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Outline

. SAT-based verification methods
Il. Verifying sequential C programs
lll. Verifying multi-threaded C programs

© NEC Labs America, 2006



. SAT-based Verification Methods
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Hardware Circuit Model (Symbolic LTS)

Primary Inputs _ Primary Outputs
W Next state logic Output logic ')

Present State :.7 Next State
X Y

Do

| Latches (Registers)

e ModelM= (S, s0, TR, L) -
« Set of States S is encoded by a vector of binary variables X
— Implemented as the outputs of latches (registers)
— Size of state space: |S| =2 IX
» Initial state s0 comprises initial values of the latches
 Transition relation TR is implemented as next state logic (Boolean gates)
— Y =TR(X, W), where TR is a Boolean function of present state X and inputs W
 Labeling L is implemented as output logic (Boolean gates)
— 0 =1(X) or O =g(X,W)
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Property Verification

« Two Main Approaches:
— Proof Approach

 Exhaustive state space exploration, i.e. all states in the
model are covered to check for property satisfaction

* Very expensive for medium to large-sized models

— Falsification Approach
« State space search for bugs (counter-examples) only
* Less expensive, but needs good search heuristics

N S0 “Is there is a path from the initial state SO

to the bad state(s) where property fails?”
%){\C)\‘ O State where the
% C}\ (%2{ property fails

OO0O0000O

« We use both proof and falsification approaches
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NEC Hybrid (Circuit+CNF) SAT Solver

[Ganai et al. DAC 02]

 Works simultaneously on circuit and CNF representations
— Original problem: Circuit form
— Learned clauses: CNF

 Deduction Engine — Hybrid BCP
— Circuit-based BCP on gates using fast table lookup [Kuehlmann et al. 01]
* About 50% faster than BCP on corresponding clauses
— CNF-based BCP on learned clauses using Chaff’s 2-lit watching

» Lazy update is more effective on long clauses than a circuit-based
chain/tree of gates

— Records both clauses and gate nodes as reasons for implications
 Decision Engine
— Use of circuit-based heuristics, such as justification frontier
* More effective due to no decisions in “unobservable” parts
« Can provide a solution with partial assignment
 Diagnostic Engine
— Performs Grasp-style conflict analysis
— Provides identification of unsatisfiable core [Zhang & Malik 03]
* With additional heuristics for minimizing size of unsat core
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NEC SAT Solver Results (w/Circuit heuristic JFT)

SAT Time Comparison — Chaff & NEC Hybrid w/ JFT

+—— UNSAT Instances »e SAT » %= Chaff / H-JFT

H-JFT: Hybrid with
Justification
Frontier Heuristic

SAT Time Ratio

Platform:

RH Linux 7.1, Pl
750Mhz 256 Mb

Examples (25K-0.5M gates)
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Bounded Model Checking (BMC)

J

property p

initial
State X1

. |
Time Frame Expansion

BMC problem translated to a Boolean formula [Biere et al. 99]
— SAT(f,) (formula is satisfiable) < a bug exists at depth k
— Satisfiability of f, is checked by a standard SAT solver
Main ideas
— Unroll transition relation up to bounded depth
— Avoid computing sets of reachable states

Falsification approach to search for bounded length bugs
— Scales much better than BDD-based methods for hardware verification
 BDDs can typically handle 100’s of latches (state elements)
» SAT can typically handle 10K’s latches (state elements)

— Incomplete in practice due to large completeness threshold
Proofs by induction with increasing depth [Sheeran et al. 00]
— Works well with additional BDD-based reachability invariants [Gupta et al. 03]
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Improving BMC Performance

| PO ' P1 Pn
 Dynamic circuit simplification [Kuehlmann & Ganai 01]
« Reuse of learned property constraints [Ganai et al. 02]
* Partitioning and incremental BMC translation [Ganai et al. 05]
* Customized property translations into multiple SAT subproblems
« Hybrid SAT Solver [Ganai et al. 02]
. BDDs work really well on small problems —
- BDD Learning use them to supplement SAT [Gupta et al. 03]
« BDD Constraints [Gupta et al. 03]

- High-level BMC: SMT Solver, BMC-friendly model [Ganai & Gupta. ICCAD 06]
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Efficient Memory Model: To Handle Embedded Memories

[Ganai et al. CAV 04]

Pl,

INIT=PS,

Single
Port
MEM

« EMM: Remove memories from model, but add memory constraints
— Data forwarding semantics maintained during BMC unrolling
— Similar to interpreted memories in other work
— Exclusivity of a matching read-write pair is captured explicitly
— Significantly improves SAT solver performance
— Constraints are represented efficiently

— Circuit+CNF representation with a hybrid SAT solver works better than ITE
representation
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BMC with SAT Proof Analysis

« BMC Problem: Is property p satisfiable at depth k?
w1 W2 W3 W4

X0 X1 X2 X3 X4

o+ = O

0 0 0

 Suppose no bug at depth k because p is unsatisfiable
— Derive an unsatisfiable core R(k) using SAT solver [ZM03, MA03]
— R(k) is sufficient for the original problem to be unsatisfiable

 Abstraction based on Unsat Core of SAT Solver [MAO3, GGAO03]
— Abstract model with core R(k) implies correctness at (up to) depth k
— If k is sufficiently large, the abstract model may be correct for k’ > k
— Advantage: Typically R(k) is much smaller than entire design
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Proof-Based Iterative Abstraction (PBIA) using SAT

Concrete
Design

Property

\ 4 \ 4

Bounded Model Che

with SAT Proof Analysis

cking

|

Extract
Abstract Model

Abstract
Model

No

@qn D1

Automated Flow

[Gupta et al. ICCAD 03]

Original Design: 12716 bits, 416 k gates
Abstract Model: 71 bits, 2 k gates

No bug on full design (depth 120 in 1500s)
Abstraction in 1500s (6 iterations)

T~

Proof Methods:

Proof-based
Verification

Deeper Search

1. BDD-based model checking
2. SAT-based model checking

For Counterexamples 3. SAT-based induction
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Symbolic Model Checking

[McM 90, BCL+94]

X: present state variables X
: W
Y: next state variables | —
W: input variables - | —
\
\\

Image Computation
Image(Y) = 7 X, W. T(X,W,Y) A From(X)

 Related operations

Pre-Image Computation Fixpoint Computation

 Core steps of many applications
— equivalence checking, reachability analysis, model checking ...

_ 13
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Enumerating All Solutions

 Search space: all values of variables (X, W, Z, Y)

BDD DAGs SAT Decision Tree
Flexibility Low (fixed ordering) High (no restriction on decisions)
Solution Sharing | High (canonical) Low (non-canonical)

- BDD+SAT Strategy: keep flexibility, but avoid cube enumeration

[Gupta et al. FMCAD 00]

Top level search tree:
SAT Decision Tree

Leaves of SAT search tree:
BDD sub-problems
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SAT-based UMC using Circuit Cofactoring (CC)

[Ganai et al. ICCAD 04]
 Symbolic backward traversal using unrolled TR

W, W, W,

Xi—1

X.
I —_
Bad=-p(X;)
* SAT solver’s solution is used to compute a cofactor

CF, °A cofactor captures multiple solution cubes

CF, ° Cofactors are enumerated across the unrolled design
(not a single time frame) till no more solutions

« State sets (represented as circuit cofactors) may blow up

— Performance is not as good as SAT-based BMC (search for bugs),
which avoids computation of state sets

« Complementary to BDD-based UMC for deriving proofs
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NEC’s VeriSol (DiVer) Verification Platform

Interesting large problems are within reach!

. Engines for finding Bugs

"\ BMC: Bounded Model Checkin
¢ BMC g

[Ganai et al. TACAS 05]

/\ _ UMC: Unbounded Model Checking

Find bugs EMM: Efficient Memory Modeling

Engines for finding Proofs efficiently PBIA: Proof-Based Iterative Abstraction
Prover 4 )

Proves correctness of
properties using
Unbounded Model
\Checking and Induction

Distributed BMC
Find bugs on network
of workstations

“Efficient
Representation
(circuit simplifier)

Boolean Solver

(" BMC + EMM + PBIA ) (SAT, BDD) f BMC + EMM A
.Redl.jc? I S|ze.by Find bugs in embedded
|d_e DA removing N memory systems using
wrelevar:jt Ime_morles Efficient Memory Model
S and logic J N J

BMC + PBIA p
Reduce model size by \
identifying & removing \

irrelevant logic R
- J
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NEC’s High Level Synthesis Framework

Behavior level
avior level |...
Property

)

|

Transform
Cyber using HLS
information

!

RTL Property
(LTL)

.

Ve

G

~

Behavior level (source) debug

out reg _ck_start=0;

mom regen """ |Highlight buggy code

RG_01=1;

_ck_start=1;

}
RG_02=RG_03; | X
_ck_done =RG_03 y N

z

Waveform for Behavior level variables

/

1
Trandation
into Behavior level

Witness/

DiVer

-« Cyber Work Bench (CWB)

Counterexample

— Developed by NEC Japan (Wakabayashi et al.)

— Automatically translates behavioral level design (C-based) to RTL design (Verilog)

— Generates property monitors for RTL design automatically

- VeriSol is integrated within CWB

— Provides verification of RTL designs
— Has been used successfully to find bugs by in-house design groups

© NEC Labs America, 2006
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Il. Verifying Sequential C Programs
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Model Checking Software Programs

C Program Finite state circuit model
1: void bar() { M= (S,s0,TR,L)

2: intx=3,y=x-3;

Transition Relation

W

) )
3: while(x<=4){ y y
4: y++ ; Huge gap ! ) D) —
5: x = foo(x); | ——bo— I
o Lo Q. taches_ _ _
7: y=foo(y); Present State Next State
8:
9: } X: present state variables
10'_ int f int | Challenges: Y: next state variables

tintfoo (int 1) { « Rich data types W: input variables

11: intt=1+2; o Structures and arrays

12:  if (t>6) « Pointers and pointer arithmetic

13: t-=3; « Dynamic memory allocation

14: else * Procedure boundaries and recursion
15: t--; « Concurrent programs

16: return t;

17: }

19
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Intermediate Representation

C Program

1: void bar() {

2: intx=3,y=x-3;

while (x <=4 ) {
y++;
x = foo(x);

}

y = foo(y);

1}

10: int foo (int 1) {

11: intt=1+2;

oY BBy

12: if (t>6)
13: t-=3;
14 else

15: t--;
16: return t;
17: }

© NEC Labs America, 2006

CFG

Control

-

Flow Graph

\/

-

M = (S,s0,TR,L)

Transition Relation

W
—)

) Bal 1o
= D
|

r

Present State '!  Next State

X: present state variables
Y: next state variables

W: input variables

« Annotated Control Flow Graph

— Language-independent intermediate
representation

— Provides the basis for several optimizations
(compilers, program analysis)

— Allows separation of model building/reduction
from model checking

20



Modeling C Programs: An Example

void bar() {
intx=3,y=x-3;
while (x<=4){
y++ ;

Basic block
J

1:

2

3

4;

S: x = foo(x);
6: } Non-recursive function calls
7

8

9

- . use special “call” and “return” blocks
y foo(y)’ (Add a stack for bounded recursion)

)

10: int foo (int ) {
11: intt=1+2;

12: if (t>6)
13: t-=3;
14: else

15: t--;
16: return t;
17: }
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Automatic Translation of CFG to Circuit Model

- l . CFG ~ finite (control + data) state machine
S$= X+2, . .
[ t = x-1: ] ' Basic blocks ~ control states (encoded using pc)
tiﬁ/ \(t: 6) Values of program variables ~ data states
\ Guarded transitions ~ transition relation for control states
[ t-=3, ) [ t-; ] Parallel assignments ~ transition relation for data states

Bit-level accurate models
_s*=¢t (similar to high-level synthesis)

l

« What about the challenges?

Rich data types, Structures and arrays

» Consider only finite integer types, and convert/flatten other types
Pointers and pointer arithmetic

« Convert to a pointer-less description [Semeria & De Micheli 98]
Dynamic memory allocation

* To obtain a finite state verification model, consider bounded data only
Procedure boundaries and recursion

» To obtain a finite state verification model, consider bounded recursion only
— Alternative: Pushdown models [Ball & Rajamani 01]

Concurrent programs
 Each thread can be represented by a separate CFG, with shared variables

© NEC Labs America, 2006 22



Modeling Pointers

)
_ A P=&X; N x N
Int*p; AN JEN _ ] g N
e ek o asen)|
Y p:&y; 7 L -7
—_
 Pointers can be modeled using additional variables and inferred
conditional assignments [Semeria & De Micheli 98]
P | Points-to(p) = {x, y}
P=& X; —
/," P’ =X; \\\ p =expr -
[ /= 3x=p==&x?expr:x; assert(p’)
S PE&Y; -7 (y=p==& y?expriy: | “a
P =Y

— Advantage: Decrease in number of live variables

* Exploited by back-end model checking techniques
— Disadvantage: Model size increases

 SAT-solving not as dependent on number of register as BDDs
— Accuracy of pointer analysis can be traded off with model checking
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Back-end Verification of Software Models

 Bugs (reachability of error labels) can be found by using SAT-based BMC
on the software models [Ivancic et al. ISoLA 04]

— Unrolling corresponds to a block-wise execution on the CFG

* Proofs can be derived by using SAT-based or BDD-based unbounded
model checking on the software models

— Typically the number of variables in the software model is very large

 Back-end verification is performed by VeriSol
— VeriSol has been highly optimized for circuit-based models

— Customized SAT heuristics for software models, based on information from our
translation

 H1: The basic block (i.e. pc) variables are more important than program
variables (i.e. datapath variables) in SAT search

 H2: Each basic block typically contains a small number of successor basic
blocks

— Disjunctive BDD-based image computation better for software [Wang et al. 06]
* Quantifies away non-live variables

© NEC Labs America, 2006
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Case Study for SAT-based BMC

e Point-to-Point Protocol (PPP)

— Analyzed LCP (link control protocol) part of
PPP that establishes, configures, and tests a
data-link connection

— Specification is given as RFC 1661

— Linux implementation contains about 2000
lines of C code

— Property: Implementation adheres to
specification [Alur& Wang 01]

I mplementation

Property Monitor I Environment Model

Specification
(RFC)

© NEC Labs America, 2006

states] | RFC 1661

Event Reqg-Sent Opened
Close Term-Req Term-Req

goto Closing goto Closing
Conf-Ack

goto Ack-Rcvd

goto Req-Sent

Term-Ack

Conf-Req

goto Reqg-Sent

Term-Req |Term-Ack

Term-Ack

goto Stopping

static void fsm_rter mack(fsm *f){
switch (f->state) {
[* other caseshere*/
case OPENED:

}
}

Public
implementation

if (f->callbacks->down)

(*f->callbacks->down)(f);
/* informing upper layers*/

fsm_sconfreq(f,0);
break ;

Missing:

f->state= REQSENT; [—

25



Results for PPP Case Study

Time per depth for BMC for design H3

ra
o
=

_ na
o =
= =
T T

—-

=

=
T

Time(s) per deT‘l‘i'me per depth

Unrolling/depth

Learning in SAT
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Cumulative time cumulative Time:lcsb

&aEa

Se88

4888

2888

2aaa8

loaa

[standard —s— | "= standard
orechat —e— | ammman higher score for pc
------ one-hot encoding of pc
------ block predecessor constraints

Cumulative time of BWMC for W3

T T T T
i standard —+—
Soofe ————y®

one—hot

trans

za 48 &8 =3c] loa 1za

Unrolling Depth Unro"ing depth
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Supplementing Model Checking

 Main problem
— Verification models generated directly from CFGs are too large

o Strategies
— Use predicate abstraction and refinement [Slam, Blast]

» Despite localization techniques, this frequently blows up [Jain et al. 05]
 Does not work well on programs with pointers

— Use light-weight analyses on CFGs in order to reduce size of the
generated verification model

 Program slicing (property-based)

 Range analysis (to bound #bits per variable)

« Constant folding (really helps in context of memory modeling)
— These have helped significantly in reducing model size

« e.g. Range analysis typically provides 80% reduction in #bits
— More recently, we have used “cheap” static program analyses

« Static Invariant Generation

© NEC Labs America, 2006
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F-Soft Verification Platform

Properties 'Source code H -
(C,...) i .
- Program dlicing
ﬁull pointer derefs ﬁ 9 7
Automated f.rray buf overflows Statlc
checkers Analysis
( Range analysis
1 )|‘
Testcase Abstraction
e— | | nvariant
* 1 \\ Generation
\
Ctrex Analysis M odel \
. \
& Refinement Trandator \\ Predicate
l \\ abstraction

M odel Checker
(Verisal) Pr oof
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Static Invariant Generation

« Can prove correctness of many properties [Sankaranarayanan et al. SAS 06]
— Array buffer overflows, null pointer dereferences, ...
— Significant reduction in # properties to be passed to model checker

 Can reduce search space during model checking [Ganai & Gupta ICCAD 06]
— Additional constraints to the SAT solver improve performance
« Can avoid divergence on loops in predicate abstraction [Jain et al. CAV 06]

— Known relationships can reduce number of spurious counterexamples

int A[N], B[N]; int A[N], B[N];
int equals () { void arrayM odel (){
inti=N,j =N inti=N,j =N
int result=1: while (i >0){
while (i >0) { == .
- ——— > |- I nvariants:
= if (i<0||i>=N) 0<i<N
if (A[i]!'=B[j]) 'ERROR(); 0<j<N
result =0; It (J<0|J>=N) i==]
} ERROR() ;
return result ; :
} }
!

© NEC Labs America, 2006

29



Octagon Abstract Domain [Mine et al.]

 Allows discovering invariants of form ax+ by <= c where a, b €
{1, 0, 1}

« Can be computed using standard data flow analysis
— For n program variables
— O(n3) time complexity
— 0O(n?2) space requirements
— Typically, small variable packs are used for fast analysis

© NEC Labs America, 2006
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Experiments on Industry Programs

Array buffer overflow checks Without Octagon Invariants With Octagon Invariants
KLOC | # #P #P #B # Time | #P #P #B # Time
Checks | py by by None | (sec) | by SA | by by None (sec)
SA SAT | SAT w/ SAT | SAT
Invar
1 0.5 64 32 9 0 23 596 64 0 0 0 15
f2 1.1 16 8 6 0 2 564 16 0 0 0 66
f3 1.1 18 8 5 2 3 572 16 0 2 0 104
f4 1.2 22 10 6 3 3 478 18 1 3 0 195
5 1.2 10 0 0 4 6 584 6 0 4 0 401
f6 1.6 26 8 6 8 4 579 18 0 8 0 197
f7 1.8 28 4 8 4 4 589 12 4 4 0 325
8 3.6 280 267 13 0 0 144 280 0 0 0 140

Note: #P by SA = # Proofs by Static Analysis, # P by SAT = #Proofs by SAT,
#B by SAT = # Bugs by SAT, # None = unresolved

« Several interesting improvements with Octagon invariants
— Number of unresolved (#None) checks is reduced (here, 0)
— Provides overall performance improvement
— Last example: not much extra cost for Proofs by SAT

© NEC Labs America, 2006 sl



Invariants and Predicate Abstraction
[Jain et al. CAV 06]

 Main idea: Predicate abstraction may require many refinement
iterations to discover some of the “cheap” invariants

— Generate invariants statically as a pre-processing step

 Invariants are used to improve:
— Abstraction computation: Transition relation strengthening
— Refinement

 Weakest pre-conditions provide savings in abstraction
computation, but can diverge on many loops

« External loop invariants can frequently overcome this limitation
 Experimental Results
— Reduction in # abstraction-refinement iterations by 54%
— Reduction in maximum # predicates (at a program location) by 58%
— Reduction in overall runtime by 69%

© NEC Labs America, 2006
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Disjunctive Abstract Domains: Path Sensitive Analysis

Int X[10];
Int len, ok;

If (len >=0 && len < 10)

ok = 1;
else Required Invariant:

ok :‘O/ (ok=0) OR (ok =1 and 0 < len< 10)
i (oK)

X[len] = O;

Flow-sensitive analysis: (0 <ok<1)
— Fails to prove property
Path-sensitive analysis needed for inferring Disjunctive Invariants

33
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Scalable Path Sensitive Analysis

« Computing disjunctive invariants is expensive
— Each path can produce a disjunct
— Exponential number of paths
— Unnecessary in practice

« CFG Elaborations [Sankaranarayanan et al. SAS 2006]
— Fixed number (user-specified) of disjuncts
— Heuristic merging of disjuncts at join points
— Provides a good performance vs. accuracy tradeoff

© NEC Labs America, 2006
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lll. Verifying Multi-threaded C Programs
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Verifying Multi-Threaded Programs with Locks

Thread Thread
T1 | |72 I I
SN~—— -
S
@ Augment threads by keeping lock
acquisition history
o~
~ N

MODEL CHECKER
(F-Soft)

* Verification of multi-threaded program with nested lock access is
reduced to model checking individual threads [Kahlon et al. CAV 05]

— Avoids state explosion arising due to concurrency
— Verification is exact for a rich class of properties (data races, deadlocks)

* Model checking LTL properties for threads with nested locks
[Kahlon et al. LICS 06]
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Overall Architecture for Handling Threads

Range Analysis

Constant Folding

Merging/inlining

Slicing

Model Generation

Context-Sensitive SA

Model Checking

© NEC Labs America, 2006
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g}
g}
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g}

[

Favorite SMC

g}
g}
g}
g}
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Partial Order Reduction with SAT-based BMC

[Kahlon & Gupta CAV 06]

« Naive scheduler: Nondeterministic choice of thread to execute

« POR Scheduler: At each global state, only transitions belonging to a
minimal conditional stubborn set are explored [Godefroid 97]
e Auxiliary predicates
— access-now(T,s): true at control locations pc where T reads or writes s

— access-now-or-later(T,s): true at control location pc if T can access s at a
control location reachable from pc

— Accomplished via static analysis of the CFG for T
o Conflict relation
— Conflict(T,, T,) = access-now(T,, s) A access-now-or-later(T,, s)
« POR+Transactions (based on lock acquisition history): Conflict relation is
modified to take into account locks on paths to “later”

— For example, if a lock |1 is already held by T,, then paths in T, where |1 needs to
be acquired will not be considered

» Scheduler (circuit model)
— Build a circuit to compute the transitive closure for the conflict relation
— Build a circuit to compute the minimal stubborn set

© NEC Labs America, 2006 38



Case Study: Daisy file system

Concurrent software benchmark

1 KLOC of C-like Java (manually converted to C)
Simple data structures

Fine-grained concurrency

Variety of correctness properties

[Qadeer 04]

» Experimental results for finding 3 known races, using SAT-based BMC

Interleaved POR POR +
Execution Reduction Transactions
Race 20min 3sec 1.4sec
1 6.5MB 5.7MB 5.5MB
Race 10hrs 12min
2 950MB 517Mb
Race 40hrs 1.67hrs
3 1870MB 902MB

© NEC Labs America, 2006




Conclusions

Significant recent advances in SAT-based verification
— Falsification Engines: BMC and variants
— Proof Engines: Proof-based abstractions, SAT-based UMC

— Also provide a framework for improving performance using SMT
Solvers

» Accuracy of program modeling and efficiency of analysis are
crucial in practice

— Modeling choices depend on analysis engines

« Significant benefit in supplementing model checking with static
program analysis

— Loosely integrated so far, current efforts focused on tighter
integration to provide a “knob” to trade off accuracy for scalability

 F-Soft tool has been applied on many examples
— Publicly available benchmarks: PPP, TCAS, bftpd, bc, Daisy, ...
— Industry case studies provided by NEC business groups

© NEC Labs America, 2006
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Future Directions

 Handling large arrays and loops, pointers, ...

* Global analysis: How to choose the right level of granularity?
— The problems are too large when we start from main function
— Many standard bugs can be checked locally
* How local?
* Need to model calling context (environment)

* Inter-procedural analysis

* Verifying multi-threaded programs

© NEC Labs America, 2006

41



	Verifying C Programs Using SAT-based Model Checking
	Outline
	I. SAT-based Verification Methods
	Hardware Circuit Model (Symbolic LTS)
	Property Verification
	NEC Hybrid (Circuit+CNF) SAT Solver
	NEC SAT Solver Results (w/Circuit heuristic JFT)
	Bounded Model Checking (BMC)
	Improving BMC Performance
	Efficient Memory Model: To Handle Embedded Memories
	BMC with SAT Proof Analysis
	Proof-Based Iterative Abstraction (PBIA) using SAT
	Symbolic Model Checking
	Enumerating All Solutions
	SAT-based UMC using Circuit Cofactoring (CC)
	NEC’s VeriSol (DiVer) Verification Platform
	NEC’s High Level Synthesis Framework
	II. Verifying Sequential C Programs
	Model Checking Software Programs
	Intermediate Representation
	Modeling C Programs: An Example
	Automatic Translation of CFG to Circuit Model
	Modeling Pointers
	Back-end Verification of Software Models
	Case Study for SAT-based BMC
	Results for PPP Case Study
	Supplementing Model Checking
	F-Soft Verification Platform
	Static Invariant Generation
	Octagon Abstract Domain [Mine et al.]
	Experiments on Industry Programs
	Invariants and Predicate Abstraction
	Disjunctive Abstract Domains: Path Sensitive Analysis
	Scalable Path Sensitive Analysis
	III. Verifying Multi-threaded C Programs
	Verifying Multi-Threaded Programs with Locks
	Overall Architecture for Handling Threads
	Partial Order Reduction with SAT-based BMC
	Case Study: Daisy file system
	Conclusions
	Future Directions

