
Barcelogic - Tech. Univ. Catalonia (UPC)

The new Architecture and Solvers in the

Barcelogic SMT tool

Robert Nieuwenhuis, Albert Oliveras, Enric Rodriguez-Carbonell

Barcelogic Research Group, Tech. Univ. Catalonia, Barcelona

SSPV’06
August 12th, 2006, Seattle

SSPV’06. Architecture and Solvers in the Barcelogic SMT tool – p.1/30

Barcelogic - Tech. Univ. Catalonia (UPC)

Overview of the talk

DPLL and Conflict Analysis

Satisfiability Modulo Theories (SMT)

DPLL(T) = DPLL(X) + T-Solver
Our Barcelogic DPLL(T) tool

What does DPLL(T) need from T-Solver?
Ongoing work on T-Solvers and Combination

Some new applications of DPLL(T)

Other ongoing work

SSPV’06. Architecture and Solvers in the Barcelogic SMT tool – p.2/30

Barcelogic - Tech. Univ. Catalonia (UPC)

(Abstract) DPLL for propositional SAT

Assmt.: Clause set:
∅ || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)

1 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)

1 2 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)

1 2 3 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)

1 2 3 4 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)

1 2 3 4 5 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)

1 2 3 4 5 6 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Backtrack)

1 2 3 4 5 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ . . .

Other rules:

Backjump: (generalizes Backtrack)

Learn: (learning backjump clauses avoids “similar” conflicts)

Forget: (removes “inactive” clauses)

SSPV’06. Architecture and Solvers in the Barcelogic SMT tool – p.3/30

Barcelogic - Tech. Univ. Catalonia (UPC)

(Abstract) DPLL for propositional SAT

Assmt.: Clause set:
∅ || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)

1 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)

1 2 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)

1 2 3 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)

1 2 3 4 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)

1 2 3 4 5 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)

1 2 3 4 5 6 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Backtrack)

1 2 3 4 5 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ . . .

Other rules:

Backjump: (generalizes Backtrack)

Learn: (learning backjump clauses avoids “similar” conflicts)

Forget: (removes “inactive” clauses)

SSPV’06. Architecture and Solvers in the Barcelogic SMT tool – p.3/30

Barcelogic - Tech. Univ. Catalonia (UPC)

(Abstract) DPLL for propositional SAT

Assmt.: Clause set:
∅ || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)

1 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)

1 2 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)

1 2 3 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)

1 2 3 4 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)

1 2 3 4 5 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)

1 2 3 4 5 6 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Backtrack)

1 2 3 4 5 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ . . .

Other rules:

Backjump: (generalizes Backtrack)

Learn: (learning backjump clauses avoids “similar” conflicts)

Forget: (removes “inactive” clauses)

SSPV’06. Architecture and Solvers in the Barcelogic SMT tool – p.3/30

Barcelogic - Tech. Univ. Catalonia (UPC)

(Abstract) DPLL for propositional SAT

Assmt.: Clause set:
∅ || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)

1 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)

1 2 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)

1 2 3 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)

1 2 3 4 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)

1 2 3 4 5 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)

1 2 3 4 5 6 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Backtrack)

1 2 3 4 5 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ . . .

Other rules:

Backjump: (generalizes Backtrack)

Learn: (learning backjump clauses avoids “similar” conflicts)

Forget: (removes “inactive” clauses)

SSPV’06. Architecture and Solvers in the Barcelogic SMT tool – p.3/30

Barcelogic - Tech. Univ. Catalonia (UPC)

(Abstract) DPLL for propositional SAT

Assmt.: Clause set:
∅ || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)

1 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)

1 2 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)

1 2 3 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)

1 2 3 4 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)

1 2 3 4 5 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)

1 2 3 4 5 6 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Backtrack)

1 2 3 4 5 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ . . .

Other rules:

Backjump: (generalizes Backtrack)

Learn: (learning backjump clauses avoids “similar” conflicts)

Forget: (removes “inactive” clauses)

SSPV’06. Architecture and Solvers in the Barcelogic SMT tool – p.3/30

Barcelogic - Tech. Univ. Catalonia (UPC)

(Abstract) DPLL for propositional SAT

Assmt.: Clause set:
∅ || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)

1 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)

1 2 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)

1 2 3 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)

1 2 3 4 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)

1 2 3 4 5 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)

1 2 3 4 5 6 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Backtrack)

1 2 3 4 5 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ . . .

Other rules:

Backjump: (generalizes Backtrack)

Learn: (learning backjump clauses avoids “similar” conflicts)

Forget: (removes “inactive” clauses)

SSPV’06. Architecture and Solvers in the Barcelogic SMT tool – p.3/30

Barcelogic - Tech. Univ. Catalonia (UPC)

(Abstract) DPLL for propositional SAT

Assmt.: Clause set:
∅ || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)

1 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)

1 2 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)

1 2 3 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)

1 2 3 4 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)

1 2 3 4 5 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)

1 2 3 4 5 6 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Backtrack)

1 2 3 4 5 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ . . .

Other rules:

Backjump: (generalizes Backtrack)

Learn: (learning backjump clauses avoids “similar” conflicts)

Forget: (removes “inactive” clauses)

SSPV’06. Architecture and Solvers in the Barcelogic SMT tool – p.3/30

Barcelogic - Tech. Univ. Catalonia (UPC)

(Abstract) DPLL for propositional SAT

Assmt.: Clause set:
∅ || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)

1 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)

1 2 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)

1 2 3 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)

1 2 3 4 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)

1 2 3 4 5 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)

1 2 3 4 5 6 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Backtrack)

1 2 3 4 5 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ . . .

Other rules:

Backjump: (generalizes Backtrack)

Learn: (learning backjump clauses avoids “similar” conflicts)

Forget: (removes “inactive” clauses)

SSPV’06. Architecture and Solvers in the Barcelogic SMT tool – p.3/30

Barcelogic - Tech. Univ. Catalonia (UPC)

(Abstract) DPLL for propositional SAT

Assmt.: Clause set:
∅ || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)

1 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)

1 2 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)

1 2 3 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)

1 2 3 4 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)

1 2 3 4 5 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)

1 2 3 4 5 6 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Backtrack)

1 2 3 4 5 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ . . .

Other rules:

Backjump: (generalizes Backtrack)

Learn: (learning backjump clauses avoids “similar” conflicts)

Forget: (removes “inactive” clauses)

SSPV’06. Architecture and Solvers in the Barcelogic SMT tool – p.3/30

Barcelogic - Tech. Univ. Catalonia (UPC)

Backtrack vs. Backjump

Same example again. Remember: Backtrack gave 1 2 3 4 5.

But note that decision level 3 4 is unrelated to the conflict 6∨5∨2:

∅ || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)

. . . || . . .
1 2 3 4 5 6 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Backjump)

1 2 5 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ . . .

The Backjump rule is:

M l N || F, C ⇒ M l′ || F, C IF







C is false in M l N, and
there is some clause C′ ∨ l′

− entailed by F, C
− s.t. C′ is false in M

C′ ∨ l′ is called the backjump clause. In our example, it is 2∨5.

SSPV’06. Architecture and Solvers in the Barcelogic SMT tool – p.4/30

Barcelogic - Tech. Univ. Catalonia (UPC)

Backtrack vs. Backjump

Same example again. Remember: Backtrack gave 1 2 3 4 5.

But note that decision level 3 4 is unrelated to the conflict 6∨5∨2:

∅ || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)

. . . || . . .
1 2 3 4 5 6 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Backjump)

1 2 5 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ . . .

The Backjump rule is:

M l N || F, C ⇒ M l′ || F, C IF







C is false in M l N, and
there is some clause C′ ∨ l′

− entailed by F, C
− s.t. C′ is false in M

C′ ∨ l′ is called the backjump clause. In our example, it is 2∨5.

SSPV’06. Architecture and Solvers in the Barcelogic SMT tool – p.4/30

Barcelogic - Tech. Univ. Catalonia (UPC)

Conflict analysis: find backjump clause

Consider assignment: . . . 6 . . . 7 . . . 9 and let F contain:

9∨6∨7∨8, 8∨7∨5, 6∨8∨4, 4∨1, 4∨5∨2, 5∨7∨3, 1∨2∨3.

UnitPropagate: . . . 6 . . . 7 . . . 9 8 5 4 1 2 3. Conflict with 1∨2∨3!

Implication Graph:

8

4

5

2

1

37

6

9

Can use 8∨7∨6 for Backjump to . . . 6 . . . 7 8.

SSPV’06. Architecture and Solvers in the Barcelogic SMT tool – p.5/30

Barcelogic - Tech. Univ. Catalonia (UPC)

Confl. analysis: find backjump clause (2)

Same example: assignment . . . 6 . . . 7 . . . 9 and let F contain:
9∨6∨7∨8, 8∨7∨5, 6∨8∨4, 4∨1, 4∨5∨2, 5∨7∨3, 1∨2∨3.

UnitPropagate: . . . 6 . . . 7 . . . 9 8 5 4 1 2 3. Conflict with 1∨2∨3!

Do Resolutions in reverse order backwards from conflict:

8∨7∨5
6∨8∨4

4∨1
4∨5∨2

5∨7∨3 1∨2∨3
5∨7∨1∨2

4∨5∨7∨1
5∨7∨4

6∨8∨7∨5
8∨7∨6

until reaching clause with only 1 lit. of current decision level.

Can use this clause 8∨7∨6 for Backjump to . . . 6 . . . 7 8.

SSPV’06. Architecture and Solvers in the Barcelogic SMT tool – p.6/30

Barcelogic - Tech. Univ. Catalonia (UPC)

Abstract DPLL results

A DPLL procedure for F is any derivation: ∅ || F ⇒ . . . ⇒ S
where S is a final state (no rule applies). It always terminates.

One can easily prove that, if the final state S is:
– fail then F is unsat.
– of the form M || F then M is a model

Abstract DPLL provides formal and uniform proofs of correctness
and completeness of many variants, strategies and ... extensions to
e.g., SAT Modulo Theories (SMT)...

SSPV’06. Architecture and Solvers in the Barcelogic SMT tool – p.7/30

Barcelogic - Tech. Univ. Catalonia (UPC)

Abstract DPLL results

A DPLL procedure for F is any derivation: ∅ || F ⇒ . . . ⇒ S
where S is a final state (no rule applies). It always terminates.

One can easily prove that, if the final state S is:
– fail then F is unsat.
– of the form M || F then M is a model

Abstract DPLL provides formal and uniform proofs of correctness
and completeness of many variants, strategies and ... extensions to
e.g., SAT Modulo Theories (SMT)...

SSPV’06. Architecture and Solvers in the Barcelogic SMT tool – p.7/30

Barcelogic - Tech. Univ. Catalonia (UPC)

Abstract DPLL results

A DPLL procedure for F is any derivation: ∅ || F ⇒ . . . ⇒ S
where S is a final state (no rule applies). It always terminates.

One can easily prove that, if the final state S is:
– fail then F is unsat.
– of the form M || F then M is a model

Abstract DPLL provides formal and uniform proofs of correctness
and completeness of many variants, strategies and ... extensions to
e.g., SAT Modulo Theories (SMT)...

SSPV’06. Architecture and Solvers in the Barcelogic SMT tool – p.7/30

Barcelogic - Tech. Univ. Catalonia (UPC)

Overview of the talk

DPLL and Conflict Analysis

Satisfiability Modulo Theories (SMT) ⇐=
DPLL(T) = DPLL(X) + T-Solver
Our Barcelogic DPLL(T) tool

What does DPLL(T) need from T-Solver?
Ongoing work on T-Solvers and Combination

Some new applications of DPLL(T)

Other ongoing work

SSPV’06. Architecture and Solvers in the Barcelogic SMT tool – p.7/30

Barcelogic - Tech. Univ. Catalonia (UPC)

SAT Modulo Theories (SMT)

Some problems are more naturally expressed in richer logics
than just propositional logic, e.g:

Software/Hardware verification needs reasoning about
equality, arithmetic, data structures, ...

SMT consists of deciding the satisfiability of a (ground) FO
formula with respect to a background theory T

Example: T is Equality with Uninterpreted Functions (EUF):
g(a)= c ∧ (f (g(a)) 6= f (c) ∨ g(a)=d) ∧ c 6=d

Example: (combined theories)
A=write(B, a+1, 4) ∧ (read(A, b+3)=2 ∨ f (a−1) 6= f (b+1))

Wide range of applications

SSPV’06. Architecture and Solvers in the Barcelogic SMT tool – p.8/30

Barcelogic - Tech. Univ. Catalonia (UPC)

The Eager approach to SMT

Methodology: translate problem into equisatisfiable
propositional formula and use off-the-shelf SAT solver
[Bryant, Velev, Pnueli, Lahiri, Seshia, Strichman, ...]

Why “eager”?
Search uses all theory information from the beginning

Characteristics:
+ Can use best available SAT solver
− Sophisticated encodings are needed for each theory
− Sometimes translation and/or solving too slow

Main Challenge for alternative approaches is to combine:

– DPLL-based techniques for handling the boolean structure
with

– Efficient theory solvers for conjunctions of T-literals

SSPV’06. Architecture and Solvers in the Barcelogic SMT tool – p.9/30

Barcelogic - Tech. Univ. Catalonia (UPC)

The Lazy approach to SMT

Same example: consider EUF and

g(a)= c
︸ ︷︷ ︸

1

∧ (f (g(a)) 6= f (c)
︸ ︷︷ ︸

2

∨ g(a)=d
︸ ︷︷ ︸

3

) ∧ c 6=d
︸︷︷︸

4

1. Send { 1, 2∨3, 4 } to SAT solver

SAT solver returns model [1, 2, 4]

Theory solver says [1, 2, 4] is T-inconsistent

2. Send { 1, 2∨3, 4, 1∨2∨4 } to SAT solver

SAT solver returns model [1, 2, 3, 4]

Theory solver says [1, 2, 3, 4] is T-inconsistent

3. Send { 1, 2∨3, 4, 1∨2∨4, 1∨2∨3∨4 } to SAT solver
SAT solver says UNSAT

SSPV’06. Architecture and Solvers in the Barcelogic SMT tool – p.10/30

Barcelogic - Tech. Univ. Catalonia (UPC)

The Lazy approach to SMT

Same example: consider EUF and

g(a)= c
︸ ︷︷ ︸

1

∧ (f (g(a)) 6= f (c)
︸ ︷︷ ︸

2

∨ g(a)=d
︸ ︷︷ ︸

3

) ∧ c 6=d
︸︷︷︸

4

1. Send { 1, 2∨3, 4 } to SAT solver

SAT solver returns model [1, 2, 4]

Theory solver says [1, 2, 4] is T-inconsistent

2. Send { 1, 2∨3, 4, 1∨2∨4 } to SAT solver

SAT solver returns model [1, 2, 3, 4]

Theory solver says [1, 2, 3, 4] is T-inconsistent

3. Send { 1, 2∨3, 4, 1∨2∨4, 1∨2∨3∨4 } to SAT solver
SAT solver says UNSAT

SSPV’06. Architecture and Solvers in the Barcelogic SMT tool – p.10/30

Barcelogic - Tech. Univ. Catalonia (UPC)

The Lazy approach to SMT

Same example: consider EUF and

g(a)= c
︸ ︷︷ ︸

1

∧ (f (g(a)) 6= f (c)
︸ ︷︷ ︸

2

∨ g(a)=d
︸ ︷︷ ︸

3

) ∧ c 6=d
︸︷︷︸

4

1. Send { 1, 2∨3, 4 } to SAT solver

SAT solver returns model [1, 2, 4]

Theory solver says [1, 2, 4] is T-inconsistent

2. Send { 1, 2∨3, 4, 1∨2∨4 } to SAT solver

SAT solver returns model [1, 2, 3, 4]

Theory solver says [1, 2, 3, 4] is T-inconsistent

3. Send { 1, 2∨3, 4, 1∨2∨4, 1∨2∨3∨4 } to SAT solver
SAT solver says UNSAT

SSPV’06. Architecture and Solvers in the Barcelogic SMT tool – p.10/30

Barcelogic - Tech. Univ. Catalonia (UPC)

The Lazy approach to SMT

Same example: consider EUF and

g(a)= c
︸ ︷︷ ︸

1

∧ (f (g(a)) 6= f (c)
︸ ︷︷ ︸

2

∨ g(a)=d
︸ ︷︷ ︸

3

) ∧ c 6=d
︸︷︷︸

4

1. Send { 1, 2∨3, 4 } to SAT solver

SAT solver returns model [1, 2, 4]

Theory solver says [1, 2, 4] is T-inconsistent

2. Send { 1, 2∨3, 4, 1∨2∨4 } to SAT solver

SAT solver returns model [1, 2, 3, 4]

Theory solver says [1, 2, 3, 4] is T-inconsistent

3. Send { 1, 2∨3, 4, 1∨2∨4, 1∨2∨3∨4 } to SAT solver
SAT solver says UNSAT

SSPV’06. Architecture and Solvers in the Barcelogic SMT tool – p.10/30

Barcelogic - Tech. Univ. Catalonia (UPC)

The Lazy approach to SMT

Same example: consider EUF and

g(a)= c
︸ ︷︷ ︸

1

∧ (f (g(a)) 6= f (c)
︸ ︷︷ ︸

2

∨ g(a)=d
︸ ︷︷ ︸

3

) ∧ c 6=d
︸︷︷︸

4

1. Send { 1, 2∨3, 4 } to SAT solver

SAT solver returns model [1, 2, 4]

Theory solver says [1, 2, 4] is T-inconsistent

2. Send { 1, 2∨3, 4, 1∨2∨4 } to SAT solver

SAT solver returns model [1, 2, 3, 4]

Theory solver says [1, 2, 3, 4] is T-inconsistent

3. Send { 1, 2∨3, 4, 1∨2∨4, 1∨2∨3∨4 } to SAT solver
SAT solver says UNSAT

SSPV’06. Architecture and Solvers in the Barcelogic SMT tool – p.10/30

Barcelogic - Tech. Univ. Catalonia (UPC)

The Lazy approach to SMT

Same example: consider EUF and

g(a)= c
︸ ︷︷ ︸

1

∧ (f (g(a)) 6= f (c)
︸ ︷︷ ︸

2

∨ g(a)=d
︸ ︷︷ ︸

3

) ∧ c 6=d
︸︷︷︸

4

1. Send { 1, 2∨3, 4 } to SAT solver

SAT solver returns model [1, 2, 4]

Theory solver says [1, 2, 4] is T-inconsistent

2. Send { 1, 2∨3, 4, 1∨2∨4 } to SAT solver

SAT solver returns model [1, 2, 3, 4]

Theory solver says [1, 2, 3, 4] is T-inconsistent

3. Send { 1, 2∨3, 4, 1∨2∨4, 1∨2∨3∨4 } to SAT solver
SAT solver says UNSAT

SSPV’06. Architecture and Solvers in the Barcelogic SMT tool – p.10/30

Barcelogic - Tech. Univ. Catalonia (UPC)

The Lazy approach to SMT

Same example: consider EUF and

g(a)= c
︸ ︷︷ ︸

1

∧ (f (g(a)) 6= f (c)
︸ ︷︷ ︸

2

∨ g(a)=d
︸ ︷︷ ︸

3

) ∧ c 6=d
︸︷︷︸

4

1. Send { 1, 2∨3, 4 } to SAT solver

SAT solver returns model [1, 2, 4]

Theory solver says [1, 2, 4] is T-inconsistent

2. Send { 1, 2∨3, 4, 1∨2∨4 } to SAT solver

SAT solver returns model [1, 2, 3, 4]

Theory solver says [1, 2, 3, 4] is T-inconsistent

3. Send { 1, 2∨3, 4, 1∨2∨4, 1∨2∨3∨4 } to SAT solver

SAT solver says UNSAT

SSPV’06. Architecture and Solvers in the Barcelogic SMT tool – p.10/30

Barcelogic - Tech. Univ. Catalonia (UPC)

The Lazy approach to SMT

Same example: consider EUF and

g(a)= c
︸ ︷︷ ︸

1

∧ (f (g(a)) 6= f (c)
︸ ︷︷ ︸

2

∨ g(a)=d
︸ ︷︷ ︸

3

) ∧ c 6=d
︸︷︷︸

4

1. Send { 1, 2∨3, 4 } to SAT solver

SAT solver returns model [1, 2, 4]

Theory solver says [1, 2, 4] is T-inconsistent

2. Send { 1, 2∨3, 4, 1∨2∨4 } to SAT solver

SAT solver returns model [1, 2, 3, 4]

Theory solver says [1, 2, 3, 4] is T-inconsistent

3. Send { 1, 2∨3, 4, 1∨2∨4, 1∨2∨3∨4 } to SAT solver
SAT solver says UNSAT

SSPV’06. Architecture and Solvers in the Barcelogic SMT tool – p.10/30

Barcelogic - Tech. Univ. Catalonia (UPC)

Lazy approach (2)

Why “lazy”?
Theory information used lazily when checking T-consistency
of propositional models

Characteristics:
+ Modular and flexible
– Theory information does not guide the search

Tools: CVC-Lite, ICS, MathSAT, TSAT+, Verifun, ...

SSPV’06. Architecture and Solvers in the Barcelogic SMT tool – p.11/30

Barcelogic - Tech. Univ. Catalonia (UPC)

Optimized Lazy approach

Check T-consistency only of full propositional models

Check T-consistency of partial assignment while being built

Given a T-inconsistent assignment M, add ¬M as a clause

Given a T-inconsistent assignment M, find an explanation
(a small T-inconsistent subset of M) and add it as a clause

Upon a T-inconsistency, add clause and restart

Upon a T-inconsistency, do conflict analysis of the explanation
and Backjump

SSPV’06. Architecture and Solvers in the Barcelogic SMT tool – p.12/30

Barcelogic - Tech. Univ. Catalonia (UPC)

Optimized Lazy approach

Check T-consistency only of full propositional models

Check T-consistency of partial assignment while being built

Given a T-inconsistent assignment M, add ¬M as a clause

Given a T-inconsistent assignment M, find an explanation
(a small T-inconsistent subset of M) and add it as a clause

Upon a T-inconsistency, add clause and restart

Upon a T-inconsistency, do conflict analysis of the explanation
and Backjump

SSPV’06. Architecture and Solvers in the Barcelogic SMT tool – p.12/30

Barcelogic - Tech. Univ. Catalonia (UPC)

Optimized Lazy approach

Check T-consistency only of full propositional models

Check T-consistency of partial assignment while being built

Given a T-inconsistent assignment M, add ¬M as a clause

Given a T-inconsistent assignment M, find an explanation
(a small T-inconsistent subset of M) and add it as a clause

Upon a T-inconsistency, add clause and restart

Upon a T-inconsistency, do conflict analysis of the explanation
and Backjump

SSPV’06. Architecture and Solvers in the Barcelogic SMT tool – p.12/30

Barcelogic - Tech. Univ. Catalonia (UPC)

Optimized Lazy approach

Check T-consistency only of full propositional models

Check T-consistency of partial assignment while being built

Given a T-inconsistent assignment M, add ¬M as a clause

Given a T-inconsistent assignment M, find an explanation
(a small T-inconsistent subset of M) and add it as a clause

Upon a T-inconsistency, add clause and restart

Upon a T-inconsistency, do conflict analysis of the explanation
and Backjump

SSPV’06. Architecture and Solvers in the Barcelogic SMT tool – p.12/30

Barcelogic - Tech. Univ. Catalonia (UPC)

Optimized Lazy approach

Check T-consistency only of full propositional models

Check T-consistency of partial assignment while being built

Given a T-inconsistent assignment M, add ¬M as a clause

Given a T-inconsistent assignment M, find an explanation
(a small T-inconsistent subset of M) and add it as a clause

Upon a T-inconsistency, add clause and restart

Upon a T-inconsistency, do conflict analysis of the explanation
and Backjump

SSPV’06. Architecture and Solvers in the Barcelogic SMT tool – p.12/30

Barcelogic - Tech. Univ. Catalonia (UPC)

Optimized Lazy approach

Check T-consistency only of full propositional models

Check T-consistency of partial assignment while being built

Given a T-inconsistent assignment M, add ¬M as a clause

Given a T-inconsistent assignment M, find an explanation
(a small T-inconsistent subset of M) and add it as a clause

Upon a T-inconsistency, add clause and restart

Upon a T-inconsistency, do conflict analysis of the explanation
and Backjump

SSPV’06. Architecture and Solvers in the Barcelogic SMT tool – p.12/30

Barcelogic - Tech. Univ. Catalonia (UPC)

Overview of the talk

DPLL and Conflict Analysis

Satisfiability Modulo Theories (SMT)

DPLL(T) = DPLL(X) + T-Solver ⇐=
Our Barcelogic DPLL(T) tool

What does DPLL(T) need from T-Solver?
Ongoing work on T-Solvers and Combination

Some new applications of DPLL(T)

Other ongoing work

SSPV’06. Architecture and Solvers in the Barcelogic SMT tool – p.12/30

Barcelogic - Tech. Univ. Catalonia (UPC)

Our DPLL(T) approach

DPLL(T) = DPLL(X) engine + T-Solver

Modular and flexible, as CLP(X) in Constraint Logic Progr.:
can plug in any T-Solver into the DPLL(X) engine.

Theory Propagation: more pruning in optimized lazy SMT

T-Propagate : M || F ⇒ M l || F IF
{

M |=T l

T-Solver also guides search, instead of only validating it

[Armando et al]: Add ¬l. If T-inconsistent then infer l.
But in DPLL(T):

– T-Solvers specialized and fast in Theory Propagation
– Fully exploited in conflict analysis (non-trivial)

Not any explanation of a theory propagation is ok!

SSPV’06. Architecture and Solvers in the Barcelogic SMT tool – p.13/30

Barcelogic - Tech. Univ. Catalonia (UPC)

DPLL(T) Example

Notation used: Abstract DPLL Modulo Theories.

Consider again same example with EUF:

g(a)= c
︸ ︷︷ ︸

1

∧ (f (g(a)) 6= f (c)
︸ ︷︷ ︸

2

∨ g(a)=d
︸ ︷︷ ︸

3

) ∧ c 6=d
︸︷︷︸

4

∅ || 1, 2∨3, 4 ⇒ (UnitPropagate)

1 || 1, 2∨3, 4 ⇒ (T-Propagate)

1 2 || 1, 2∨3, 4 ⇒ (UnitPropagate)

1 2 3 || 1, 2∨3, 4 ⇒ (T-Propagate)

1 2 3 4 || 1, 2∨3, 4 ⇒ fail

No search in this example

SSPV’06. Architecture and Solvers in the Barcelogic SMT tool – p.14/30

Barcelogic - Tech. Univ. Catalonia (UPC)

DPLL(T) Example

Notation used: Abstract DPLL Modulo Theories.

Consider again same example with EUF:

g(a)= c
︸ ︷︷ ︸

1

∧ (f (g(a)) 6= f (c)
︸ ︷︷ ︸

2

∨ g(a)=d
︸ ︷︷ ︸

3

) ∧ c 6=d
︸︷︷︸

4

∅ || 1, 2∨3, 4 ⇒ (UnitPropagate)

1 || 1, 2∨3, 4 ⇒ (T-Propagate)

1 2 || 1, 2∨3, 4 ⇒ (UnitPropagate)

1 2 3 || 1, 2∨3, 4 ⇒ (T-Propagate)

1 2 3 4 || 1, 2∨3, 4 ⇒ fail

No search in this example

SSPV’06. Architecture and Solvers in the Barcelogic SMT tool – p.14/30

Barcelogic - Tech. Univ. Catalonia (UPC)

DPLL(T) Example

Notation used: Abstract DPLL Modulo Theories.

Consider again same example with EUF:

g(a)= c
︸ ︷︷ ︸

1

∧ (f (g(a)) 6= f (c)
︸ ︷︷ ︸

2

∨ g(a)=d
︸ ︷︷ ︸

3

) ∧ c 6=d
︸︷︷︸

4

∅ || 1, 2∨3, 4 ⇒ (UnitPropagate)

1 || 1, 2∨3, 4 ⇒ (T-Propagate)

1 2 || 1, 2∨3, 4 ⇒ (UnitPropagate)

1 2 3 || 1, 2∨3, 4 ⇒ (T-Propagate)

1 2 3 4 || 1, 2∨3, 4 ⇒ fail

No search in this example

SSPV’06. Architecture and Solvers in the Barcelogic SMT tool – p.14/30

Barcelogic - Tech. Univ. Catalonia (UPC)

DPLL(T) Example

Notation used: Abstract DPLL Modulo Theories.

Consider again same example with EUF:

g(a)= c
︸ ︷︷ ︸

1

∧ (f (g(a)) 6= f (c)
︸ ︷︷ ︸

2

∨ g(a)=d
︸ ︷︷ ︸

3

) ∧ c 6=d
︸︷︷︸

4

∅ || 1, 2∨3, 4 ⇒ (UnitPropagate)

1 || 1, 2∨3, 4 ⇒ (T-Propagate)

1 2 || 1, 2∨3, 4 ⇒ (UnitPropagate)

1 2 3 || 1, 2∨3, 4 ⇒ (T-Propagate)

1 2 3 4 || 1, 2∨3, 4 ⇒ fail

No search in this example

SSPV’06. Architecture and Solvers in the Barcelogic SMT tool – p.14/30

Barcelogic - Tech. Univ. Catalonia (UPC)

DPLL(T) Example

Notation used: Abstract DPLL Modulo Theories.

Consider again same example with EUF:

g(a)= c
︸ ︷︷ ︸

1

∧ (f (g(a)) 6= f (c)
︸ ︷︷ ︸

2

∨ g(a)=d
︸ ︷︷ ︸

3

) ∧ c 6=d
︸︷︷︸

4

∅ || 1, 2∨3, 4 ⇒ (UnitPropagate)

1 || 1, 2∨3, 4 ⇒ (T-Propagate)

1 2 || 1, 2∨3, 4 ⇒ (UnitPropagate)

1 2 3 || 1, 2∨3, 4 ⇒ (T-Propagate)

1 2 3 4 || 1, 2∨3, 4 ⇒

fail

No search in this example

SSPV’06. Architecture and Solvers in the Barcelogic SMT tool – p.14/30

Barcelogic - Tech. Univ. Catalonia (UPC)

DPLL(T) Example

Notation used: Abstract DPLL Modulo Theories.

Consider again same example with EUF:

g(a)= c
︸ ︷︷ ︸

1

∧ (f (g(a)) 6= f (c)
︸ ︷︷ ︸

2

∨ g(a)=d
︸ ︷︷ ︸

3

) ∧ c 6=d
︸︷︷︸

4

∅ || 1, 2∨3, 4 ⇒ (UnitPropagate)

1 || 1, 2∨3, 4 ⇒ (T-Propagate)

1 2 || 1, 2∨3, 4 ⇒ (UnitPropagate)

1 2 3 || 1, 2∨3, 4 ⇒ (T-Propagate)

1 2 3 4 || 1, 2∨3, 4 ⇒ fail

No search in this example

SSPV’06. Architecture and Solvers in the Barcelogic SMT tool – p.14/30

Barcelogic - Tech. Univ. Catalonia (UPC)

Conflict analysis in DPLL(T)

New kind of arrows (reasons) in implication graph.
Each literal lit is in the partial assignment due to one of:

Decide (no arrow)
UnitPropagate with clause C: resolve with C
T-Propagate: resolve with (small) explanation

l1 ∧ . . . ∧ ln → lit provided by T-Solver
Too new T-explanations are forbidden!

How should it be implemented?

UnitPropagate: store a pointer to clause C, as in SAT solvers

T-Propagate: (pre-)compute explanations at each T-Propagate?
– If possible, only on demand, during conflict analysis
– typically only one Explain for every 250 T-Propagate.
– depends on T

SSPV’06. Architecture and Solvers in the Barcelogic SMT tool – p.15/30

Barcelogic - Tech. Univ. Catalonia (UPC)

Our Barcelogic DPLL(T) tool

DPLL(X) is a state-of-the-art SAT engine:

features à la Chaff: two watched literals, 1UIP learning,
VSIDS-like decision heuristics, ...
new features: binary clause reasoning, subsumption,
lemma simplification, ...
see SAT Race 2006

T−Solvers for:
Real/Integer Difference Logic (IDL/RDL):
Equality with Uninterpreted Functions (EUF)
Linear Real Arithmetic (LRA)
Linear Integer Arithmetic (LIA) (forthcoming)
Arrays

SSPV’06. Architecture and Solvers in the Barcelogic SMT tool – p.16/30

Barcelogic - Tech. Univ. Catalonia (UPC)

Barcelogic at SMT-COMP’05

Participated in 4 (of 7) divisions:

top-3 systems # Pbs solv. Time (secs.)

Barcelogic 39 8358

EUF (50 pbs.): Yices 37 9601

MathSAT 33 12386

Barcelogic 41 6341

RDL (50): Yices 37 9668

MathSAT 37 10408

Barcelogic 47 3531

IDL (51): Yices 47 4283

MathSAT 46 4295

Barcelogic 45 2705

UFIDL (49): Yices 36 9789

MathSAT 22 17255

Other tools:

CVC-Lite
(Barrett)
Ario
(Sakallah)
Sateen
(Somenzi)
...

Timeout = 600s.

SSPV’06. Architecture and Solvers in the Barcelogic SMT tool – p.17/30

Barcelogic - Tech. Univ. Catalonia (UPC)

Overview of the talk

DPLL and Conflict Analysis

Satisfiability Modulo Theories (SMT)

DPLL(T) = DPLL(X) + T-Solver
Our Barcelogic DPLL(T) tool

What does DPLL(T) need from T-Solver? ⇐=
Ongoing work on T-Solvers and Combination ⇐=

Some new applications of DPLL(T)

Other ongoing work

SSPV’06. Architecture and Solvers in the Barcelogic SMT tool – p.17/30

Barcelogic - Tech. Univ. Catalonia (UPC)

What does DPLL(T) need from T-Solver?

T-consistency check of a set of literals M, with:

Explain of T-inconsistency: find (small) T-inconsistent
subset of M [minimal wrt. size?, wrt. ⊆?]
Incrementality: if l is added to M, check for M l faster than
reprocessing M l from scratch.

Theory propagation: find input T-consequences of M, with:

Explain T-Propagate of l: find (small) subset of M that
T-entails l (needed in conflict analysis).

Backtrack n: undo last n literals added

SSPV’06. Architecture and Solvers in the Barcelogic SMT tool – p.18/30

Barcelogic - Tech. Univ. Catalonia (UPC)

A standard Difference Logic solver

Given M = {a−b ≤ 2, b−c ≤ 3, c−a ≤ −7}, construct
weighted graph G(M)

a
2

3−7

b

c

M is T-inconsistent iff G(M) has a negative cycle

Bellmann-Ford-like algorithms to find such cycles in O(nm)

Irredundant inconsistent subsets are negative cycles

What about theory propagation?

SSPV’06. Architecture and Solvers in the Barcelogic SMT tool – p.19/30

Barcelogic - Tech. Univ. Catalonia (UPC)

Our CAV’05 DL Solver

Key idea: exhaustive theory propagation avoids consistency
checks: M l is T-inconsistent iff M |=T ¬l. Hence we would
have added ¬l right after M.

For detecting all consequences of a new literal a − b ≤ k :

c − d ≤ k1 is T-entailed iff there is a path form c to d with
length at most k1. Hence T-Solver checks all shortest paths

c k′
−→∗ a k

−→ b k′′
−→∗ d

and finds all input literals entailed by c − d ≤ k′ + k + k′′

Complexity: O(nm + N), being N the number of input literals

Irredundant explanations for c − d ≤ k given by the shortest
path from c to d

SSPV’06. Architecture and Solvers in the Barcelogic SMT tool – p.20/30

Barcelogic - Tech. Univ. Catalonia (UPC)

Analyzing our CAV’05 solver

CHARACTERISTICS:
TheoryProp is invoked even if UnitProp still applicable

Cannot get rid of the exhaustiveness requirement if
TheoryProp is too expensive

IDEAL SITUATION:
Cheaper reasoning should be done first:
1. Apply UnitProp exhaustively
2. If no conflict, then check T-consistency of model
3. If model T-consistent apply TheoryProp (if wanted)

Some of the computations of the consistency check should be
reused in TheoryProp

SSPV’06. Architecture and Solvers in the Barcelogic SMT tool – p.21/30

Barcelogic - Tech. Univ. Catalonia (UPC)

Our new solver: [Cotton&Maler,SAT06]

CHECK CONSISTENCY:
Check T-consistency of model using Bellmand-Ford-like
algorithm (each newly added literal in O(m + n log n))

Gives potential function π s.t. for each each edge a k
−→ b we

have π(a) + k − π(b)
︸ ︷︷ ︸

reduced cost

≥ 0

THEORY PROPAGATION:

Addition of a k
−→ b entails c − d ≤ k′ only if

c −→∗ a k
−→ b

︸ ︷︷ ︸

shortest

−→∗ d

shortest
︷ ︸︸ ︷

Shortest path computation more efficient using reduced costs,
since they are non-negative

SSPV’06. Architecture and Solvers in the Barcelogic SMT tool – p.22/30

Barcelogic - Tech. Univ. Catalonia (UPC)

Linear Arithmetic Solver: Ongoing work

Traditionally simplex method preferred over
Fourier-Motzkin elimination because:

It is efficient in practice
Less memory, also for Incrementality and backtracking

Most solvers implement the tableau simplex method:

Pivoting is expensive as it requires to update all
coefficients of the linear program

Our alternative: revised simplex method

Pivoting is cheap as it just needs to incrementally update
the inverse matrix corresponding to dependent variables.
Method of choice for LP community (if sparse)

SSPV’06. Architecture and Solvers in the Barcelogic SMT tool – p.23/30

Barcelogic - Tech. Univ. Catalonia (UPC)

Linear Arithmetic Solver: Ongoing work

Traditionally simplex method preferred over
Fourier-Motzkin elimination because:

It is efficient in practice
Less memory, also for Incrementality and backtracking

Most solvers implement the tableau simplex method:

Pivoting is expensive as it requires to update all
coefficients of the linear program

Our alternative: revised simplex method

Pivoting is cheap as it just needs to incrementally update
the inverse matrix corresponding to dependent variables.
Method of choice for LP community (if sparse)

SSPV’06. Architecture and Solvers in the Barcelogic SMT tool – p.23/30

Barcelogic - Tech. Univ. Catalonia (UPC)

Linear Arithmetic Solver: Ongoing work

Traditionally simplex method preferred over
Fourier-Motzkin elimination because:

It is efficient in practice
Less memory, also for Incrementality and backtracking

Most solvers implement the tableau simplex method:

Pivoting is expensive as it requires to update all
coefficients of the linear program

Our alternative: revised simplex method

Pivoting is cheap as it just needs to incrementally update
the inverse matrix corresponding to dependent variables.
Method of choice for LP community (if sparse)

SSPV’06. Architecture and Solvers in the Barcelogic SMT tool – p.23/30

Barcelogic - Tech. Univ. Catalonia (UPC)

Benchmark-goaled Linear Arithmetic

Typical structure of benchmarks:

1. 40-80 % of atoms are bounds of the form ±x ≤ k
2. 80-90 % of atoms belong to difference logic

Application to consistency checks:

1. Bounded simplex method
2. Lagrangian relaxation

Application to theory propagation:

1. Propagate bounds of the model

x ≤ 1 ∧ 2x + y ≤ 1 ∧ x − 2y ≤ 3 =⇒ x ≤ 3

2. Propagate difference logic fragment of the model

x − y ≤ 1 ∧ y − z ≤ 2 ∧ y = x + 2z =⇒ x − z ≤ 3

SSPV’06. Architecture and Solvers in the Barcelogic SMT tool – p.24/30

Barcelogic - Tech. Univ. Catalonia (UPC)

Benchmark-goaled Linear Arithmetic

Typical structure of benchmarks:

1. 40-80 % of atoms are bounds of the form ±x ≤ k
2. 80-90 % of atoms belong to difference logic

Application to consistency checks:

1. Bounded simplex method
2. Lagrangian relaxation

Application to theory propagation:

1. Propagate bounds of the model

x ≤ 1 ∧ 2x + y ≤ 1 ∧ x − 2y ≤ 3 =⇒ x ≤ 3

2. Propagate difference logic fragment of the model

x − y ≤ 1 ∧ y − z ≤ 2 ∧ y = x + 2z =⇒ x − z ≤ 3

SSPV’06. Architecture and Solvers in the Barcelogic SMT tool – p.24/30

Barcelogic - Tech. Univ. Catalonia (UPC)

Benchmark-goaled Linear Arithmetic

Typical structure of benchmarks:

1. 40-80 % of atoms are bounds of the form ±x ≤ k
2. 80-90 % of atoms belong to difference logic

Application to consistency checks:

1. Bounded simplex method
2. Lagrangian relaxation

Application to theory propagation:

1. Propagate bounds of the model

x ≤ 1 ∧ 2x + y ≤ 1 ∧ x − 2y ≤ 3 =⇒ x ≤ 3

2. Propagate difference logic fragment of the model

x − y ≤ 1 ∧ y − z ≤ 2 ∧ y = x + 2z =⇒ x − z ≤ 3

SSPV’06. Architecture and Solvers in the Barcelogic SMT tool – p.24/30

Barcelogic - Tech. Univ. Catalonia (UPC)

Benchmark-goaled Linear Arithmetic

Typical structure of benchmarks:

1. 40-80 % of atoms are bounds of the form ±x ≤ k
2. 80-90 % of atoms belong to difference logic

Application to consistency checks:

1. Bounded simplex method
2. Lagrangian relaxation

Application to theory propagation:

1. Propagate bounds of the model

x ≤ 1 ∧ 2x + y ≤ 1 ∧ x − 2y ≤ 3 =⇒ x ≤ 3

2. Propagate difference logic fragment of the model

x − y ≤ 1 ∧ y − z ≤ 2 ∧ y = x + 2z =⇒ x − z ≤ 3

SSPV’06. Architecture and Solvers in the Barcelogic SMT tool – p.24/30

Barcelogic - Tech. Univ. Catalonia (UPC)

New ideas to be added soon

[Dutertre&DeMoura,CAV’06]:

Very nice simple ideas, extremely good results

Initial translation into equalities + bounds. E.g.,
replace 2x − 3y + 5z ≤ 12 by 2x − 3y + 5z = s and s ≤ 12

The equalities never change, atoms sent to (and retracted
from) T-Solver are bounds.
Allows for initial simplifications

Little work on backtracking

Can identify cheap T-Propagate cases

SSPV’06. Architecture and Solvers in the Barcelogic SMT tool – p.25/30

Barcelogic - Tech. Univ. Catalonia (UPC)

Expensive Theories, Combination

Splitting on demand [Barrett N O Tinelli, LPAR’06]:

Some T-Solvers need internal case splits (non-convex T)

Idea: T-Solver must request DPLL(X) engine to do them.
Advantages:

DPLL(X) is much better in doing case splits

Centralized decision heuristic not disturbed by other ones

T-Solver simpler: no splitting infrastructure needed

Weaker requirements for T-Solver:
complete “if all demanded splits have been done”

Resulting architecture naturally includes an efficient
DPLL(T1 . . . Tn) Nelson-Oppen-based combination

SSPV’06. Architecture and Solvers in the Barcelogic SMT tool – p.26/30

Barcelogic - Tech. Univ. Catalonia (UPC)

Overview of the talk

DPLL and Conflict Analysis

Satisfiability Modulo Theories (SMT)

DPLL(T) = DPLL(X) + T-Solver
Our Barcelogic DPLL(T) tool

What does DPLL(T) need from T-Solver?
Ongoing work on T-Solvers and Combination

Some new applications of DPLL(T) ⇐=
Other ongoing work

SSPV’06. Architecture and Solvers in the Barcelogic SMT tool – p.26/30

Barcelogic - Tech. Univ. Catalonia (UPC)

Application to Predicate Abstraction

Predicate Abstraction:
gives finite-state abstractions from infinite-state systems

abstraction efficiently analyzed using Boolean techniques

many applications to verification

Key operation:

INPUT: a formula ϕ and set of predicates P
OUTPUT: the most precise approximation of ϕ using P, either
FP(ϕ): weakest formula over P T-entailing ϕ or
GP(ϕ): strongest formula over P T-entailed by ϕ.

Use of Barcelogic: See CAV’06 for details!

Use All-SAT SMT + BDD to get all models over P of ϕ

Extract (compact) approximation from BDD

SSPV’06. Architecture and Solvers in the Barcelogic SMT tool – p.27/30

Barcelogic - Tech. Univ. Catalonia (UPC)

Experimental results for P.Abstraction

Microsoft SLAM (device drivers verification):
Initially, ZAP [Ball et al, CAV’04] was used for p. abstraction

Specialized Symbolic Decision Procedures (SDPs) [Lahiri et al,
CAV’05] obtained 100x speedup factor over ZAP

Barcelogic gives another 100x speedup over SDPs

Hardware and protocol verification problems
(70pbs, over ≈ 25 preds) [Lahiri and Bryant, CAV’04]:

Barcelogic gives 25x – 100x speedup over UCLID

Benchmarks from the verification of programs with linked lists
(30pbs, ≈ 20 preds) [Qaader and Lahiri, POPL’06]:

Barcelogic gives 30x – 40x speedup over UCLID

SSPV’06. Architecture and Solvers in the Barcelogic SMT tool – p.28/30

Barcelogic - Tech. Univ. Catalonia (UPC)

Application to optimization problems

Aim: find SAT/SMT models M with minimal cost(M).
Branch and bound in Barcelogic: See SAT’06 for details!

Theory T = function cost ∧ best M so far.
After each new solution, T is strengthened

(Weighted) Max-SAT:
cost(M) = sum of weights of clauses that are false in M
Specialized rules, e.g: if units l and ¬l detected, add
smallest of their weights to cost
Barcelogic improves best Weighted CSP/PB solvers on
most larger problems

Max-SMT: Modeled and solved well-known hard Radio Freq.
Assignment Problems with distance constraints: Diff. Logic.

Barcelogic with no specialized heuristics beats best
Weighted CSP solver (with its best heuristic)

SSPV’06. Architecture and Solvers in the Barcelogic SMT tool – p.29/30

Barcelogic - Tech. Univ. Catalonia (UPC)

Other ongoing/future work

Bit vector arithmetic

Adding support for quantifiers

Efficient interpolation modulo T

Other less-standard applications of SMT: e.g., CSP’s, FO finite
model finding, ...

Thank you!

SSPV’06. Architecture and Solvers in the Barcelogic SMT tool – p.30/30

	Overview of the talk
	(Abstract)
DPLL for propositional SAT
	Backtrack vs. Backjump
	Conflict analysis: find backjump clause
	Confl. analysis: find backjump clause (2)
	Abstract DPLL results
	Overview of the talk
	SAT Modulo Theories (SMT)
	The vermell {Eager} approach to SMT
	The vermell {Lazy} approach to SMT
	Lazy approach (2)
	Optimized Lazy approach
	Overview of the talk
	Our dpllt approach
	dpllt Example
	Conflict analysis in dpllt
	Our 	extsl {Barcelogic} dpllt tool
		extsl {Barcelogic} at SMT-COMP'05
	Overview of the talk
	What does dpllt need from vermell {solt }?
	A standard Difference Logic solver
	Our CAV'05 DL Solver
	Analyzing our CAV'05 solver
	Our new solver: lila {[Cotton&Maler,SAT06]}
	Linear Arithmetic Solver: Ongoing work
	Benchmark-goaled Linear Arithmetic
	New ideas to be added soon
	Expensive Theories, Combination
	Overview of the talk
	Application to Predicate Abstraction
	Experimental results for P.Abstraction
	Application to optimization problems
	Other ongoing/future work

