The new Architecture and Solvers in the Barcelogic SMT tool

Robert Nieuwenhuis, Albert Oliveras, Enric Rodriguez-Carbonell

Barcelogic Research Group, Tech. Univ. Catalonia, Barcelona

SSPV'06 August 12th, 2006, Seattle

Barcelogic - Tech. Univ. Catalonia (UPC)

SSPV'06. Architecture and Solvers in the Barcelogic SMT tool – p.1/30

Overview of the talk

- DPLL and Conflict Analysis
- Satisfiability Modulo Theories (SMT)
- DPLL(T) = DPLL(X) + T-Solver
- Our Barcelogic DPLL(T) tool
- What does DPLL(*T*) need from *T*-Solver?
- Ongoing work on *T*-Solvers and Combination
- Some new applications of DPLL(T)
- Other ongoing work

Assmt.:	Clause set:	
Ø	$\ \overline{1} \lor 2, \ \overline{3} \lor 4, \ \overline{5} \lor \overline{6}, \ 6 \lor \overline{5} \lor \overline{2} \qquad \Rightarrow$	(Decide)
1	$\ \overline{1} \vee 2, \overline{3} \vee 4, \overline{5} \vee \overline{6}, 6 \vee \overline{5} \vee \overline{2} \Rightarrow$	(UnitPropagate)

Assmt.:	Cla	ause se	et:			
Ø	$\overline{1}\lor 2$,	$\overline{3} \lor 4$,	$\overline{5}\vee\overline{6}$,	$6 \lor \overline{5} \lor \overline{2}$	\Rightarrow	(Decide)
1	<u>1</u> ∨2,	$\overline{3} \lor 4$,	$\overline{5}\vee\overline{6}$,	$6 \lor \overline{5} \lor \overline{2}$	\Rightarrow	(UnitPropagate)
12	$\overline{1}\lor 2$,	$\overline{3} \lor 4$,	$\overline{5}\vee\overline{6}$,	$6 \lor \overline{5} \lor \overline{2}$	\Rightarrow	(Decide)

Assmt.:	Cla	nuse se	et:			
Ø	<u>1</u> ∨2,	$\overline{3} \lor 4$,	$\overline{5}\vee\overline{6}$,	$6 \lor \overline{5} \lor \overline{2}$	\Rightarrow	(Decide)
1	<u>1</u> ∨2,	$\overline{3} \lor 4$,	$\overline{5}\vee\overline{6}$,	$6 \lor \overline{5} \lor \overline{2}$	\Rightarrow	(UnitPropagate)
12	<u>1</u> ∨2,	$\overline{3} \lor 4$,	$\overline{5}\vee\overline{6}$,	$6 \lor \overline{5} \lor \overline{2}$	\Rightarrow	(Decide)
123	<u>1</u> ∨2,	<u></u> 3∨4,	$\overline{5}\vee\overline{6}$,	$6 \lor \overline{5} \lor \overline{2}$	\Rightarrow	(UnitPropagate)

Assmt.:	Clause set:	
Ø	$\ \overline{1} \lor 2, \ \overline{3} \lor 4, \ \overline{5} \lor \overline{6}, \ 6 \lor \overline{5} \lor \overline{2} \qquad \Rightarrow$	(Decide)
1	$\ \overline{1} \lor 2, \overline{3} \lor 4, \overline{5} \lor \overline{6}, 6 \lor \overline{5} \lor \overline{2} \implies$	(UnitPropagate)
12	$\ \overline{1} \lor 2, \ \overline{3} \lor 4, \ \overline{5} \lor \overline{6}, \ 6 \lor \overline{5} \lor \overline{2} \qquad \Rightarrow$	(Decide)
123	$\ \overline{1} \lor 2, \ \overline{3} \lor 4, \ \overline{5} \lor \overline{6}, \ 6 \lor \overline{5} \lor \overline{2} \Rightarrow$	(UnitPropagate)
1234	$\ \overline{1} \lor 2, \overline{3} \lor 4, \overline{5} \lor \overline{6}, 6 \lor \overline{5} \lor \overline{2} \Rightarrow$	(Decide)

Assmt.:	Clause set:	
Ø	$\ \overline{1} \lor 2, \ \overline{3} \lor 4, \ \overline{5} \lor \overline{6}, \ 6 \lor \overline{5} \lor \overline{2} \qquad \Rightarrow$	(Decide)
1	$\ \overline{1} \vee 2, \overline{3} \vee 4, \overline{5} \vee \overline{6}, 6 \vee \overline{5} \vee \overline{2} \implies$	(UnitPropagate)
12	$\ \overline{1} \lor 2, \ \overline{3} \lor 4, \ \overline{5} \lor \overline{6}, \ 6 \lor \overline{5} \lor \overline{2} \qquad \Rightarrow$	(Decide)
123	$\ \overline{1} \lor 2, \ \overline{3} \lor 4, \ \overline{5} \lor \overline{6}, \ 6 \lor \overline{5} \lor \overline{2} \qquad \Rightarrow$	(UnitPropagate)
1234	$\ \overline{1} \lor 2, \ \overline{3} \lor 4, \ \overline{5} \lor \overline{6}, \ 6 \lor \overline{5} \lor \overline{2} \qquad \Rightarrow$	(Decide)
12345	$\ \overline{1} \lor 2, \overline{3} \lor 4, \overline{5} \lor \overline{6}, 6 \lor \overline{5} \lor \overline{2} \implies$	(UnitPropagate)

Assmt.:	Clause set:	
Ø	$\ \overline{1} \lor 2, \ \overline{3} \lor 4, \ \overline{5} \lor \overline{6}, \ 6 \lor \overline{5} \lor \overline{2} \qquad \Rightarrow$	(Decide)
1	$\ \overline{1} \vee 2, \overline{3} \vee 4, \overline{5} \vee \overline{6}, 6 \vee \overline{5} \vee \overline{2} \implies$	(UnitPropagate)
12	$\ \overline{1} \lor 2, \ \overline{3} \lor 4, \ \overline{5} \lor \overline{6}, \ 6 \lor \overline{5} \lor \overline{2} \Rightarrow$	(Decide)
123	$\ \overline{1} \vee 2, \ \overline{3} \vee 4, \ \overline{5} \vee \overline{6}, \ 6 \vee \overline{5} \vee \overline{2} \Rightarrow$	(UnitPropagate)
1234	$\ \overline{1} \lor 2, \ \overline{3} \lor 4, \ \overline{5} \lor \overline{6}, \ 6 \lor \overline{5} \lor \overline{2} \Rightarrow$	(Decide)
12345	$\ \overline{1} \lor 2, \overline{3} \lor 4, \overline{5} \lor \overline{6}, 6 \lor \overline{5} \lor \overline{2} \implies$	(UnitPropagate)
$1\ 2\ 3\ 4\ 5\ \overline{6}$	$\ \overline{1} \lor 2, \overline{3} \lor 4, \overline{5} \lor \overline{6}, 6 \lor \overline{5} \lor \overline{2} \implies$	(Backtrack)

Assmt.:	Cla	nuse se	et:			
Ø	$\overline{1}$ \lor 2,	$\overline{3} \lor 4$,	$\overline{5}\vee\overline{6}$,	$6 \lor \overline{5} \lor \overline{2}$	\Rightarrow	(Decide)
1	<u>1</u> ∨2,	$\overline{3} \lor 4$,	$\overline{5}\vee\overline{6}$,	$6 \lor \overline{5} \lor \overline{2}$	\Rightarrow	(UnitPropagate)
12	<u>1</u> ∨2,	$\overline{3} \lor 4$,	$\overline{5}\vee\overline{6}$,	$6 \lor \overline{5} \lor \overline{2}$	\Rightarrow	(Decide)
123	<u>1</u> ∨2,	$\overline{3} \lor 4$,	$\overline{5}\vee\overline{6}$,	$6 \lor \overline{5} \lor \overline{2}$	\Rightarrow	(UnitPropagate)
1234	$\overline{1}$ \lor 2,	$\overline{3} \lor 4$,	$\overline{5}\vee\overline{6}$,	$6 \lor \overline{5} \lor \overline{2}$	\Rightarrow	(Decide)
12345	$\overline{1}$ \lor 2,	$\overline{3} \lor 4$,	$\overline{5}\vee\overline{6}$,	$6 \lor \overline{5} \lor \overline{2}$	\Rightarrow	(UnitPropagate)
1 2 <mark>3</mark> 4 5 6	<u>1</u> ∨2,	$\overline{3} \lor 4$,	$\overline{5}\vee\overline{6}$,	$6 \lor \overline{5} \lor \overline{2}$	\Rightarrow	(Backtrack)
1 2 <mark>3</mark> 4 5	$\overline{1}$ \lor 2,	$\overline{3} \lor 4$,	$\overline{5}\vee\overline{6}$,	$6 \lor \overline{5} \lor \overline{2}$	\Rightarrow	•••

Assmt.:	Cl	ause set:			
\oslash	$\ \overline{1} \lor 2$,	$\overline{3}\vee4$, $\overline{5}\vee\overline{6}$,	$6 \lor \overline{5} \lor \overline{2}$	\Rightarrow	(Decide)
1	$\ \overline{1} \lor 2$,	$\overline{3}\vee 4$, $\overline{5}\vee \overline{6}$,	$6 \lor \overline{5} \lor \overline{2}$	\Rightarrow	(UnitPropagate)
12	$\ \overline{1} \lor 2$,	$\overline{3}\vee 4$, $\overline{5}\vee \overline{6}$,	$6 \lor \overline{5} \lor \overline{2}$	\Rightarrow	(Decide)
123	$\ \overline{1} \lor 2$,	$\overline{3}\vee 4$, $\overline{5}\vee \overline{6}$,	$6 \lor \overline{5} \lor \overline{2}$	\Rightarrow	(UnitPropagate)
1234	$\ \overline{1} \lor 2$,	$\overline{3}\vee 4$, $\overline{5}\vee \overline{6}$,	$6 \lor \overline{5} \lor \overline{2}$	\Rightarrow	(Decide)
12345	$\ \overline{1} \lor 2$,	$\overline{3}\vee4$, $\overline{5}\vee\overline{6}$,	$6 \lor \overline{5} \lor \overline{2}$	\Rightarrow	(UnitPropagate)
$1\ 2\ 3\ 4\ 5\ \overline{6}$	$\ \overline{1} \lor 2$,	$\overline{3}\vee4$, $\overline{5}\vee\overline{6}$,	$6 \lor \overline{5} \lor \overline{2}$	\Rightarrow	(Backtrack)
1 2 3 4 5	$\ \overline{1} \lor 2$,	$\overline{3}\vee4$, $\overline{5}\vee\overline{6}$,	$6 \lor \overline{5} \lor \overline{2}$	\Rightarrow	•••

Other rules:

- Backjump: (generalizes Backtrack)
- Learn: (learning backjump clauses avoids "similar" conflicts)
- Forget: (removes "inactive" clauses)

Backtrack vs. Backjump

Same example again. Remember: Backtrack gave $1\ 2\ 3\ 4\ \overline{5}$.

But note that decision level 3 4 is unrelated to the conflict $6\sqrt{5}\sqrt{2}$:

Backtrack vs. Backjump

Same example again. Remember: Backtrack gave $1\ 2\ 3\ 4\ \overline{5}$.

But note that decision level 3 4 is unrelated to the conflict $6\sqrt{5}\sqrt{2}$:

The Backjump rule is:

$$M \mid N \parallel F, C \implies M \mid I' \parallel F, C \quad \text{IF} \begin{cases} C \text{ is false in } M \mid N, \text{ and} \\ \text{there is some clause } C' \lor I' \\ - \text{ entailed by } F, C \\ - \text{ s.t. } C' \text{ is false in } M \end{cases}$$

 $C' \lor l'$ is called the backjump clause. In our example, it is $\overline{2} \lor \overline{5}$.

Conflict analysis: find backjump clause

Consider assignment: $\dots 6 \dots \overline{7} \dots 9$ and let *F* contain:

 $\overline{9}\vee\overline{6}\vee7\vee\overline{8}$, $8\vee7\vee\overline{5}$, $\overline{6}\vee8\vee4$, $\overline{4}\vee\overline{1}$, $\overline{4}\vee5\vee2$, $5\vee7\vee\overline{3}$, $1\vee\overline{2}\vee3$.

UnitPropagate: ... $6 \dots \overline{7} \dots 9 \overline{8} \overline{5} 4 \overline{1} 2 \overline{3}$. Conflict with $1 \vee \overline{2} \vee 3!$

Implication Graph:

Can use $8 \lor 7 \lor \overline{6}$ for Backjump to $\ldots 6 \ldots \overline{7} 8$.

Confl. analysis: find backjump clause (2)

Same example: assignment ... $6...\overline{7}...9$ and let *F* contain: $\overline{9}\sqrt{6}\sqrt{7}\sqrt{8}$, $8\sqrt{7}\sqrt{5}$, $\overline{6}\sqrt{8}\sqrt{4}$, $\overline{4}\sqrt{1}$, $\overline{4}\sqrt{5}\sqrt{2}$, $5\sqrt{7}\sqrt{3}$, $1\sqrt{2}\sqrt{3}$. UnitPropagate: ... $6...\overline{7}...9\overline{8}\overline{5}4\overline{1}2\overline{3}$. Conflict with $1\sqrt{2}\sqrt{3}!$

Do **Resolutions** in reverse order backwards from conflict:

$$\underbrace{\overline{4} \vee 5 \vee 2}_{\overline{4} \vee 5 \vee 2} \underbrace{\overline{5} \vee 7 \vee 1 \vee 2}_{\overline{4} \vee 5 \vee 7 \vee 1} \\
 \underbrace{\overline{4} \vee 1}_{\overline{4} \vee 5 \vee 7 \vee 1} \\
 \underbrace{\overline{6} \vee 8 \vee 4}_{\overline{6} \vee 8 \vee 7 \vee 5} \\
 \underbrace{\overline{6} \vee 8 \vee 7 \vee 5}_{\overline{6} \vee 8 \vee 7 \vee 5}$$

until reaching clause with only 1 lit. of current decision level.

Can use this clause $8 \vee 7 \vee \overline{6}$ for Backjump to $\dots 6 \dots \overline{7} 8$.

A DPLL procedure for *F* is any derivation: $\emptyset \parallel F \implies \ldots \implies S$ where *S* is a final state (no rule applies). It always terminates.

A DPLL procedure for *F* is any derivation: $\emptyset \parallel F \implies \ldots \implies S$ where *S* is a final state (no rule applies). It always terminates.

One can easily prove that, if the final state *S* is:

- failthen F is unsat.- of the form $M \parallel F$ then M is a model

A DPLL procedure for *F* is any derivation: $\emptyset \parallel F \implies \ldots \implies S$ where *S* is a final state (no rule applies). It always terminates.

One can easily prove that, if the final state *S* is:

fail then *F* is unsat.
− of the form *M* || *F* then *M* is a model

Abstract DPLL provides formal and uniform proofs of correctness and completeness of many variants, strategies and ... extensions to e.g., SAT Modulo Theories (SMT)...

Overview of the talk

- DPLL and Conflict Analysis
- Satisfiability Modulo Theories (SMT)
- DPLL(T) = DPLL(X) + T-Solver
- Our Barcelogic DPLL(T) tool
- What does DPLL(*T*) need from *T*-Solver?
- Ongoing work on *T*-Solvers and Combination
- Some new applications of DPLL(T)
- Other ongoing work

SAT Modulo Theories (SMT)

- Some problems are more naturally expressed in richer logics than just propositional logic, e.g:
 - Software/Hardware verification needs reasoning about equality, arithmetic, data structures, ...
- SMT consists of deciding the satisfiability of a (ground) FO formula with respect to a background theory T
- Example: *T* is Equality with Uninterpreted Functions (EUF): $g(a) = c \land (f(g(a)) \neq f(c) \lor g(a) = d) \land c \neq d$
- Example: (combined theories) $A = write(B, a+1, 4) \land (read(A, b+3) = 2 \lor f(a-1) \neq f(b+1))$
- Wide range of applications

The Eager approach to SMT

- Methodology: translate problem into equisatisfiable propositional formula and use off-the-shelf SAT solver [Bryant, Velev, Pnueli, Lahiri, Seshia, Strichman, ...]
- Why "eager"?
 Search uses all theory information from the beginning
- Characteristics:
 - + Can use best available SAT solver
 - Sophisticated encodings are needed for each theory
 - Sometimes translation and/or solving too slow

Main Challenge for alternative approaches is to combine:

– DPLL-based techniques for handling the boolean structure

with

– Efficient theory solvers for conjunctions of T-literals

Same example: consider EUF and

$$\underbrace{g(a) = c}_{1} \land (\underbrace{f(g(a)) \neq f(c)}_{\overline{2}} \lor \underbrace{g(a) = d}_{3}) \land \underbrace{c \neq d}_{\overline{4}}$$

1. Send { 1, $\overline{2} \lor 3$, $\overline{4}$ } to SAT solver

Same example: consider EUF and

$$\underbrace{\underbrace{g(a)=c}_{1} \land (\underbrace{f(g(a))\neq f(c)}_{\overline{2}} \lor \underbrace{g(a)=d}_{3}) \land \underbrace{c\neq d}_{\overline{4}}}_{\overline{4}}$$

1. Send { 1, $\overline{2} \lor 3$, $\overline{4}$ } to SAT solver

SAT solver returns model $[1, \overline{2}, \overline{4}]$

Same example: consider EUF and

$$\underbrace{\underbrace{g(a)=c}_{1} \land (\underbrace{f(g(a))\neq f(c)}_{\overline{2}} \lor \underbrace{g(a)=d}_{3}) \land \underbrace{c\neq d}_{\overline{4}}}_{\overline{4}}$$

1. Send { 1, $\overline{2} \lor 3$, $\overline{4}$ } to SAT solver

SAT solver returns model $[1, \overline{2}, \overline{4}]$

Theory solver says $[1, \overline{2}, \overline{4}]$ is *T*-inconsistent

Same example: consider EUF and

$$\underbrace{\underbrace{g(a)=c}_{1} \land (\underbrace{f(g(a))\neq f(c)}_{\overline{2}} \lor \underbrace{g(a)=d}_{3}) \land \underbrace{c\neq d}_{\overline{4}}}_{\overline{4}}$$

1. Send { 1, $\overline{2} \lor 3$, $\overline{4}$ } to SAT solver

SAT solver returns model $[1, \overline{2}, \overline{4}]$ Theory solver says $[1, \overline{2}, \overline{4}]$ is *T*-inconsistent

2. Send { 1, $\overline{2}\lor3$, $\overline{4}$, $\overline{1}\lor2\lor4$ } to SAT solver

Same example: consider EUF and

$$\underbrace{\underbrace{g(a)=c}_{1} \land (\underbrace{f(g(a))\neq f(c)}_{\overline{2}} \lor \underbrace{g(a)=d}_{3}) \land \underbrace{c\neq d}_{\overline{4}}}_{\overline{4}}$$

1. Send { 1, $\overline{2} \lor 3$, $\overline{4}$ } to SAT solver

SAT solver returns model $[1, \overline{2}, \overline{4}]$

Theory solver says $[1, \overline{2}, \overline{4}]$ is *T*-inconsistent

2. Send { 1, $\overline{2}\lor3$, $\overline{4}$, $\overline{1}\lor2\lor4$ } to SAT solver

SAT solver returns model $[1, 2, 3, \overline{4}]$

Same example: consider EUF and

$$\underbrace{\underbrace{g(a)=c}_{1} \land (\underbrace{f(g(a))\neq f(c)}_{\overline{2}} \lor \underbrace{g(a)=d}_{3}) \land \underbrace{c\neq d}_{\overline{4}}}_{\overline{4}}$$

1. Send $\{1, \overline{2} \lor 3, \overline{4}\}$ to SAT solver

SAT solver returns model $[1, \overline{2}, \overline{4}]$ Theory solver says $[1, \overline{2}, \overline{4}]$ is *T*-inconsistent

2. Send { 1, $\overline{2}\lor3$, $\overline{4}$, $\overline{1}\lor2\lor4$ } to SAT solver

SAT solver returns model $[1, 2, 3, \overline{4}]$

Theory solver says $[1, 2, 3, \overline{4}]$ is *T*-inconsistent

Same example: consider EUF and

$$\underbrace{\underbrace{g(a)=c}_{1} \land (\underbrace{f(g(a))\neq f(c)}_{\overline{2}} \lor \underbrace{g(a)=d}_{3}) \land \underbrace{c\neq d}_{\overline{4}}}_{\overline{4}}$$

 Send { 1, 2∨3, 4 } to SAT solver SAT solver returns model [1, 2, 4] Theory solver says [1, 2, 4] is *T*-inconsistent
 Send { 1, 2∨3, 4, 1∨2∨4 } to SAT solver SAT solver returns model [1, 2, 3, 4] Theory solver says [1, 2, 3, 4] is *T*-inconsistent

3. Send { 1, $\overline{2}\lor3$, $\overline{4}$, $\overline{1}\lor2\lor4$, $\overline{1}\lor\overline{2}\lor\overline{3}\lor4$ } to SAT solver

Same example: consider EUF and

$$\underbrace{\underbrace{g(a)=c}_{1} \land (\underbrace{f(g(a))\neq f(c)}_{\overline{2}} \lor \underbrace{g(a)=d}_{3}) \land \underbrace{c\neq d}_{\overline{4}}}_{\overline{4}}$$

1. Send $\{1, \overline{2} \lor 3, \overline{4}\}$ to SAT solver

SAT solver returns model $[1, \overline{2}, \overline{4}]$

Theory solver says $[1, \overline{2}, \overline{4}]$ is *T*-inconsistent

2. Send { 1, $\overline{2}\lor3$, $\overline{4}$, $\overline{1}\lor2\lor4$ } to SAT solver

SAT solver returns model $[1, 2, 3, \overline{4}]$

Theory solver says $[1, 2, 3, \overline{4}]$ is *T*-inconsistent

3. Send { 1, $\overline{2}\lor3$, $\overline{4}$, $\overline{1}\lor2\lor4$, $\overline{1}\lor\overline{2}\lor\overline{3}\lor4$ } to SAT solver SAT solver says UNSAT

Why "lazy"?

Theory information used lazily when checking *T*-consistency of propositional models

Characteristics:

- + Modular and flexible
- Theory information does not guide the search

Tools: CVC-Lite, ICS, MathSAT, TSAT+, Verifun, ...

Check *T*-consistency only of full propositional models

- Check T consistency only of full propositional models
- Check *T*-consistency of partial assignment while being built

- Check T-consistency only of full propositional models
- Check *T*-consistency of partial assignment while being built
- Given a *T*-inconsistent assignment *M*, add \neg *M* as a clause

- Check T-consistency only of full propositional models
- Check *T*-consistency of partial assignment while being built
- Given a *T*-inconsistent assignment *M*, add ¬*M* as a clause
- Given a *T*-inconsistent assignment *M*, find an explanation
 (a small *T*-inconsistent subset of *M*) and add it as a clause

- Check T-consistency only of full propositional models
- Check *T*-consistency of partial assignment while being built
- Given a *T*-inconsistent assignment *M*, add ¬*M* as a clause
- Given a *T*-inconsistent assignment *M*, find an explanation
 (a small *T*-inconsistent subset of *M*) and add it as a clause
- Upon a *T*-inconsistency, add clause and restart

- Check T-consistency only of full propositional models
- Check *T*-consistency of partial assignment while being built
- Given a *T*-inconsistent assignment *M*, add ¬*M* as a clause
- Given a *T*-inconsistent assignment *M*, find an explanation
 (a small *T*-inconsistent subset of *M*) and add it as a clause
- Upon a *T*-inconsistency, add clause and restart
- Upon a *T*-inconsistency, do conflict analysis of the explanation and Backjump

Overview of the talk

- DPLL and Conflict Analysis
- Satisfiability Modulo Theories (SMT)
- **DPLL(**T**) = DPLL(**X**) + T-Solver**
- Our Barcelogic DPLL(T) tool
- What does DPLL(*T*) need from *T*-Solver?
- Ongoing work on *T*-Solvers and Combination
- Some new applications of DPLL(T)
- Other ongoing work

DPLL(T) = DPLL(X) engine + T-Solver

- Modular and flexible, as CLP(X) in Constraint Logic Progr.: can plug in any *T*-Solver into the DPLL(X) engine.
- **Theory Propagation:** more pruning in optimized lazy SMT T-Propagate : $M \parallel F \Rightarrow Ml \parallel F$ IF $\begin{cases} M \models_T l \end{cases}$
 - *T*-Solver also guides search, instead of only validating it
 - [Armando et al]: Add ¬l. If *T*-inconsistent then infer *l*.
 But in DPLL(T):
 - *T*-Solvers specialized and fast in Theory Propagation
 - Fully exploited in conflict analysis (non-trivial) Not any explanation of a theory propagation is ok!

Notation used: Abstract DPLL Modulo Theories. Consider again same example with EUF:

 $\underbrace{\underbrace{g(a)=c}_{1} \land (\underbrace{f(g(a))\neq f(c)}_{\overline{2}} \lor \underbrace{g(a)=d}_{3}) \land \underbrace{c\neq d}_{\overline{4}}}_{\overline{4}}$ $\emptyset \qquad \| 1, \overline{2}\lor 3, \overline{4} \Rightarrow \text{(UnitPropagate)}$

Notation used: Abstract DPLL Modulo Theories. Consider again same example with EUF:

$$\underbrace{\underbrace{g(a)=c}_{1} \land (\underbrace{f(g(a))\neq f(c)}_{\overline{2}} \lor \underbrace{g(a)=d}_{3}) \land \underbrace{c\neq d}_{\overline{4}}}_{3}$$

$$\varnothing \qquad \parallel \quad 1, \ \overline{2}\lor 3, \ \overline{4} \qquad \Rightarrow \qquad (\text{UnitPropagate})$$

$$1 \qquad \parallel \quad 1, \ \overline{2}\lor 3, \ \overline{4} \qquad \Rightarrow \qquad (\text{T-Propagate})$$

Notation used: Abstract DPLL Modulo Theories. Consider again same example with EUF:

Notation used: Abstract DPLL Modulo Theories. Consider again same example with EUF:

Notation used: Abstract DPLL Modulo Theories. Consider again same example with EUF:

Notation used: Abstract DPLL Modulo Theories. Consider again same example with EUF:

No search in this example

Conflict analysis in DPLL(*T***)**

New kind of arrows (reasons) in implication graph. Each literal *lit* is in the partial assignment due to one of:

- Decide (no arrow)
- UnitPropagate with clause C: resolve with C
- **T-Propagate:** resolve with (small) explanation $l_1 \land \ldots \land l_n \rightarrow lit$ provided by *T*-Solver Too new *T*-explanations are forbidden!

How should it be implemented?

- UnitPropagate: store a pointer to clause C, as in SAT solvers
- **J** T-Propagate: (pre-)compute explanations at each T-Propagate?
 - If possible, only on demand, during conflict analysis
 - typically only one Explain for every 250 T-Propagate.
 - depends on T

Our *Barcelogic* DPLL(*T*) tool

- **DPLL(X)** is a state-of-the-art SAT engine:
 - features à la Chaff: two watched literals, 1UIP learning, VSIDS-like decision heuristics, ...
 - new features: binary clause reasoning, subsumption, lemma simplification, ...
 - see SAT Race 2006
- T-Solvers for:
 - Real/Integer Difference Logic (IDL/RDL):
 - Equality with Uninterpreted Functions (EUF)
 - Linear Real Arithmetic (LRA)
 - Linear Integer Arithmetic (LIA) (forthcoming)
 - Arrays

Barcelogic at SMT-COMP'05

Participated in 4 (of 7) divisions:

	top-3 systems	# Pbs solv.	Time (secs.)
	Barcelogic	39	8358
EUF (50 pbs.):	Yices	37	9601
	MathSAT	33	12386
	Barcelogic	41	6341
RDL (50):	Yices	37	9668
	MathSAT	37	10408
	Barcelogic	47	3531
IDL (51):	Yices	47	4283
	MathSAT	46	4295
	Barcelogic	45	2705
UFIDL (49):	Yices	36	9789
	MathSAT	22	17255

Other tools:

CVC-Lite (Barrett)

- Ario (Sakallah)
- Sateen (Somenzi)

Timeout = 600s.

Overview of the talk

- DPLL and Conflict Analysis
- Satisfiability Modulo Theories (SMT)
- DPLL(T) = DPLL(X) + T-Solver
- Our Barcelogic DPLL(T) tool
- What does DPLL(T) need from T-Solver?
- Ongoing work on *T*-Solvers and Combination
- Some new applications of DPLL(T)
- Other ongoing work

What does DPLL(*T*) need from *T*-Solver?

- *T*-consistency check of a set of literals *M*, with:
 - Explain of *T*-inconsistency: find (small) *T*-inconsistent subset of *M* [minimal wrt. size?, wrt. \subseteq ?]
 - Incrementality: if *l* is added to *M*, check for *M l* faster than reprocessing *M l* from scratch.
- Theory propagation: find input *T*-consequences of *M*, with:
 - Explain T-Propagate of *l*: find (small) subset of *M* that
 T-entails *l* (needed in conflict analysis).
- Backtrack n: undo last n literals added

A standard Difference Logic solver

● Given $M = \{a-b \le 2, b-c \le 3, c-a \le -7\}$, construct weighted graph $\mathcal{G}(M)$

- *M* is *T*-inconsistent iff $\mathcal{G}(M)$ has a negative cycle
- **9** Bellmann-Ford-like algorithms to find such cycles in O(nm)
- Irredundant inconsistent subsets are negative cycles
- What about theory propagation?

Our CAV'05 DL Solver

- Solution Key idea: exhaustive theory propagation avoids consistency checks: Ml is T-inconsistent iff $M \models_T \neg l$. Hence we would have added $\neg l$ right after M.
- For detecting all consequences of a new literal $a b \le k$: $c - d \le k_1$ is *T*-entailed iff there is a path form *c* to *d* with length at most k_1 . Hence *T*-*Solver* checks all shortest paths

$$c \xrightarrow{k'} * a \xrightarrow{k} b \xrightarrow{k''} * d$$

and finds all input literals entailed by $c - d \le k' + k + k''$

- Complexity: O(nm + N), being N the number of input literals
- Irredundant explanations for $c d \le k$ given by the shortest path from *c* to *d*

Analyzing our CAV'05 solver

CHARACTERISTICS:

- TheoryProp is invoked even if UnitProp still applicable
- Cannot get rid of the exhaustiveness requirement if TheoryProp is too expensive

IDEAL SITUATION:

- Cheaper reasoning should be done first:
 - 1. Apply UnitProp exhaustively
 - 2. If no conflict, then check *T*-consistency of model
 - 3. If model *T*-consistent apply TheoryProp (if wanted)
- Some of the computations of the consistency check should be reused in TheoryProp

Our new solver: [Cotton&Maler,SAT06]

CHECK CONSISTENCY:

- Check *T*-consistency of model using Bellmand-Ford-like algorithm (each newly added literal in $O(m + n \log n)$)
- Gives potential function π s.t. for each edge $a \xrightarrow{k} b$ we have $\underline{\pi(a) + k \pi(b)} \ge 0$

reduced cost

THEORY PROPAGATION:

■ Addition of $a \xrightarrow{k} b$ entails $c - d \le k'$ only if

Shortest path computation more efficient using reduced costs, since they are non-negative

Linear Arithmetic Solver: Ongoing work

- Traditionally simplex method preferred over Fourier-Motzkin elimination because:
 - It is efficient in practice
 - Less memory, also for Incrementality and backtracking

Linear Arithmetic Solver: Ongoing work

- Traditionally simplex method preferred over Fourier-Motzkin elimination because:
 - It is efficient in practice
 - Less memory, also for Incrementality and backtracking
- Most solvers implement the tableau simplex method:
 - Pivoting is expensive as it requires to update all coefficients of the linear program

Linear Arithmetic Solver: Ongoing work

- Traditionally simplex method preferred over Fourier-Motzkin elimination because:
 - It is efficient in practice
 - Less memory, also for Incrementality and backtracking
- Most solvers implement the tableau simplex method:
 - Pivoting is expensive as it requires to update all coefficients of the linear program
- Our alternative: revised simplex method
 - Pivoting is cheap as it just needs to incrementally update the inverse matrix corresponding to dependent variables.
 - Method of choice for LP community (if sparse)

- Typical structure of benchmarks:
 - 1. 40-80 % of atoms are bounds of the form $\pm x \leq k$
 - 2. 80-90 % of atoms belong to difference logic

- Typical structure of benchmarks:
 - 1. 40-80 % of atoms are bounds of the form $\pm x \leq k$
 - 2. 80-90 % of atoms belong to difference logic
- Application to consistency checks:
 - 1. Bounded simplex method
 - 2. Lagrangian relaxation

- Typical structure of benchmarks:
 - 1. 40-80 % of atoms are bounds of the form $\pm x \leq k$
 - 2. 80-90 % of atoms belong to difference logic
- Application to consistency checks:
 - 1. Bounded simplex method
 - 2. Lagrangian relaxation
- Application to theory propagation:
 - 1. Propagate bounds of the model

 $x \le 1 \land 2x + y \le 1 \land x - 2y \le 3 \implies x \le 3$

- Typical structure of benchmarks:
 - 1. 40-80 % of atoms are bounds of the form $\pm x \leq k$
 - 2. 80-90 % of atoms belong to difference logic
- Application to consistency checks:
 - 1. Bounded simplex method
 - 2. Lagrangian relaxation
- Application to theory propagation:
 - 1. Propagate bounds of the model

 $x \le 1 \land 2x + y \le 1 \land x - 2y \le 3 \implies x \le 3$

2. Propagate difference logic fragment of the model

 $x - y \le 1 \land y - z \le 2 \land y = x + 2z \Longrightarrow x - z \le 3$

New ideas to be added soon

[Dutertre&DeMoura,CAV'06]:

- Very nice simple ideas, extremely good results
- Initial translation into equalities + bounds. E.g., replace $2x - 3y + 5z \le 12$ by 2x - 3y + 5z = s and $s \le 12$
- The equalities never change, atoms sent to (and retracted from) *T*-Solver are bounds.
- Allows for initial simplifications
- Little work on backtracking
- Can identify cheap T-Propagate cases

Expensive Theories, Combination

Splitting on demand [Barrett N O Tinelli, LPAR'06]:

- Some *T*-Solvers need internal case splits (non-convex *T*)
- Idea: *T*-Solver must request DPLL(X) engine to do them. Advantages:
 - DPLL(X) is much better in doing case splits
 - Centralized decision heuristic not disturbed by other ones
 - **•** *T*-Solver simpler: no splitting infrastructure needed
 - Weaker requirements for *T*-Solver: complete "if all demanded splits have been done"
- Resulting architecture naturally includes an efficient DPLL($T_1 \ldots T_n$) Nelson-Oppen-based combination

Overview of the talk

- DPLL and Conflict Analysis
- Satisfiability Modulo Theories (SMT)
- DPLL(T) = DPLL(X) + T-Solver
- Our Barcelogic DPLL(T) tool
- What does DPLL(T) need from T-Solver?
- Ongoing work on *T*-Solvers and Combination
- Some new applications of DPLL(T)
- Other ongoing work

Application to Predicate Abstraction

Predicate Abstraction:

- gives finite-state abstractions from infinite-state systems
- abstraction efficiently analyzed using Boolean techniques
- many applications to verification

Key operation:

- **INPUT**: a formula φ and set of predicates *P*
- **OUTPUT**: the most precise approximation of φ using *P*, either $\mathcal{F}_P(\varphi)$: weakest formula over *P T*-entailing φ or $\mathcal{G}_P(\varphi)$: strongest formula over *P T*-entailed by φ .

Use of **Barcelogic**:

See CAV'06 for details!

- Use All-SAT SMT + BDD to get all models over *P* of φ
- Extract (compact) approximation from BDD

Experimental results for P.Abstraction

Microsoft SLAM (device drivers verification):

- Initially, ZAP [Ball et al, CAV'04] was used for p. abstraction
- Specialized Symbolic Decision Procedures (SDPs) [Lahiri et al, CAV'05] obtained 100x speedup factor over ZAP
- Barcelogic gives another 100x speedup over SDPs

Hardware and protocol verification problems (70pbs, over \approx 25 preds) [Lahiri and Bryant, CAV'04]:

Barcelogic gives 25x – 100x speedup over UCLID

Benchmarks from the verification of programs with linked lists (30pbs, \approx 20 preds) [Qaader and Lahiri, POPL'06]:

Barcelogic gives 30x – 40x speedup over UCLID

Application to optimization problems

- Aim: find SAT/SMT models M with minimal cost(M).
- Branch and bound in Barcelogic: See SAT'06 for details!
 - Theory T = function $cost \land best M$ so far. After each new solution, T is strengthened
- (Weighted) Max-SAT:
 - cost(M) = sum of weights of clauses that are false in M
 - Specialized rules, e.g: if units *l* and ¬*l* detected, add smallest of their weights to cost
 - Barcelogic improves best Weighted CSP/PB solvers on most larger problems
- Max-SMT: Modeled and solved well-known hard Radio Freq. Assignment Problems with distance constraints: Diff. Logic.
 - Barcelogic with no specialized heuristics beats best Weighted CSP solver (with its best heuristic)

Other ongoing/future work

- Bit vector arithmetic
- Adding support for quantifiers
- Efficient interpolation modulo T
- Other less-standard applications of SMT: e.g., CSP's, FO finite model finding, ...

Thank you!