NEC

Empowered by Innovation

Verifying C Programs
Using SAT-based Model Checking

Satisfiability Solvers and Program Verification (SSPV)
August 11, 2006

Aarti Gupta
agupta@nec-labs.com

NEC Laboratories America

Princeton

Acknowledgements:
Pranav Ashar, Malay Ganai, Franjo lvancic, Vineet Kahlon,
Sriram Sankaranarayanan, llya Shlyakhter, Chao Wang, Zijiang Yang

© NEC Labs America, 2006

Outline

. SAT-based verification methods
Il. Verifying sequential C programs
lll. Verifying multi-threaded C programs

© NEC Labs America, 2006

. SAT-based Verification Methods

© NEC Labs America, 2006

Hardware Circuit Model (Symbolic LTS)

Primary Inputs _ Primary Outputs
W Next state logic Output logic ')

Present State :.7 Next State
X Y

Do

| Latches (Registers)

e ModelM= (S, s0, TR, L) -
« Set of States S is encoded by a vector of binary variables X
— Implemented as the outputs of latches (registers)
— Size of state space: |S| =2 IX
» Initial state s0 comprises initial values of the latches
 Transition relation TR is implemented as next state logic (Boolean gates)
— Y =TR(X, W), where TR is a Boolean function of present state X and inputs W
 Labeling L is implemented as output logic (Boolean gates)
— 0 =1(X) or O =g(X,W)

© NEC Labs America, 2006

Property Verification

« Two Main Approaches:
— Proof Approach

 Exhaustive state space exploration, i.e. all states in the
model are covered to check for property satisfaction

* Very expensive for medium to large-sized models

— Falsification Approach
« State space search for bugs (counter-examples) only
* Less expensive, but needs good search heuristics

N S0 “Is there is a path from the initial state SO

to the bad state(s) where property fails?”
%){\C)\‘ O State where the
% C}\ (%2{ property fails

OO0O0000O

« We use both proof and falsification approaches

© NEC Labs America, 2006

NEC Hybrid (Circuit+CNF) SAT Solver

[Ganai et al. DAC 02]

 Works simultaneously on circuit and CNF representations
— Original problem: Circuit form
— Learned clauses: CNF

 Deduction Engine — Hybrid BCP
— Circuit-based BCP on gates using fast table lookup [Kuehlmann et al. 01]
* About 50% faster than BCP on corresponding clauses
— CNF-based BCP on learned clauses using Chaff’s 2-lit watching

» Lazy update is more effective on long clauses than a circuit-based
chain/tree of gates

— Records both clauses and gate nodes as reasons for implications
 Decision Engine
— Use of circuit-based heuristics, such as justification frontier
* More effective due to no decisions in “unobservable” parts
« Can provide a solution with partial assignment
 Diagnostic Engine
— Performs Grasp-style conflict analysis
— Provides identification of unsatisfiable core [Zhang & Malik 03]
* With additional heuristics for minimizing size of unsat core

© NEC Labs America, 2006

NEC SAT Solver Results (w/Circuit heuristic JFT)

SAT Time Comparison — Chaff & NEC Hybrid w/ JFT

+—— UNSAT Instances »e SAT » %= Chaff / H-JFT

H-JFT: Hybrid with
Justification
Frontier Heuristic

SAT Time Ratio

Platform:

RH Linux 7.1, Pl
750Mhz 256 Mb

Examples (25K-0.5M gates)

© NEC Labs America, 2006

Bounded Model Checking (BMC)

J

property p

initial
State X1

. |
Time Frame Expansion

BMC problem translated to a Boolean formula [Biere et al. 99]
— SAT(f,) (formula is satisfiable) < a bug exists at depth k
— Satisfiability of f, is checked by a standard SAT solver
Main ideas
— Unroll transition relation up to bounded depth
— Avoid computing sets of reachable states

Falsification approach to search for bounded length bugs
— Scales much better than BDD-based methods for hardware verification
 BDDs can typically handle 100’s of latches (state elements)
» SAT can typically handle 10K’s latches (state elements)

— Incomplete in practice due to large completeness threshold
Proofs by induction with increasing depth [Sheeran et al. 00]
— Works well with additional BDD-based reachability invariants [Gupta et al. 03]

© NEC Labs America, 2006

Improving BMC Performance

| PO ' P1 Pn
 Dynamic circuit simplification [Kuehlmann & Ganai 01]
« Reuse of learned property constraints [Ganai et al. 02]
* Partitioning and incremental BMC translation [Ganai et al. 05]
* Customized property translations into multiple SAT subproblems
« Hybrid SAT Solver [Ganai et al. 02]
. BDDs work really well on small problems —
- BDD Learning use them to supplement SAT [Gupta et al. 03]
« BDD Constraints [Gupta et al. 03]

- High-level BMC: SMT Solver, BMC-friendly model [Ganai & Gupta. ICCAD 06]

© NEC Labs America, 2006

Efficient Memory Model: To Handle Embedded Memories

[Ganai et al. CAV 04]

Pl,

INIT=PS,

Single
Port
MEM

« EMM: Remove memories from model, but add memory constraints
— Data forwarding semantics maintained during BMC unrolling
— Similar to interpreted memories in other work
— Exclusivity of a matching read-write pair is captured explicitly
— Significantly improves SAT solver performance
— Constraints are represented efficiently

— Circuit+CNF representation with a hybrid SAT solver works better than ITE
representation

© NEC Labs America, 2006 10

BMC with SAT Proof Analysis

« BMC Problem: Is property p satisfiable at depth k?
w1 W2 W3 W4

X0 X1 X2 X3 X4

o+ = O

0 0 0

 Suppose no bug at depth k because p is unsatisfiable
— Derive an unsatisfiable core R(k) using SAT solver [ZM03, MA03]
— R(k) is sufficient for the original problem to be unsatisfiable

 Abstraction based on Unsat Core of SAT Solver [MAO3, GGAO03]
— Abstract model with core R(k) implies correctness at (up to) depth k
— If k is sufficiently large, the abstract model may be correct for k’ > k
— Advantage: Typically R(k) is much smaller than entire design

© NEC Labs America, 2006 H

Proof-Based Iterative Abstraction (PBIA) using SAT

Concrete
Design

Property

\ 4 \ 4

Bounded Model Che

with SAT Proof Analysis

cking

|

Extract
Abstract Model

Abstract
Model

No

@qn D1

Automated Flow

[Gupta et al. ICCAD 03]

Original Design: 12716 bits, 416 k gates
Abstract Model: 71 bits, 2 k gates

No bug on full design (depth 120 in 1500s)
Abstraction in 1500s (6 iterations)

T~

Proof Methods:

Proof-based
Verification

Deeper Search

1. BDD-based model checking
2. SAT-based model checking

For Counterexamples 3. SAT-based induction

© NEC Labs America, 2006

Proof on abstract modelin 30 s /

™

12

Symbolic Model Checking

[McM 90, BCL+94]

X: present state variables X
: W
Y: next state variables | —
W: input variables - | —
\
\\

Image Computation
Image(Y) = 7 X, W. T(X,W,Y) A From(X)

 Related operations

Pre-Image Computation Fixpoint Computation

 Core steps of many applications
— equivalence checking, reachability analysis, model checking ...

_ 13
© NEC Labs America, 2006

Enumerating All Solutions

 Search space: all values of variables (X, W, Z, Y)

BDD DAGs SAT Decision Tree
Flexibility Low (fixed ordering) High (no restriction on decisions)
Solution Sharing | High (canonical) Low (non-canonical)

- BDD+SAT Strategy: keep flexibility, but avoid cube enumeration

[Gupta et al. FMCAD 00]

Top level search tree:
SAT Decision Tree

Leaves of SAT search tree:
BDD sub-problems

© NEC Labs America, 2006

SAT-based UMC using Circuit Cofactoring (CC)

[Ganai et al. ICCAD 04]
 Symbolic backward traversal using unrolled TR

W, W, W,

Xi—1

X.
I —_
Bad=-p(X;)
* SAT solver’s solution is used to compute a cofactor

CF, °A cofactor captures multiple solution cubes

CF, ° Cofactors are enumerated across the unrolled design
(not a single time frame) till no more solutions

« State sets (represented as circuit cofactors) may blow up

— Performance is not as good as SAT-based BMC (search for bugs),
which avoids computation of state sets

« Complementary to BDD-based UMC for deriving proofs

© NEC Labs America, 2006

NEC’s VeriSol (DiVer) Verification Platform

Interesting large problems are within reach!

. Engines for finding Bugs

"\ BMC: Bounded Model Checkin
¢ BMC g

[Ganai et al. TACAS 05]

/\ _ UMC: Unbounded Model Checking

Find bugs EMM: Efficient Memory Modeling

Engines for finding Proofs efficiently PBIA: Proof-Based Iterative Abstraction
Prover 4)

Proves correctness of
properties using
Unbounded Model
\Checking and Induction

Distributed BMC
Find bugs on network
of workstations

“Efficient
Representation
(circuit simplifier)

Boolean Solver

(" BMC + EMM + PBIA) (SAT, BDD) f BMC + EMM A
.Redl.jc? I S|ze.by Find bugs in embedded
|d_e DA removing N memory systems using
wrelevar:jt Ime_morles Efficient Memory Model
S and logic J N J

BMC + PBIA p
Reduce model size by \
identifying & removing \

irrelevant logic R
- J

© NEC Labs America, 2006 16

NEC’s High Level Synthesis Framework

Behavior level
avior level |...
Property

)

|

Transform
Cyber using HLS
information

!

RTL Property
(LTL)

.

Ve

G

~

Behavior level (source) debug

out reg _ck_start=0;

mom regen """ |Highlight buggy code

RG_01=1;

_ck_start=1;

}
RG_02=RG_03; | X
_ck_done =RG_03 y N

z

Waveform for Behavior level variables

/

1
Trandation
into Behavior level

Witness/

DiVer

-« Cyber Work Bench (CWB)

Counterexample

— Developed by NEC Japan (Wakabayashi et al.)

— Automatically translates behavioral level design (C-based) to RTL design (Verilog)

— Generates property monitors for RTL design automatically

- VeriSol is integrated within CWB

— Provides verification of RTL designs
— Has been used successfully to find bugs by in-house design groups

© NEC Labs America, 2006

17

Il. Verifying Sequential C Programs

© NEC Labs America, 2006

Model Checking Software Programs

C Program Finite state circuit model
1: void bar() { M= (S,s0,TR,L)

2: intx=3,y=x-3;

Transition Relation

W

))
3: while(x<=4){ y y
4: y++ ; Huge gap !) D) —
5: x = foo(x); | ——bo— I
o Lo Q. taches_ _ _
7: y=foo(y); Present State Next State
8:
9: } X: present state variables
10'_ int f int | Challenges: Y: next state variables

tintfoo (int 1) { « Rich data types W: input variables

11: intt=1+2; o Structures and arrays

12: if (t>6) « Pointers and pointer arithmetic

13: t-=3; « Dynamic memory allocation

14: else * Procedure boundaries and recursion
15: t--; « Concurrent programs

16: return t;

17: }

19
© NEC Labs America, 2006

Intermediate Representation

C Program

1: void bar() {

2: intx=3,y=x-3;

while (x <=4) {
y++;
x = foo(x);

}

y = foo(y);

1}

10: int foo (int 1) {

11: intt=1+2;

oY BBy

12: if (t>6)
13: t-=3;
14 else

15: t--;
16: return t;
17: }

© NEC Labs America, 2006

CFG

Control

-

Flow Graph

\/

-

M = (S,s0,TR,L)

Transition Relation

W
—)

) Bal 1o
= D
|

r

Present State '! Next State

X: present state variables
Y: next state variables

W: input variables

« Annotated Control Flow Graph

— Language-independent intermediate
representation

— Provides the basis for several optimizations
(compilers, program analysis)

— Allows separation of model building/reduction
from model checking

20

Modeling C Programs: An Example

void bar() {
intx=3,y=x-3;
while (x<=4){
y++ ;

Basic block
J

1:

2

3

4;

S: x = foo(x);
6: } Non-recursive function calls
7

8

9

- . use special “call” and “return” blocks
y foo(y)’ (Add a stack for bounded recursion)

)

10: int foo (int) {
11: intt=1+2;

12: if (t>6)
13: t-=3;
14: else

15: t--;
16: return t;
17: }

© NEC Labs America, 2006

Automatic Translation of CFG to Circuit Model

- l . CFG ~ finite (control + data) state machine
S$= X+2, . .
[t = x-1:] ' Basic blocks ~ control states (encoded using pc)
tiﬁ/ \(t: 6) Values of program variables ~ data states
\ Guarded transitions ~ transition relation for control states
[t-=3,) [t-;] Parallel assignments ~ transition relation for data states

Bit-level accurate models
_s*=¢t (similar to high-level synthesis)

l

« What about the challenges?

Rich data types, Structures and arrays

» Consider only finite integer types, and convert/flatten other types
Pointers and pointer arithmetic

« Convert to a pointer-less description [Semeria & De Micheli 98]
Dynamic memory allocation

* To obtain a finite state verification model, consider bounded data only
Procedure boundaries and recursion

» To obtain a finite state verification model, consider bounded recursion only
— Alternative: Pushdown models [Ball & Rajamani 01]

Concurrent programs
 Each thread can be represented by a separate CFG, with shared variables

© NEC Labs America, 2006 22

Modeling Pointers

)
_ A P=&X; N x N
Int*p; AN JEN _] g N
e ek o asen)|
Y p:&y; 7 L -7
—_
 Pointers can be modeled using additional variables and inferred
conditional assignments [Semeria & De Micheli 98]
P | Points-to(p) = {x, y}
P=& X; —
/," P’ =X; \\\ p =expr -
[/= 3x=p==&x?expr:x; assert(p’)
S PE&Y; -7 (y=p==& y?expriy: | “a
P =Y

— Advantage: Decrease in number of live variables

* Exploited by back-end model checking techniques
— Disadvantage: Model size increases

 SAT-solving not as dependent on number of register as BDDs
— Accuracy of pointer analysis can be traded off with model checking

© NEC Labs America, 2006

Back-end Verification of Software Models

 Bugs (reachability of error labels) can be found by using SAT-based BMC
on the software models [Ivancic et al. ISoLA 04]

— Unrolling corresponds to a block-wise execution on the CFG

* Proofs can be derived by using SAT-based or BDD-based unbounded
model checking on the software models

— Typically the number of variables in the software model is very large

 Back-end verification is performed by VeriSol
— VeriSol has been highly optimized for circuit-based models

— Customized SAT heuristics for software models, based on information from our
translation

 H1: The basic block (i.e. pc) variables are more important than program
variables (i.e. datapath variables) in SAT search

 H2: Each basic block typically contains a small number of successor basic
blocks

— Disjunctive BDD-based image computation better for software [Wang et al. 06]
* Quantifies away non-live variables

© NEC Labs America, 2006

24

Case Study for SAT-based BMC

e Point-to-Point Protocol (PPP)

— Analyzed LCP (link control protocol) part of
PPP that establishes, configures, and tests a
data-link connection

— Specification is given as RFC 1661

— Linux implementation contains about 2000
lines of C code

— Property: Implementation adheres to
specification [Alur& Wang 01]

I mplementation

Property Monitor I Environment Model

Specification
(RFC)

© NEC Labs America, 2006

states] | RFC 1661

Event Reqg-Sent Opened
Close Term-Req Term-Req

goto Closing goto Closing
Conf-Ack

goto Ack-Rcvd

goto Req-Sent

Term-Ack

Conf-Req

goto Reqg-Sent

Term-Req |Term-Ack

Term-Ack

goto Stopping

static void fsm_rter mack(fsm *f){
switch (f->state) {
[* other caseshere*/
case OPENED:

}
}

Public
implementation

if (f->callbacks->down)

(*f->callbacks->down)(f);
/* informing upper layers*/

fsm_sconfreq(f,0);
break ;

Missing:

f->state= REQSENT; [—

25

Results for PPP Case Study

Time per depth for BMC for design H3

ra
o
=

_ na
o =
= =
T T

—-

=

=
T

Time(s) per deT‘l‘i'me per depth

Unrolling/depth

Learning in SAT

© NEC Labs America, 2006

Cumulative time cumulative Time:lcsb

&aEa

Se88

4888

2888

2aaa8

loaa

[standard —s— | "= standard
orechat —e— | ammman higher score for pc
------ one-hot encoding of pc
------ block predecessor constraints

Cumulative time of BWMC for W3

T T T T
i standard —+—
Soofe ————y®

one—hot

trans

za 48 &8 =3c] loa 1za

Unrolling Depth Unro"ing depth

26

Supplementing Model Checking

 Main problem
— Verification models generated directly from CFGs are too large

o Strategies
— Use predicate abstraction and refinement [Slam, Blast]

» Despite localization techniques, this frequently blows up [Jain et al. 05]
 Does not work well on programs with pointers

— Use light-weight analyses on CFGs in order to reduce size of the
generated verification model

 Program slicing (property-based)

 Range analysis (to bound #bits per variable)

« Constant folding (really helps in context of memory modeling)
— These have helped significantly in reducing model size

« e.g. Range analysis typically provides 80% reduction in #bits
— More recently, we have used “cheap” static program analyses

« Static Invariant Generation

© NEC Labs America, 2006

27

F-Soft Verification Platform

Properties 'Source code H -
(C,...) i .
- Program dlicing
ﬁull pointer derefs ﬁ 9 7
Automated f.rray buf overflows Statlc
checkers Analysis
(Range analysis
1)|‘
Testcase Abstraction
e— | | nvariant
* 1 \\ Generation
\
Ctrex Analysis M odel \
. \
& Refinement Trandator \\ Predicate
l \\ abstraction

M odel Checker
(Verisal) Pr oof

© NEC Labs America, 2006

Static Invariant Generation

« Can prove correctness of many properties [Sankaranarayanan et al. SAS 06]
— Array buffer overflows, null pointer dereferences, ...
— Significant reduction in # properties to be passed to model checker

 Can reduce search space during model checking [Ganai & Gupta ICCAD 06]
— Additional constraints to the SAT solver improve performance
« Can avoid divergence on loops in predicate abstraction [Jain et al. CAV 06]

— Known relationships can reduce number of spurious counterexamples

int A[N], B[N]; int A[N], B[N];
int equals () { void arrayM odel (){
inti=N,j =N inti=N,j =N
int result=1: while (i >0){
while (i >0) { == .
- ——— > |- I nvariants:
= if (i<0||i>=N) 0<i<N
if (A[i]!'=B[j]) 'ERROR(); 0<j<N
result =0; It (J<0|J>=N) i==]
} ERROR() ;
return result ; :
} }
!

© NEC Labs America, 2006

29

Octagon Abstract Domain [Mine et al.]

 Allows discovering invariants of form ax+ by <= c where a, b €
{1, 0, 1}

« Can be computed using standard data flow analysis
— For n program variables
— O(n3) time complexity
— 0O(n?2) space requirements
— Typically, small variable packs are used for fast analysis

© NEC Labs America, 2006

30

Experiments on Industry Programs

Array buffer overflow checks Without Octagon Invariants With Octagon Invariants
KLOC | # #P #P #B # Time | #P #P #B # Time
Checks | py by by None | (sec) | by SA | by by None (sec)
SA SAT | SAT w/ SAT | SAT
Invar
1 0.5 64 32 9 0 23 596 64 0 0 0 15
f2 1.1 16 8 6 0 2 564 16 0 0 0 66
f3 1.1 18 8 5 2 3 572 16 0 2 0 104
f4 1.2 22 10 6 3 3 478 18 1 3 0 195
5 1.2 10 0 0 4 6 584 6 0 4 0 401
f6 1.6 26 8 6 8 4 579 18 0 8 0 197
f7 1.8 28 4 8 4 4 589 12 4 4 0 325
8 3.6 280 267 13 0 0 144 280 0 0 0 140

Note: #P by SA = # Proofs by Static Analysis, # P by SAT = #Proofs by SAT,
#B by SAT = # Bugs by SAT, # None = unresolved

« Several interesting improvements with Octagon invariants
— Number of unresolved (#None) checks is reduced (here, 0)
— Provides overall performance improvement
— Last example: not much extra cost for Proofs by SAT

© NEC Labs America, 2006 sl

Invariants and Predicate Abstraction
[Jain et al. CAV 06]

 Main idea: Predicate abstraction may require many refinement
iterations to discover some of the “cheap” invariants

— Generate invariants statically as a pre-processing step

 Invariants are used to improve:
— Abstraction computation: Transition relation strengthening
— Refinement

 Weakest pre-conditions provide savings in abstraction
computation, but can diverge on many loops

« External loop invariants can frequently overcome this limitation
 Experimental Results
— Reduction in # abstraction-refinement iterations by 54%
— Reduction in maximum # predicates (at a program location) by 58%
— Reduction in overall runtime by 69%

© NEC Labs America, 2006

32

Disjunctive Abstract Domains: Path Sensitive Analysis

Int X[10];
Int len, ok;

If (len >=0 && len < 10)

ok = 1;
else Required Invariant:

ok :‘O/ (ok=0) OR (ok =1 and 0 < len< 10)
i (oK)

X[len] = O;

Flow-sensitive analysis: (0 <ok<1)
— Fails to prove property
Path-sensitive analysis needed for inferring Disjunctive Invariants

33

© NEC Labs America, 2006

Scalable Path Sensitive Analysis

« Computing disjunctive invariants is expensive
— Each path can produce a disjunct
— Exponential number of paths
— Unnecessary in practice

« CFG Elaborations [Sankaranarayanan et al. SAS 2006]
— Fixed number (user-specified) of disjuncts
— Heuristic merging of disjuncts at join points
— Provides a good performance vs. accuracy tradeoff

© NEC Labs America, 2006

34

lll. Verifying Multi-threaded C Programs

© NEC Labs America, 2006

Verifying Multi-Threaded Programs with Locks

Thread Thread
T1 | |72 I I
SN~—— -
S
@ Augment threads by keeping lock
acquisition history
o~
~ N

MODEL CHECKER
(F-Soft)

* Verification of multi-threaded program with nested lock access is
reduced to model checking individual threads [Kahlon et al. CAV 05]

— Avoids state explosion arising due to concurrency
— Verification is exact for a rich class of properties (data races, deadlocks)

* Model checking LTL properties for threads with nested locks
[Kahlon et al. LICS 06]

© NEC Labs America, 2006 36

Overall Architecture for Handling Threads

Range Analysis

Constant Folding

Merging/inlining

Slicing

Model Generation

Context-Sensitive SA

Model Checking

© NEC Labs America, 2006

.

.

94 \

Scheduler

L1l

g}
g}
g}
g}

[

Favorite SMC

g}
g}
g}
g}

J

37

Partial Order Reduction with SAT-based BMC

[Kahlon & Gupta CAV 06]

« Naive scheduler: Nondeterministic choice of thread to execute

« POR Scheduler: At each global state, only transitions belonging to a
minimal conditional stubborn set are explored [Godefroid 97]
e Auxiliary predicates
— access-now(T,s): true at control locations pc where T reads or writes s

— access-now-or-later(T,s): true at control location pc if T can access s at a
control location reachable from pc

— Accomplished via static analysis of the CFG for T
o Conflict relation
— Conflict(T,, T,) = access-now(T,, s) A access-now-or-later(T,, s)
« POR+Transactions (based on lock acquisition history): Conflict relation is
modified to take into account locks on paths to “later”

— For example, if a lock |1 is already held by T,, then paths in T, where |1 needs to
be acquired will not be considered

» Scheduler (circuit model)
— Build a circuit to compute the transitive closure for the conflict relation
— Build a circuit to compute the minimal stubborn set

© NEC Labs America, 2006 38

Case Study: Daisy file system

Concurrent software benchmark

1 KLOC of C-like Java (manually converted to C)
Simple data structures

Fine-grained concurrency

Variety of correctness properties

[Qadeer 04]

» Experimental results for finding 3 known races, using SAT-based BMC

Interleaved POR POR +
Execution Reduction Transactions
Race 20min 3sec 1.4sec
1 6.5MB 5.7MB 5.5MB
Race 10hrs 12min
2 950MB 517Mb
Race 40hrs 1.67hrs
3 1870MB 902MB

© NEC Labs America, 2006

Conclusions

Significant recent advances in SAT-based verification
— Falsification Engines: BMC and variants
— Proof Engines: Proof-based abstractions, SAT-based UMC

— Also provide a framework for improving performance using SMT
Solvers

» Accuracy of program modeling and efficiency of analysis are
crucial in practice

— Modeling choices depend on analysis engines

« Significant benefit in supplementing model checking with static
program analysis

— Loosely integrated so far, current efforts focused on tighter
integration to provide a “knob” to trade off accuracy for scalability

 F-Soft tool has been applied on many examples
— Publicly available benchmarks: PPP, TCAS, bftpd, bc, Daisy, ...
— Industry case studies provided by NEC business groups

© NEC Labs America, 2006

40

Future Directions

 Handling large arrays and loops, pointers, ...

* Global analysis: How to choose the right level of granularity?
— The problems are too large when we start from main function
— Many standard bugs can be checked locally
* How local?
* Need to model calling context (environment)

* Inter-procedural analysis

* Verifying multi-threaded programs

© NEC Labs America, 2006

41

	Verifying C Programs Using SAT-based Model Checking
	Outline
	I. SAT-based Verification Methods
	Hardware Circuit Model (Symbolic LTS)
	Property Verification
	NEC Hybrid (Circuit+CNF) SAT Solver
	NEC SAT Solver Results (w/Circuit heuristic JFT)
	Bounded Model Checking (BMC)
	Improving BMC Performance
	Efficient Memory Model: To Handle Embedded Memories
	BMC with SAT Proof Analysis
	Proof-Based Iterative Abstraction (PBIA) using SAT
	Symbolic Model Checking
	Enumerating All Solutions
	SAT-based UMC using Circuit Cofactoring (CC)
	NEC’s VeriSol (DiVer) Verification Platform
	NEC’s High Level Synthesis Framework
	II. Verifying Sequential C Programs
	Model Checking Software Programs
	Intermediate Representation
	Modeling C Programs: An Example
	Automatic Translation of CFG to Circuit Model
	Modeling Pointers
	Back-end Verification of Software Models
	Case Study for SAT-based BMC
	Results for PPP Case Study
	Supplementing Model Checking
	F-Soft Verification Platform
	Static Invariant Generation
	Octagon Abstract Domain [Mine et al.]
	Experiments on Industry Programs
	Invariants and Predicate Abstraction
	Disjunctive Abstract Domains: Path Sensitive Analysis
	Scalable Path Sensitive Analysis
	III. Verifying Multi-threaded C Programs
	Verifying Multi-Threaded Programs with Locks
	Overall Architecture for Handling Threads
	Partial Order Reduction with SAT-based BMC
	Case Study: Daisy file system
	Conclusions
	Future Directions

