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Overview of the talk

DPLL and Conflict Analysis

Satisfiability Modulo Theories (SMT)

DPLL(T) = DPLL(X) + T-Solver
Our Barcelogic DPLL(T) tool

What does DPLL(T) need from T-Solver?
Ongoing work on T-Solvers and Combination

Some new applications of DPLL(T)

Other ongoing work
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(Abstract) DPLL for propositional SAT

Assmt.: Clause set:
∅ || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)

1 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)

1 2 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)

1 2 3 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)

1 2 3 4 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)

1 2 3 4 5 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)

1 2 3 4 5 6 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Backtrack)

1 2 3 4 5 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ . . .

Other rules:

Backjump: (generalizes Backtrack)

Learn: (learning backjump clauses avoids “similar” conflicts)

Forget: (removes “inactive” clauses)
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Backtrack vs. Backjump

Same example again. Remember: Backtrack gave 1 2 3 4 5.

But note that decision level 3 4 is unrelated to the conflict 6∨5∨2:

∅ || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)

. . . || . . .
1 2 3 4 5 6 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Backjump)

1 2 5 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ . . .

The Backjump rule is:

M l N || F, C ⇒ M l′ || F, C IF







C is false in M l N, and
there is some clause C′ ∨ l′

− entailed by F, C
− s.t. C′ is false in M

C′ ∨ l′ is called the backjump clause. In our example, it is 2∨5.

SSPV’06. Architecture and Solvers in the Barcelogic SMT tool – p.4/30



Barcelogic - Tech. Univ. Catalonia (UPC)

Backtrack vs. Backjump

Same example again. Remember: Backtrack gave 1 2 3 4 5.

But note that decision level 3 4 is unrelated to the conflict 6∨5∨2:

∅ || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)

. . . || . . .
1 2 3 4 5 6 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Backjump)

1 2 5 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ . . .

The Backjump rule is:

M l N || F, C ⇒ M l′ || F, C IF







C is false in M l N, and
there is some clause C′ ∨ l′

− entailed by F, C
− s.t. C′ is false in M

C′ ∨ l′ is called the backjump clause. In our example, it is 2∨5.

SSPV’06. Architecture and Solvers in the Barcelogic SMT tool – p.4/30



Barcelogic - Tech. Univ. Catalonia (UPC)

Conflict analysis: find backjump clause

Consider assignment: . . . 6 . . . 7 . . . 9 and let F contain:

9∨6∨7∨8, 8∨7∨5, 6∨8∨4, 4∨1, 4∨5∨2, 5∨7∨3, 1∨2∨3.

UnitPropagate: . . . 6 . . . 7 . . . 9 8 5 4 1 2 3. Conflict with 1∨2∨3!

Implication Graph:

8

4

5

2

1

37

6

9

Can use 8∨7∨6 for Backjump to . . . 6 . . . 7 8.
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Confl. analysis: find backjump clause (2)

Same example: assignment . . . 6 . . . 7 . . . 9 and let F contain:
9∨6∨7∨8, 8∨7∨5, 6∨8∨4, 4∨1, 4∨5∨2, 5∨7∨3, 1∨2∨3.

UnitPropagate: . . . 6 . . . 7 . . . 9 8 5 4 1 2 3. Conflict with 1∨2∨3!

Do Resolutions in reverse order backwards from conflict:

8∨7∨5
6∨8∨4

4∨1
4∨5∨2

5∨7∨3 1∨2∨3
5∨7∨1∨2

4∨5∨7∨1
5∨7∨4

6∨8∨7∨5
8∨7∨6

until reaching clause with only 1 lit. of current decision level.

Can use this clause 8∨7∨6 for Backjump to . . . 6 . . . 7 8.
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Abstract DPLL results

A DPLL procedure for F is any derivation: ∅ || F ⇒ . . . ⇒ S
where S is a final state (no rule applies). It always terminates.

One can easily prove that, if the final state S is:
– fail then F is unsat.
– of the form M || F then M is a model

Abstract DPLL provides formal and uniform proofs of correctness
and completeness of many variants, strategies and ... extensions to
e.g., SAT Modulo Theories (SMT)...
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SAT Modulo Theories (SMT)

Some problems are more naturally expressed in richer logics
than just propositional logic, e.g:

Software/Hardware verification needs reasoning about
equality, arithmetic, data structures, ...

SMT consists of deciding the satisfiability of a (ground) FO
formula with respect to a background theory T

Example: T is Equality with Uninterpreted Functions (EUF):
g(a)= c ∧ ( f (g(a)) 6= f (c) ∨ g(a)=d ) ∧ c 6=d

Example: (combined theories)
A=write(B, a+1, 4) ∧ ( read(A, b+3)=2 ∨ f (a−1) 6= f (b+1) )

Wide range of applications
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The Eager approach to SMT

Methodology: translate problem into equisatisfiable
propositional formula and use off-the-shelf SAT solver
[Bryant, Velev, Pnueli, Lahiri, Seshia, Strichman, ...]

Why “eager”?
Search uses all theory information from the beginning

Characteristics:
+ Can use best available SAT solver
− Sophisticated encodings are needed for each theory
− Sometimes translation and/or solving too slow

Main Challenge for alternative approaches is to combine:

– DPLL-based techniques for handling the boolean structure
with

– Efficient theory solvers for conjunctions of T-literals
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The Lazy approach to SMT

Same example: consider EUF and

g(a)= c
︸ ︷︷ ︸

1

∧ ( f (g(a)) 6= f (c)
︸ ︷︷ ︸

2

∨ g(a)=d
︸ ︷︷ ︸

3

) ∧ c 6=d
︸︷︷︸

4

1. Send { 1, 2∨3, 4 } to SAT solver

SAT solver returns model [1, 2, 4]

Theory solver says [1, 2, 4] is T-inconsistent

2. Send { 1, 2∨3, 4, 1∨2∨4 } to SAT solver

SAT solver returns model [1, 2, 3, 4]

Theory solver says [1, 2, 3, 4] is T-inconsistent

3. Send { 1, 2∨3, 4, 1∨2∨4, 1∨2∨3∨4 } to SAT solver
SAT solver says UNSAT
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Lazy approach (2)

Why “lazy”?
Theory information used lazily when checking T-consistency
of propositional models

Characteristics:
+ Modular and flexible
– Theory information does not guide the search

Tools: CVC-Lite, ICS, MathSAT, TSAT+, Verifun, ...
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Optimized Lazy approach

Check T-consistency only of full propositional models

Check T-consistency of partial assignment while being built

Given a T-inconsistent assignment M, add ¬M as a clause

Given a T-inconsistent assignment M, find an explanation
(a small T-inconsistent subset of M) and add it as a clause

Upon a T-inconsistency, add clause and restart

Upon a T-inconsistency, do conflict analysis of the explanation
and Backjump
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Overview of the talk

DPLL and Conflict Analysis

Satisfiability Modulo Theories (SMT)

DPLL(T) = DPLL(X) + T-Solver ⇐=
Our Barcelogic DPLL(T) tool

What does DPLL(T) need from T-Solver?
Ongoing work on T-Solvers and Combination

Some new applications of DPLL(T)

Other ongoing work
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Our DPLL(T) approach

DPLL(T) = DPLL(X) engine + T-Solver

Modular and flexible, as CLP(X) in Constraint Logic Progr.:
can plug in any T-Solver into the DPLL(X) engine.

Theory Propagation: more pruning in optimized lazy SMT

T-Propagate : M || F ⇒ M l || F IF
{

M |=T l

T-Solver also guides search, instead of only validating it

[Armando et al]: Add ¬l. If T-inconsistent then infer l.
But in DPLL(T):

– T-Solvers specialized and fast in Theory Propagation
– Fully exploited in conflict analysis (non-trivial)

Not any explanation of a theory propagation is ok!
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DPLL(T) Example

Notation used: Abstract DPLL Modulo Theories.

Consider again same example with EUF:

g(a)= c
︸ ︷︷ ︸

1

∧ ( f (g(a)) 6= f (c)
︸ ︷︷ ︸

2

∨ g(a)=d
︸ ︷︷ ︸

3

) ∧ c 6=d
︸︷︷︸

4

∅ || 1, 2∨3, 4 ⇒ (UnitPropagate)

1 || 1, 2∨3, 4 ⇒ (T-Propagate)

1 2 || 1, 2∨3, 4 ⇒ (UnitPropagate)

1 2 3 || 1, 2∨3, 4 ⇒ (T-Propagate)

1 2 3 4 || 1, 2∨3, 4 ⇒ fail

No search in this example
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Conflict analysis in DPLL(T)

New kind of arrows (reasons) in implication graph.
Each literal lit is in the partial assignment due to one of:

Decide (no arrow)
UnitPropagate with clause C: resolve with C
T-Propagate: resolve with (small) explanation

l1 ∧ . . . ∧ ln → lit provided by T-Solver
Too new T-explanations are forbidden!

How should it be implemented?

UnitPropagate: store a pointer to clause C, as in SAT solvers

T-Propagate: (pre-)compute explanations at each T-Propagate?
– If possible, only on demand, during conflict analysis
– typically only one Explain for every 250 T-Propagate.
– depends on T
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Our Barcelogic DPLL(T) tool

DPLL(X) is a state-of-the-art SAT engine:

features à la Chaff: two watched literals, 1UIP learning,
VSIDS-like decision heuristics, ...
new features: binary clause reasoning, subsumption,
lemma simplification, ...
see SAT Race 2006

T−Solvers for:
Real/Integer Difference Logic (IDL/RDL):
Equality with Uninterpreted Functions (EUF)
Linear Real Arithmetic (LRA)
Linear Integer Arithmetic (LIA) (forthcoming)
Arrays
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Barcelogic at SMT-COMP’05

Participated in 4 (of 7) divisions:

top-3 systems # Pbs solv. Time (secs.)

Barcelogic 39 8358

EUF (50 pbs.): Yices 37 9601

MathSAT 33 12386

Barcelogic 41 6341

RDL (50): Yices 37 9668

MathSAT 37 10408

Barcelogic 47 3531

IDL (51): Yices 47 4283

MathSAT 46 4295

Barcelogic 45 2705

UFIDL (49): Yices 36 9789

MathSAT 22 17255

Other tools:

CVC-Lite
(Barrett)
Ario
(Sakallah)
Sateen
(Somenzi)
...

Timeout = 600s.
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Overview of the talk

DPLL and Conflict Analysis

Satisfiability Modulo Theories (SMT)

DPLL(T) = DPLL(X) + T-Solver
Our Barcelogic DPLL(T) tool

What does DPLL(T) need from T-Solver? ⇐=
Ongoing work on T-Solvers and Combination ⇐=

Some new applications of DPLL(T)

Other ongoing work
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What does DPLL(T) need from T-Solver?

T-consistency check of a set of literals M, with:

Explain of T-inconsistency: find (small) T-inconsistent
subset of M [minimal wrt. size?, wrt. ⊆?]
Incrementality: if l is added to M, check for M l faster than
reprocessing M l from scratch.

Theory propagation: find input T-consequences of M, with:

Explain T-Propagate of l: find (small) subset of M that
T-entails l (needed in conflict analysis).

Backtrack n: undo last n literals added
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A standard Difference Logic solver

Given M = {a−b ≤ 2, b−c ≤ 3, c−a ≤ −7}, construct
weighted graph G(M)

a
2

3−7

b

c

M is T-inconsistent iff G(M) has a negative cycle

Bellmann-Ford-like algorithms to find such cycles in O(nm)

Irredundant inconsistent subsets are negative cycles

What about theory propagation?
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Our CAV’05 DL Solver

Key idea: exhaustive theory propagation avoids consistency
checks: M l is T-inconsistent iff M |=T ¬l. Hence we would
have added ¬l right after M.

For detecting all consequences of a new literal a − b ≤ k :

c − d ≤ k1 is T-entailed iff there is a path form c to d with
length at most k1. Hence T-Solver checks all shortest paths

c k′
−→∗ a k

−→ b k′′
−→∗ d

and finds all input literals entailed by c − d ≤ k′ + k + k′′

Complexity: O(nm + N), being N the number of input literals

Irredundant explanations for c − d ≤ k given by the shortest
path from c to d
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Analyzing our CAV’05 solver

CHARACTERISTICS:
TheoryProp is invoked even if UnitProp still applicable

Cannot get rid of the exhaustiveness requirement if
TheoryProp is too expensive

IDEAL SITUATION:
Cheaper reasoning should be done first:
1. Apply UnitProp exhaustively
2. If no conflict, then check T-consistency of model
3. If model T-consistent apply TheoryProp (if wanted)

Some of the computations of the consistency check should be
reused in TheoryProp

SSPV’06. Architecture and Solvers in the Barcelogic SMT tool – p.21/30



Barcelogic - Tech. Univ. Catalonia (UPC)

Our new solver: [Cotton&Maler,SAT06]

CHECK CONSISTENCY:
Check T-consistency of model using Bellmand-Ford-like
algorithm ( each newly added literal in O(m + n log n) )

Gives potential function π s.t. for each each edge a k
−→ b we

have π(a) + k − π(b)
︸ ︷︷ ︸

reduced cost

≥ 0

THEORY PROPAGATION:

Addition of a k
−→ b entails c − d ≤ k′ only if

c −→∗ a k
−→ b

︸ ︷︷ ︸

shortest

−→∗ d

shortest
︷ ︸︸ ︷

Shortest path computation more efficient using reduced costs,
since they are non-negative
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Linear Arithmetic Solver: Ongoing work

Traditionally simplex method preferred over
Fourier-Motzkin elimination because:

It is efficient in practice
Less memory, also for Incrementality and backtracking

Most solvers implement the tableau simplex method:

Pivoting is expensive as it requires to update all
coefficients of the linear program

Our alternative: revised simplex method

Pivoting is cheap as it just needs to incrementally update
the inverse matrix corresponding to dependent variables.
Method of choice for LP community (if sparse)
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Benchmark-goaled Linear Arithmetic

Typical structure of benchmarks:

1. 40-80 % of atoms are bounds of the form ±x ≤ k
2. 80-90 % of atoms belong to difference logic

Application to consistency checks:

1. Bounded simplex method
2. Lagrangian relaxation

Application to theory propagation:

1. Propagate bounds of the model

x ≤ 1 ∧ 2x + y ≤ 1 ∧ x − 2y ≤ 3 =⇒ x ≤ 3

2. Propagate difference logic fragment of the model

x − y ≤ 1 ∧ y − z ≤ 2 ∧ y = x + 2z =⇒ x − z ≤ 3
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New ideas to be added soon

[Dutertre&DeMoura,CAV’06]:

Very nice simple ideas, extremely good results

Initial translation into equalities + bounds. E.g.,
replace 2x − 3y + 5z ≤ 12 by 2x − 3y + 5z = s and s ≤ 12

The equalities never change, atoms sent to (and retracted
from) T-Solver are bounds.
Allows for initial simplifications

Little work on backtracking

Can identify cheap T-Propagate cases
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Expensive Theories, Combination

Splitting on demand [Barrett N O Tinelli, LPAR’06]:

Some T-Solvers need internal case splits (non-convex T)

Idea: T-Solver must request DPLL(X) engine to do them.
Advantages:

DPLL(X) is much better in doing case splits

Centralized decision heuristic not disturbed by other ones

T-Solver simpler: no splitting infrastructure needed

Weaker requirements for T-Solver:
complete “if all demanded splits have been done”

Resulting architecture naturally includes an efficient
DPLL(T1 . . . Tn) Nelson-Oppen-based combination
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Application to Predicate Abstraction

Predicate Abstraction:
gives finite-state abstractions from infinite-state systems

abstraction efficiently analyzed using Boolean techniques

many applications to verification

Key operation:

INPUT: a formula ϕ and set of predicates P
OUTPUT: the most precise approximation of ϕ using P, either
FP(ϕ): weakest formula over P T-entailing ϕ or
GP(ϕ): strongest formula over P T-entailed by ϕ.

Use of Barcelogic: See CAV’06 for details!

Use All-SAT SMT + BDD to get all models over P of ϕ

Extract (compact) approximation from BDD
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Experimental results for P.Abstraction

Microsoft SLAM (device drivers verification):
Initially, ZAP [Ball et al, CAV’04] was used for p. abstraction

Specialized Symbolic Decision Procedures (SDPs) [Lahiri et al,
CAV’05] obtained 100x speedup factor over ZAP

Barcelogic gives another 100x speedup over SDPs

Hardware and protocol verification problems
(70pbs, over ≈ 25 preds) [Lahiri and Bryant, CAV’04]:

Barcelogic gives 25x – 100x speedup over UCLID

Benchmarks from the verification of programs with linked lists
(30pbs, ≈ 20 preds) [Qaader and Lahiri, POPL’06]:

Barcelogic gives 30x – 40x speedup over UCLID
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Application to optimization problems

Aim: find SAT/SMT models M with minimal cost(M).
Branch and bound in Barcelogic: See SAT’06 for details!

Theory T = function cost ∧ best M so far.
After each new solution, T is strengthened

(Weighted) Max-SAT:
cost(M) = sum of weights of clauses that are false in M
Specialized rules, e.g: if units l and ¬l detected, add
smallest of their weights to cost
Barcelogic improves best Weighted CSP/PB solvers on
most larger problems

Max-SMT: Modeled and solved well-known hard Radio Freq.
Assignment Problems with distance constraints: Diff. Logic.

Barcelogic with no specialized heuristics beats best
Weighted CSP solver (with its best heuristic)
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Other ongoing/future work

Bit vector arithmetic

Adding support for quantifiers

Efficient interpolation modulo T

Other less-standard applications of SMT: e.g., CSP’s, FO finite
model finding, ...

Thank you!
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