
Verifying C Programs
Using SAT-based Model Checking

Satisfiability Solvers and Program Verification (SSPV)
August 11, 2006

Aarti Gupta
agupta@nec-labs.com

NEC Laboratories America
Princeton

Acknowledgements:
Pranav Ashar, Malay Ganai, Franjo Ivancic, Vineet Kahlon,

Sriram Sankaranarayanan, Ilya Shlyakhter, Chao Wang, Zijiang Yang

© NEC Labs America, 2006

Outline

I. SAT-based verification methods
II. Verifying sequential C programs
III. Verifying multi-threaded C programs

2
© NEC Labs America, 2006

I. SAT-based Verification Methods

© NEC Labs America, 2006

Hardware Circuit Model (Symbolic LTS)

4
© NEC Labs America, 2006

• Model M = (S, s0, TR, L)
• Set of States S is encoded by a vector of binary variables X

– Implemented as the outputs of latches (registers)
– Size of state space: |S| = 2 |X|

• Initial state s0 comprises initial values of the latches
• Transition relation TR is implemented as next state logic (Boolean gates)

– Y = TR(X, W), where TR is a Boolean function of present state X and inputs W
• Labeling L is implemented as output logic (Boolean gates)

– O = f(X) or O = g(X,W)

W

X

Output logicNext state logic
Primary Inputs Primary Outputs

O

Present State Next State
Y

Latches (Registers)

Property Verification
• Two Main Approaches:

– Proof Approach
• Exhaustive state space exploration, i.e. all states in the

model are covered to check for property satisfaction
• Very expensive for medium to large-sized models

– Falsification Approach
• State space search for bugs (counter-examples) only
• Less expensive, but needs good search heuristics

• We use both proof and falsification approaches

State where the
property fails

S0 “Is there is a path from the initial state S0
to the bad state(s) where property fails?”

5
© NEC Labs America, 2006

NEC Hybrid (Circuit+CNF) SAT Solver
[Ganai et al. DAC 02]

• Works simultaneously on circuit and CNF representations
– Original problem: Circuit form
– Learned clauses: CNF

• Deduction Engine – Hybrid BCP
– Circuit-based BCP on gates using fast table lookup [Kuehlmann et al. 01]

• About 50% faster than BCP on corresponding clauses
– CNF-based BCP on learned clauses using Chaff’s 2-lit watching

• Lazy update is more effective on long clauses than a circuit-based
chain/tree of gates

– Records both clauses and gate nodes as reasons for implications
• Decision Engine

– Use of circuit-based heuristics, such as justification frontier
• More effective due to no decisions in “unobservable” parts
• Can provide a solution with partial assignment

• Diagnostic Engine
– Performs Grasp-style conflict analysis
– Provides identification of unsatisfiable core [Zhang & Malik 03]

• With additional heuristics for minimizing size of unsat core

6
© NEC Labs America, 2006

NEC SAT Solver Results (w/Circuit heuristic JFT)

SAT Time Comparison – Chaff & NEC Hybrid w/ JFT

Chaff / H-JFT

0

1

2

3

4

5

6

7

8

H-JFT: Hybrid with
Justification
Frontier Heuristic

Platform:
RH Linux 7.1, PIII
750Mhz 256 Mb

UNSAT Instances SAT

Average speedup: 1.89

Average speedup: 3.24

SA
T

Ti
m

e
R

at
io

Examples (25K-0.5M gates)

7
© NEC Labs America, 2006

Bounded Model Checking (BMC)

• BMC problem translated to a Boolean formula [Biere et al. 99]
– SAT(fk) (formula is satisfiable) a bug exists at depth k
– Satisfiability of fk is checked by a standard SAT solver

• Main ideas
– Unroll transition relation up to bounded depth
– Avoid computing sets of reachable states

• Falsification approach to search for bounded length bugs
– Scales much better than BDD-based methods for hardware verification

• BDDs can typically handle 100’s of latches (state elements)
• SAT can typically handle 10K’s latches (state elements)

– Incomplete in practice due to large completeness threshold
• Proofs by induction with increasing depth [Sheeran et al. 00]

– Works well with additional BDD-based reachability invariants [Gupta et al. 03]

TR
Time

Frame n

TR
Time

Frame n-1

Inputs W

initial
State X1

TR
Time

Frame 1

TR
Time

Frame 2

Time Frame Expansion

Y1 = X2
property p

8
© NEC Labs America, 2006

Improving BMC Performance

• Dynamic circuit simplification [Kuehlmann & Ganai 01]

• Reuse of learned property constraints [Ganai et al. 02]

• Partitioning and incremental BMC translation [Ganai et al. 05]

• Customized property translations into multiple SAT subproblems
• Hybrid SAT Solver [Ganai et al. 02]

• BDD Learning [Gupta et al. 03]

• BDD Constraints [Gupta et al. 03]

• High-level BMC: SMT Solver, BMC-friendly model [Ganai & Gupta. ICCAD 06]

X1
S0

0
1
1
0

P0

S1
X2

P1!

Sn
Xn

Pn!

BDDs work really well on small problems –
use them to supplement SAT

9
© NEC Labs America, 2006

Efficient Memory Model: To Handle Embedded Memories

A
ddr0

W
D

0
R

D
0

R
E

0
W

E
0

Depth 0

Single
Port
MEM

PI0

NS0=PS1INIT=PS0 Depth 1

PI1

Depth k

PIk

A
ddr1

W
D

1
R

D
1

R
E

1
W

E
1

A
ddrk

W
D

k
R

D
k

R
E

k
W

E
k

A0 A1

Ak

[Ganai et al. CAV 04]

• EMM: Remove memories from model, but add memory constraints
− Data forwarding semantics maintained during BMC unrolling

− Similar to interpreted memories in other work
− Exclusivity of a matching read-write pair is captured explicitly

− Significantly improves SAT solver performance
− Constraints are represented efficiently

− Circuit+CNF representation with a hybrid SAT solver works better than ITE
representation

10
© NEC Labs America, 2006

BMC with SAT Proof Analysis

• BMC Problem: Is property p satisfiable at depth k?
W1

X1X0

W2

X2

W3

X3

W4

X4

0
1
1
0

0 0 0
p?

• Suppose no bug at depth k because p is unsatisfiable
– Derive an unsatisfiable core R(k) using SAT solver [ZM03, MA03]
– R(k) is sufficient for the original problem to be unsatisfiable

• Abstraction based on Unsat Core of SAT Solver [MA03, GGA03]

– Abstract model with core R(k) implies correctness at (up to) depth k
– If k is sufficiently large, the abstract model may be correct for k’ > k
– Advantage: Typically R(k) is much smaller than entire design

11
© NEC Labs America, 2006

Proof-Based Iterative Abstraction (PBIA) using SAT

12
© NEC Labs America, 2006

Automated Flow

Model
Converged?

Model
Converged?

Extract
Abstract Model

Extract
Abstract Model

Proof-based
Verification

Proof-based
Verification

Deeper Search
For Counterexamples

Deeper Search
For Counterexamples

Yes

Concrete
Design Property

Bounded Model Checking
with SAT Proof Analysis

Bounded Model Checking
with SAT Proof Analysis

No

Abstract
Model

Design D1
Original Design: 12716 bits, 416 k gates
Abstract Model: 71 bits, 2 k gates

No bug on full design (depth 120 in 1500s)
Abstraction in 1500s (6 iterations)
Proof on abstract model in 30 s

Proof Methods:
1. BDD-based model checking
2. SAT-based model checking
3. SAT-based induction

[Gupta et al. ICCAD 03]

Symbolic Model Checking
[McM 90, BCL+94]

X: present state variables
Y: next state variables
W: input variables

X YW

Image Computation
Image(Y) = ∃ X, W. T(X,W,Y) ∧ From(X)

• Related operations
Fixpoint ComputationPre-Image Computation

• Core steps of many applications
– equivalence checking, reachability analysis, model checking …

13
© NEC Labs America, 2006

Enumerating All Solutions

• Search space: all values of variables (X, W, Z, Y)

BDD DAGs SAT Decision Tree

Flexibility Low (fixed ordering) High (no restriction on decisions)

Solution Sharing High (canonical) Low (non-canonical)

Leaves of SAT search tree:
BDD sub-problems

Top level search tree:
SAT Decision Tree

• BDD+SAT Strategy: keep flexibility, but avoid cube enumeration
[Gupta et al. FMCAD 00]

14
© NEC Labs America, 2006

SAT-based UMC using Circuit Cofactoring (CC)

• Symbolic backward traversal using unrolled TR
[Ganai et al. ICCAD 04]

• SAT solver’s solution is used to compute a cofactor
• A cofactor captures multiple solution cubes
• Cofactors are enumerated across the unrolled design
(not a single time frame) till no more solutions

W1 W2 Wi

Bad=¬p(Xi)
X1 X2 XiXi-1

CF1
CF2
CF3

• State sets (represented as circuit cofactors) may blow up
– Performance is not as good as SAT-based BMC (search for bugs),

which avoids computation of state sets
• Complementary to BDD-based UMC for deriving proofs

15
© NEC Labs America, 2006

NEC’s VeriSol (DiVer) Verification Platform
Interesting large problems are within reach!

Distributed BMC
Find bugs on network

of workstations

BMC + PBIA
Reduce model size by
identifying & removing

irrelevant logic

BMC + EMM
Find bugs in embedded
memory systems using
Efficient Memory Model

BMC + EMM + PBIA
Reduce model size by

identifying & removing
irrelevant memories

and logic

Prover
Proves correctness of

properties using
Unbounded Model

Checking and Induction Efficient
Representation

(circuit simplifier)

Boolean Solver
(SAT, BDD)

BMC
Find bugs
efficiently

Engines for finding Bugs

Engines for finding Proofs

[Ganai et al. TACAS 05]

New: BDD+Omega, SMT solvers

BMC: Bounded Model Checking
UMC: Unbounded Model Checking
EMM: Efficient Memory Modeling
PBIA: Proof-Based Iterative Abstraction

16
© NEC Labs America, 2006

NEC’s High Level Synthesis Framework

Behavior level
C

Cyber

RTL
Verilog

Behavior level
Property

Behavior level
Property

Transform
using HLS
information

RTL Property
(LTL)

RTL Property
(LTL)

DiVer Witness/
Counterexample

Translation
into Behavior level

Behavior level (source) debug
out reg _ck_start=0;
out reg _ck_done=0;
if(CT_01){

RG_01 = 1;
_ck_start = 1;

}
RG_02 = RG_03;
_ck_done = RG_03;

Waveform for Behavior level variables

Highlight buggy codeif(CT_01){

x
y
z

Behavior level
C

Cyber

RTL
Verilog

Behavior level
Property

Behavior level
Property

Transform
using HLS
information

RTL Property
(LTL)

RTL Property
(LTL)

DiVer Witness/
Counterexample

Translation
into Behavior level

Behavior level (source) debug
out reg _ck_start=0;
out reg _ck_done=0;
if(CT_01){

RG_01 = 1;
_ck_start = 1;

}
RG_02 = RG_03;
_ck_done = RG_03;

Waveform for Behavior level variables

Highlight buggy codeif(CT_01){

x
y
z

x
y
z

• Cyber Work Bench (CWB)
– Developed by NEC Japan (Wakabayashi et al.)
– Automatically translates behavioral level design (C-based) to RTL design (Verilog)
– Generates property monitors for RTL design automatically

• VeriSol is integrated within CWB
– Provides verification of RTL designs
– Has been used successfully to find bugs by in-house design groups

17
© NEC Labs America, 2006

II. Verifying Sequential C Programs

© NEC Labs America, 2006

Model Checking Software Programs

1: void bar() {
2: int x = 3 , y = x-3 ;
3: while (x <= 4) {
4: y++ ;
5: x = foo(x);
6: }
7: y = foo(y);
8: }
9:
10: int foo (int l) {
11: int t = l+2 ;
12: if (t>6)
13: t - = 3;
14: else
15: t --;
16: return t;

X: present state variables
Y: next state variables
W: input variables

W

X

Latches

Y

O

Present State Next State

Transition Relation

Huge gap !

Challenges:
• Rich data types
• Structures and arrays
• Pointers and pointer arithmetic
• Dynamic memory allocation
• Procedure boundaries and recursion
• Concurrent programs

C Program Finite state circuit model
M = (S,s0,TR,L)

17: }
19

© NEC Labs America, 2006

Intermediate Representation

• Annotated Control Flow Graph
– Language-independent intermediate

representation
– Provides the basis for several optimizations

(compilers, program analysis)
– Allows separation of model building/reduction

from model checking

1: void bar() {
2: int x = 3 , y = x-3 ;
3: while (x <= 4) {
4: y++ ;
5: x = foo(x);
6: }
7: y = foo(y);
8: }
9:
10: int foo (int l) {
11: int t = l+2 ;
12: if (t>6)
13: t - = 3;
14: else
15: t --;
16: return t;
17: }

X: present state variables
Y: next state variables
W: input variables

W

X

Latches

Y

O

Present State Next State

Transition Relation

C Program M = (S,s0,TR,L)

CFG
Control

Flow Graph

20
© NEC Labs America, 2006

Modeling C Programs: An Example

1: void bar() {
2: int x = 3 , y = x-3 ;
3: while (x <= 4) {
4: y++ ;
5: x = foo(x);
6: }
7: y = foo(y);
8: }
9:
10: int foo (int l) {
11: int t = l+2 ;
12: if (t>6)
13: t - = 3;
14: else
15: t --;
16: return t;
17: }

Line 2

Line 3 Line 4

Line 7
(call)

Line 5
(call)

Lines
11-12,14Line 13

Line 15Line 16

Line 5
(return)

Line 7
(return)

Basic block

Non-recursive function calls
use special “call” and “return” blocks
(Add a stack for bounded recursion)

21
© NEC Labs America, 2006

Automatic Translation of CFG to Circuit Model

22
© NEC Labs America, 2006

• What about the challenges?
– Rich data types, Structures and arrays

• Consider only finite integer types, and convert/flatten other types
– Pointers and pointer arithmetic

• Convert to a pointer-less description [Semeria & De Micheli 98]
– Dynamic memory allocation

• To obtain a finite state verification model, consider bounded data only
– Procedure boundaries and recursion

• To obtain a finite state verification model, consider bounded recursion only
– Alternative: Pushdown models [Ball & Rajamani 01]

– Concurrent programs
• Each thread can be represented by a separate CFG, with shared variables

s = x+2;
t = x-1;

t- = 3; t--;

s += t;

t > 6 ! (t > 6)

CFG ~ finite (control + data) state machine
Basic blocks ~ control states (encoded using pc)
Values of program variables ~ data states
Guarded transitions ~ transition relation for control states
Parallel assignments ~ transition relation for data states

Bit-level accurate models
(similar to high-level synthesis)

Modeling Pointers

int *p;
int x,y;

p=&x;
*p=expr;

p=&y;
assert(*p)…

• Pointers can be modeled using additional variables and inferred
conditional assignments [Semeria & De Micheli 98]

– Advantage: Decrease in number of live variables
• Exploited by back-end model checking techniques

– Disadvantage: Model size increases
• SAT-solving not as dependent on number of register as BDDs

uint p;
int p’;
int x,y;

p=&x;
p’=x;

p=&y;
p’=y;

p’=expr;
x=p==&x?expr:x;
y=p==&y?expr:y;

assert(p’)…

Points-to(p) = {x, y}

– Accuracy of pointer analysis can be traded off with model checking
23

© NEC Labs America, 2006

Back-end Verification of Software Models

• Bugs (reachability of error labels) can be found by using SAT-based BMC
on the software models [Ivancic et al. ISoLA 04]

– Unrolling corresponds to a block-wise execution on the CFG

• Proofs can be derived by using SAT-based or BDD-based unbounded
model checking on the software models

– Typically the number of variables in the software model is very large

• Back-end verification is performed by VeriSol
– VeriSol has been highly optimized for circuit-based models
– Customized SAT heuristics for software models, based on information from our

translation
• H1: The basic block (i.e. pc) variables are more important than program

variables (i.e. datapath variables) in SAT search
• H2: Each basic block typically contains a small number of successor basic

blocks
– Disjunctive BDD-based image computation better for software [Wang et al. 06]

• Quantifies away non-live variables

24
© NEC Labs America, 2006

Case Study for SAT-based BMC

States
Events Req-Sent Opened

Close Term-Req
goto Closing

Term-Req
goto Closing

Conf-Ack
goto Ack-Rcvd goto Req-Sent

Term-Ack Conf-Req
goto Req-Sent

Term-Req Term-Ack Term-Ack
goto Stopping

RFC 1661• Point-to-Point Protocol (PPP)
– Analyzed LCP (link control protocol) part of

PPP that establishes, configures, and tests a
data-link connection

– Specification is given as RFC 1661
– Linux implementation contains about 2000

lines of C code
– Property: Implementation adheres to

specification [Alur& Wang 01]

25
© NEC Labs America, 2006

static void fsm_rtermack(fsm *f){
switch (f->state) {

/* other cases here */
case OPENED:

if (f->callbacks->down)
(*f->callbacks->down)(f);
/* informing upper layers */

fsm_sconfreq(f,0);
break ;

}
}

Public
implementation

Missing:
f->state = REQSENT;

ImplementationImplementation

State

Specification
(RFC)

Specification
(RFC)

State

Property MonitorProperty Monitor Environment Model
(RFC)

Environment Model
(RFC)

State

msg

msg

msg

Results for PPP Case Study

Learning in SAT

Unrolling depth

Ti
m

e
pe

r d
ep

th ------ standard
------ higher score for pc
------ one-hot encoding of pc
------ block predecessor constraints

C
um

ul
at

iv
e

tim
e

Unrolling depth
26

© NEC Labs America, 2006

Supplementing Model Checking

• Main problem
– Verification models generated directly from CFGs are too large

• Strategies
– Use predicate abstraction and refinement [Slam, Blast]

• Despite localization techniques, this frequently blows up [Jain et al. 05]
• Does not work well on programs with pointers

– Use light-weight analyses on CFGs in order to reduce size of the
generated verification model

• Program slicing (property-based)
• Range analysis (to bound #bits per variable)
• Constant folding (really helps in context of memory modeling)

– These have helped significantly in reducing model size
• e.g. Range analysis typically provides 80% reduction in #bits

– More recently, we have used “cheap” static program analyses
• Static Invariant Generation

27
© NEC Labs America, 2006

F-Soft Verification Platform

28
© NEC Labs America, 2006

Source code
(C, …)

Model Checker
(VeriSol)

Ctrex Analysis
& Refinement

Proof

Bug

Abstraction

Model
Translator

Properties

Static
Analysis

Testcase
Generator

Automated
checkers

Bug

Program slicing

Range analysis

Invariant
Generation

Predicate
abstraction

Null pointer derefs
Array buf overflows
…

Static Invariant Generation
• Can prove correctness of many properties [Sankaranarayanan et al. SAS 06]

– Array buffer overflows, null pointer dereferences, …
– Significant reduction in # properties to be passed to model checker

• Can reduce search space during model checking [Ganai & Gupta ICCAD 06]

– Additional constraints to the SAT solver improve performance
• Can avoid divergence on loops in predicate abstraction [Jain et al. CAV 06]

– Known relationships can reduce number of spurious counterexamples

29
© NEC Labs America, 2006

int A[N], B[N];

int equals () {
int i=N, j = N ;
int result=1 ;
while (i > 0) {

i--;
j--;
if (A[i] != B[j])
result = 0 ;

}
return result ;

}

int A[N], B[N];

void arrayModel () {
int i=N, j = N ; …
while (i > 0) {

i--;
j--;
if (i<0 || i>=N)
ERROR() ;

if (j<0 || j>=N)
ERROR() ;

…
}

}

Invariants:
0 ≤ i ≤ N
0 ≤ j ≤ N
i==j

Octagon Abstract Domain [Mine et al.]

• Allows discovering invariants of form ax+ by <= c where a, b ∈
{-1, 0, 1}

• Can be computed using standard data flow analysis
– For n program variables
– O(n3) time complexity
– O(n2) space requirements
– Typically, small variable packs are used for fast analysis

30
© NEC Labs America, 2006

Experiments on Industry Programs

31
© NEC Labs America, 2006

• Several interesting improvements with Octagon invariants
– Number of unresolved (#None) checks is reduced (here, 0)
– Provides overall performance improvement
– Last example: not much extra cost for Proofs by SAT

KLOC #
Checks

P
by
SA

P
by
SAT

B
by
SAT

#
None

Time
(sec)

P
by SA
w/
Invar

P
by
SAT

B
by
SAT

#
None

Time
(sec)

f1 0.5 64 32 9 0 23 596 64 0 0 0 15

f2 1.1 16 8 6 0 2 564 16 0 0 0 66

f3 1.1 18 8 5 2 3 572 16 0 2 0 104

f4 1.2 22 10 6 3 3 478 18 1 3 0 195

f5 1.2 10 0 0 4 6 584 6 0 4 0 401

f7 1.8 28 4 8 4 4 589 12 4 4 0 325

f6 1.6 26 8 6 8 4 579 18 0 8 0 197

f8 3.6 280 267 13 0 0 144 280 0 0 0 140

Without Octagon Invariants With Octagon InvariantsArray buffer overflow checks

Note: #P by SA = # Proofs by Static Analysis, # P by SAT = #Proofs by SAT,
#B by SAT = # Bugs by SAT, # None = unresolved

Invariants and Predicate Abstraction
[Jain et al. CAV 06]

• Main idea: Predicate abstraction may require many refinement
iterations to discover some of the “cheap” invariants
– Generate invariants statically as a pre-processing step

• Invariants are used to improve:
– Abstraction computation: Transition relation strengthening
– Refinement

• Weakest pre-conditions provide savings in abstraction
computation, but can diverge on many loops

• External loop invariants can frequently overcome this limitation
• Experimental Results

– Reduction in # abstraction-refinement iterations by 54%
– Reduction in maximum # predicates (at a program location) by 58%
– Reduction in overall runtime by 69%

32
© NEC Labs America, 2006

Disjunctive Abstract Domains: Path Sensitive Analysis

int x[10];
int len, ok;

if (len >= 0 && len < 10)
ok = 1;

else
ok = 0;

….
if (ok)

x[len] = 0;

Required Invariant:
(ok=0) OR (ok =1 and 0 ≤ len< 10)

• Flow-sensitive analysis: (0 ≤ ok ≤ 1)
– Fails to prove property

• Path-sensitive analysis needed for inferring Disjunctive Invariants

33
© NEC Labs America, 2006

Scalable Path Sensitive Analysis

• Computing disjunctive invariants is expensive
– Each path can produce a disjunct
– Exponential number of paths
– Unnecessary in practice

• CFG Elaborations [Sankaranarayanan et al. SAS 2006]
– Fixed number (user-specified) of disjuncts
– Heuristic merging of disjuncts at join points
– Provides a good performance vs. accuracy tradeoff

34
© NEC Labs America, 2006

III. Verifying Multi-threaded C Programs

© NEC Labs America, 2006

Verifying Multi-Threaded Programs with Locks

Thread
T2 |||| ||

Augment threads by keeping lock
acquisition history

Thread
T1

MODEL CHECKER
(F-Soft)

• Verification of multi-threaded program with nested lock access is
reduced to model checking individual threads [Kahlon et al. CAV 05]
– Avoids state explosion arising due to concurrency
– Verification is exact for a rich class of properties (data races, deadlocks)

• Model checking LTL properties for threads with nested locks
[Kahlon et al. LICS 06]

36
© NEC Labs America, 2006

Overall Architecture for Handling Threads

Range Analysis

Constant Folding

Merging/Inlining

Slicing

Model Generation

37
© NEC Labs America, 2006

SchedulerContext-Sensitive SA

Favorite SMCModel Checking

Partial Order Reduction with SAT-based BMC
[Kahlon & Gupta CAV 06]

• Naïve scheduler: Nondeterministic choice of thread to execute
• POR Scheduler: At each global state, only transitions belonging to a

minimal conditional stubborn set are explored [Godefroid 97]
• Auxiliary predicates

– access-now(T,s): true at control locations pc where T reads or writes s
– access-now-or-later(T,s): true at control location pc if T can access s at a

control location reachable from pc
– Accomplished via static analysis of the CFG for T

• Conflict relation
– Conflict(T1, T2) = access-now(T1, s) ∧ access-now-or-later(T2, s)

• POR+Transactions (based on lock acquisition history): Conflict relation is
modified to take into account locks on paths to “later”

– For example, if a lock l1 is already held by T1, then paths in T2 where l1 needs to
be acquired will not be considered

• Scheduler (circuit model)
– Build a circuit to compute the transitive closure for the conflict relation
– Build a circuit to compute the minimal stubborn set

38
© NEC Labs America, 2006

Case Study: Daisy file system

Interleaved
Execution

POR
Reduction

POR +
Transactions

Race1
20min
6.5MB

3sec
5.7MB

1.4sec
5.5MB

Race2 -
10hrs
950MB

12min
517Mb

Race3 -
40hrs
1870MB

1.67hrs
902MB

• Concurrent software benchmark [Qadeer 04]
• 1 KLOC of C-like Java (manually converted to C)
• Simple data structures
• Fine-grained concurrency
• Variety of correctness properties

• Experimental results for finding 3 known races, using SAT-based BMC

39
© NEC Labs America, 2006

Conclusions

• Significant recent advances in SAT-based verification
– Falsification Engines: BMC and variants
– Proof Engines: Proof-based abstractions, SAT-based UMC
– Also provide a framework for improving performance using SMT

Solvers
• Accuracy of program modeling and efficiency of analysis are

crucial in practice
– Modeling choices depend on analysis engines

• Significant benefit in supplementing model checking with static
program analysis
– Loosely integrated so far, current efforts focused on tighter

integration to provide a “knob” to trade off accuracy for scalability
• F-Soft tool has been applied on many examples

– Publicly available benchmarks: PPP, TCAS, bftpd, bc, Daisy, …
– Industry case studies provided by NEC business groups

40
© NEC Labs America, 2006

Future Directions

• Handling large arrays and loops, pointers, …

• Global analysis: How to choose the right level of granularity?
– The problems are too large when we start from main function
– Many standard bugs can be checked locally

• How local?
• Need to model calling context (environment)

• Inter-procedural analysis

• Verifying multi-threaded programs

41
© NEC Labs America, 2006

	Verifying C Programs Using SAT-based Model Checking
	Outline
	I. SAT-based Verification Methods
	Hardware Circuit Model (Symbolic LTS)
	Property Verification
	NEC Hybrid (Circuit+CNF) SAT Solver
	NEC SAT Solver Results (w/Circuit heuristic JFT)
	Bounded Model Checking (BMC)
	Improving BMC Performance
	Efficient Memory Model: To Handle Embedded Memories
	BMC with SAT Proof Analysis
	Proof-Based Iterative Abstraction (PBIA) using SAT
	Symbolic Model Checking
	Enumerating All Solutions
	SAT-based UMC using Circuit Cofactoring (CC)
	NEC’s VeriSol (DiVer) Verification Platform
	NEC’s High Level Synthesis Framework
	II. Verifying Sequential C Programs
	Model Checking Software Programs
	Intermediate Representation
	Modeling C Programs: An Example
	Automatic Translation of CFG to Circuit Model
	Modeling Pointers
	Back-end Verification of Software Models
	Case Study for SAT-based BMC
	Results for PPP Case Study
	Supplementing Model Checking
	F-Soft Verification Platform
	Static Invariant Generation
	Octagon Abstract Domain [Mine et al.]
	Experiments on Industry Programs
	Invariants and Predicate Abstraction
	Disjunctive Abstract Domains: Path Sensitive Analysis
	Scalable Path Sensitive Analysis
	III. Verifying Multi-threaded C Programs
	Verifying Multi-Threaded Programs with Locks
	Overall Architecture for Handling Threads
	Partial Order Reduction with SAT-based BMC
	Case Study: Daisy file system
	Conclusions
	Future Directions

