbf{V} \otimes \mathbf{V})$ is the symmetry morphism.
- z serves as "the embedding of the $\dot{0}$ vector": $\dot{+} \circ (z \otimes id) = id, \dot{+} \circ (id \otimes z) = id,$
- For all $a, b \in \mathbb{F}_q$, $\mu_a \circ \mu_b = \mu_{ab}$ and $\mu_1 = id$, $\mu_0 = z \circ \varepsilon^*$.
- Linearity of μ_a with respect to +: for any a, b ∈ F_q, μ_{a+b} = + ∘ (μ_a ⊗ μ_b) ∘ m^{*}. Distributivity of μ_a: for any a ∈ F_q, μ_a ∘ + = + ∘ (μ_a ⊗ μ_a).

Assume furthermore that the above structures satisfy some compatibility relations. Such an object **V** is called an \mathbb{F}_q -linear Frobenius space in \mathcal{C} .

Example. The representation V_n in $Rep(GL_n(\mathbb{F}_q))$. Dito V_n seen as a representation of $O_n(\mathbb{F}_q)$, $Sp_{2n}(\mathbb{F}_q)$, ...

Theorem. [Entova-Aizenbud-H.] Let C be a Karoubi additive rigid SM category, and let \mathbf{V} be an \mathbb{F}_q -linear Frobenius space in C. Let $t = \dim(\mathbf{V})$. Then there exists a SM functor

$$F_{\mathbf{V}}: Rep(GL_t(\mathbb{F}_q)) \rightarrow \mathcal{C}, \ \mathbf{V}_t \longmapsto \mathbf{V}$$

which is unique up to isomorphism.

The infinite case

Let $V := \mathbb{F}_q^{\infty} = \bigcup_{n \neq 0} \mathbb{F}_q^n$. We denote by \mathbf{V}_{∞} the representation \mathbb{CF}_q^{∞} of $GL_{\infty}(\mathbb{F}_q)$.; this is the countable-dimensional vector space consisting of infinite sequences of elements in \mathbb{F}_q which have finite support.

Let $\mathcal{I}_{\infty} \subset Rep(GL_{\infty}(\mathbb{F}_q))$ denote the full subcategory of direct summands in tensor powers of \mathbb{CF}_q^{∞} . Let $Rep(GL_{\infty}(\mathbb{F}_q))$ denote the the category of algebraic representations of $GL_{\infty}(\mathbb{F}_q)$: all subquotients of tensor powers of \mathbb{CF}_q^{∞} .

 \mathcal{I}_{∞} does not have a good notion of duality anymore. In particular \mathbb{CF}_{q}^{∞} is no longer an \mathbb{F}_{q} -linear Frobenius space.

Theorem. [Entova-Aizenbud-H.] There is a non-full embedding of $\mathcal{I}_{\infty} \to \operatorname{Rep}(\operatorname{GL}_t(\mathbb{F}_q))$. The category \mathcal{I}_{∞} is universal with respect to a semi- \mathbb{F}_q -linear Frobenius space (essentially an \mathbb{F}_q -linear Frobenius space without a unit).

Remark. The additive envelope of \mathcal{I}_{∞} can be identified with the full subcategory of injective objects in $Rep(GL_{\infty}(\mathbb{F}_q))$.

Harman-Snowden: Construction of the abelian envelope for $t = q^n$ via oligomorphic groups.

Entova-Aizenbud-H: another description of the abelian envelope of the form C - Comod, the category of finite-dimensional C-comodules for some coalgebra C (a special case of the Benson-Etingof-Ostrik construction).

Follows loosely the approach by Comes-Ostrik in the $Rep(S_t)$ -case.

Let \mathcal{T} denote Karoubi rigid SM category. Recall that a morphism $f: X \to Y$ is split if it is the composition $i \circ \pi$ where π is a split epimorphism and i is a split monomorphism.

Definition. An object $X \in \mathcal{T}$ is a splitting object if for any $Q_1, Q_2 \in \mathcal{T}$ and a morphism $f : Q_1 \to Q_2$ the morphisms $1_X \otimes f : X \otimes Q_1 \to X \otimes Q_2$ and $f \otimes 1_X : Q_1 \otimes X \to Q_2 \otimes X$ are split.

Splitting objects form a thick tensor ideal S. Let I denote the set of isomorphism classes of indecomposable objects $\{P_i\}_{i \in I}$ in S. Define the coalgebra

$$C:=\bigoplus_{i,j\in\mathbf{I}}\operatorname{Hom}(P_i,P_j)^*.$$

and denote by C = C - Comod the category of finite-dimensional *C*-comodules, i.e. the category of additive functors $S^{op} \rightarrow Vec$.

Theorem. [Entova-Aizenbud-H.] For $Rep(GL_t(\mathbb{F}_q))$ we have S = N, the thick tensor ideal of negligible objects, and C = C - Comod is the abelian envelope of $Rep(GL_t(\mathbb{F}_q))$.

Corollary. Universal property: Let C be a pre-tannakian category and let V be an \mathbb{F}_q -linear Frobenius space in C.

(i) If V is annihilated by some exterior power and dim $(V) = q^n$, the functor $F_V : Rep(GL_{q^n}(\mathbb{F}_q)) \to C$ factors through the specialization functor

$$Rep(GL_{t=q^n}(\mathbb{F}_q)) \to Rep(GL_n(\mathbb{F}_q)).$$

(ii) If V is not annihilated by any exterior power, then F_V factors through the canonical embedding

$$Rep(GL_{q^n}(\mathbb{F}_q)) \to Rep^{ab}(GL_{q^n}(\mathbb{F}_q)).$$

For S_n we can define $\Delta_k^n = \mathbb{C} Inj(\{1, \ldots, k\}, \{1, \ldots, n\}) = Ind_{S_{n-k}}^{S_n} \mathbf{1}$ for $k \leq n$.

These have analogs Δ_k , $k \in \mathbb{N}$ in $Rep(S_t)$. For $Rep(S_{t=n})$ define $\Delta = \Delta_{n+1}$. Then there is a factorization (Deligne, Comes-Ostrik)

Since $Rep(S_{-1})$ is semisimple, Δ is a splitting object.

The $Rep(GL_t(\mathbb{F}_q))$ -case

By $P_{k,n}$ we denote the parabolic subgroup of all matrices $\begin{bmatrix} C & A \\ 0 & B \end{bmatrix} \in GL_n(\mathbb{F}_q) \text{ where } C \in GL_k(\mathbb{F}_q), B \in GL_{n-k}(\mathbb{F}_q) \text{ and}$ $A \in Mat_{k \times (n-k)}(\mathbb{F}_q).$

By $H_{k,n} \subset P_{k,n}$ we denote the mirabolic subgroup of all matrices as above for which *C* is the identity matrix of size $k \times k$.

Consider the left regular representation $\mathbb{C}[GL_k(\mathbb{F}_q)]$ of $GL_k(\mathbb{F}_q)$. We inflate it to a representation of $P_{k,n}$ by requiring that $H_{k,n}$ acts trivially. We denote:

$$\Delta_k^n := \mathbb{C} Inj_{\mathbb{F}_q}(\mathbb{F}_q^k, \mathbb{F}_q^n) = Ind_{P_{k,n}}^{GL_k(\mathbb{F}_q) \times GL_n(\mathbb{F}_q)} \mathbb{C}[GL_k(\mathbb{F}_q)].$$

This is a representation of $GL_k(\mathbb{F}_q) \times GL_n(\mathbb{F}_q)$. If we restrict the action just to $GL_n(\mathbb{F}_q)$, this becomes

$$\Delta_k^n|_{GL_n(\mathbb{F}_q)}\cong Ind_{H_{k,n}}^{GL_n(\mathbb{F}_q)}\mathbf{1}.$$

Can construct analogs Δ_k , $k \in \mathbb{N}$, in $Rep(GL_t(\mathbb{F}_q))$.

Suggests that Δ_k for $Rep(GL_t(\mathbb{F}_q)$ should be induced from a parabolic version of the Deligne category.

This can be done via a general machinery developed by Knop to construct interpolating categories.

Fix $k \in \mathbb{Z}_{\geq 0}$. Let \mathcal{A}_k denote the category whose objects are pairs (V, p_V) where $V \in \operatorname{Vect}_{\mathbb{F}_q}$ and $p_V : V \twoheadrightarrow \mathbb{F}_q^k$ be a surjective \mathbb{F}_q -linear map. The morphisms in this category are given by

 $Mor_{\mathcal{A}_k}((V, p_V), (W, p_W)) = \{f \in Hom_{\mathbb{F}_q}(V, W) : f \circ p_W = p_V\}.$

Knop's construction gives a family of karoubian SM categories $\mathcal{T}(\mathcal{A}_k, t)$ for $t \in \mathbb{C}$.

The category $\mathcal{T}(\mathcal{A}_k, t)$ is semisimple whenever $t \notin q^{\mathbb{Z} \geq k}$.

For $t = q^N$ where $N \in \mathbb{Z}_{\geq k}$, we have a full, essentially surjective SM functor

$$F_N: \mathcal{T}(\mathcal{A}_k, t) \to \operatorname{Rep}(H^{tr}_{k,N})$$

where

$$H_{k,N}^{tr} = \left\{ \begin{bmatrix} 1_k & 0 \\ A & B \end{bmatrix} \in GL_n(\mathbb{F}_q) \right\}$$

Since $H_{k,N}^{tr}$ is obtained from $H_{k,N}$ by the automorphism $X \mapsto (X^{-1})^{tr}$ of $GL_n(\mathbb{F}_q)$, we have $\operatorname{Rep}(H_{k,N}) \cong \operatorname{Rep}(H_{k,N}^{tr})$, so the family $\mathcal{T}(\mathcal{A}_k, t)$, $t \in \mathcal{C}$ interpolates" the categories $\operatorname{Rep}(H_{k,N})$ for $t = q^N$.

Fix $t \in \mathbb{C}$. We have a functor

$$Res_{t,k} : \operatorname{Rep}(GL_t(\mathbb{F}_q)) \longrightarrow \mathcal{T}(\mathcal{A}_k, t)$$

given by the universal property of $\operatorname{Rep}(GL_t(\mathbb{F}_q))$.

Key lemma. Δ_{n+1} is a projective object in $Prshv(Rep(GL_t(\mathbb{F}_q)))$ for $t = q^n$.

Proof. Show that there is an induction functor from the parabolic Deligne category to $Prshv(Rep(GL_t))$ which sends 1 to Δ_{n+1} , and this functor is left adjoint to an exact restriction functor, hence sends projectives to projectives. For k = n + 1, $\mathcal{T}(\mathcal{A}_k, t)$ is semisimple.

- Develop the representation theory of Rep(GL_∞(𝔽_q)) similarly to Sam-Snowden's work for S_∞. Some partial results by Nagpal.
- Understand the abelian envelope better (highest weight structure etc).
- We suspect that there are two different Deligne categories for the finite linear group, ours and a bigger one which should be generated by $\tilde{\Delta}$ -objects induced from a Levi subgroup. We don't even know how to construct the latter diagrammatically.