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Dense Wireless Sensor Networks

Applications
• Environmental monitoring: large scale data collection

• Surveillance: alarm propagation, data storage and query

Key Features
• Large in quantity; deployed in bulk

• Close proximity; often duty-cycled

• Locations often random rather than precisely controlled

Challenges in Modeling
• Scalability, complexity, accuracy, ...
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Outline of the Talk

The case of computing network lifetime

• Fluid-based flow maximization models

• Problems that arise in a dense network

• Our approach and results

Stability and Robustness

• Robust solutions

• Practical implications
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Network Lifetime
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Key elements
• Nodes start with fixed initial energy

Ei in joule
• Energy model: energy in

transmission of a bit
• Data generation rate ri in bits/unit

time
• Lifetime maximized over all possible

routing strategies
• Flows and flow distribution fi,j, in

bits
• Reduced to fluid-based flow

maximization
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Basic Assumptions

• Bits divisible

• Transmission range adjustable

• Energy model: transmission, reception and sensing/processing, no
idling

• Operational lifetime: time only elapses during active tx and rx

• Communication overhead abstracted into communication energy per
bit (may vary with specific physical layer setting)
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A Linear Programming Approach

max t or
∑

i∈M

fi,C

s. t.
∑

j∈M

fi,j + fi,C =
∑

j∈M

fj,i + rit

∑
j∈M

fi,je
i,j
tx + fi,Ce

i,C
tr +

∑
j∈M

fj,ierx

+ rites ≤ Ei ∀i ∈ M

fi,j ≥ 0 ∀i, j ∈ M

fi,i = 0 ∀i ∈ M

fC,i = 0 ∀i ∈ M

Observation
• Produces the optimal

flow pattern as a
solution

• Constructed using
precise knowledge of
sensor locations

• Varies from one
deployment to another

• Related: [Bhardwaj and
Chandrakasan 2002]
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A Continuous Model

Motivation
• Maximization for node distributions, not particular outcomes or realiza-

tions of some distribution

• If possible, we will be able to study things like optimal node distribution

Key idea
• Extremely densely deployed field: spatially continuous

• Continuous node density ρ(σ) in number per unit space

• Continuous information density i(σ) in bits per unit time per unit space

• Continuous energy density e(σ) in joule per unit space

• Optimize over all flow allocations f(σ, σ
′
), in bits per unit space-squared
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Problem Formulation

max
f

t ·

∫
σ∈A

i(σ)dσ ∼ max
f

t

s.t.
∫
σ
′
∈A

f(σ, σ
′
)dσ

′
+

∫
σ
′
∈C

f(σ, σ
′
)dσ

′
=

∫
σ
′
∈A

f(σ
′
, σ)dσ

′
+ i(σ) · t

∫
σ
′
∈A

f(σ, σ
′
)etx(σ, σ

′
)dσ

′
+

∫
σ
′
∈C

f(σ, σ
′
)etx(σ, σ

′
)dσ

′

+

∫
σ
′
∈A

f(σ
′
, σ)erxdσ

′
+ t · esi(σ) ≤ e(σ), ∀σ ∈ A

f(σ, σ
′
) ≥ 0, ∀σ, σ

′
∈ A ∪ C

f(σ, σ
′
) = 0, ∀σ = σ

′

f(σ, σ
′
) = 0, ∀σ ∈ C,∀σ

′
∈ A .
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Some Comments

• Total amount delivered to the collector is∫
σ∈A

∫
σ
′
∈C

f(σ, σ
′
)dσdσ

′
.

• Maximizing lifetime is equivalent to maximizing total amount of data
delivered: ∫

σ∈A

∫
σ
′
∈C

f(σ, σ
′
)dσdσ

′
=

∫
σ∈A

i(σ)dσ · t,

• Can completely eliminate t from the formulation: problem (P1)
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Solution Technique: Discretization

Consider the objective function:

maxf

∫
σ∈A

∫
σ
′
∈C

f(σ, σ
′
)dσdσ

′
=

∫
σ∈A

f(σ, σC)Cdσ

=
M∑

m=0

∫
σ∈Am

f(σ, σC)Cdσ =
M∑

m=0

f(σm, σC)AmC,

where σm (σC) is some location within area Am (C).
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Discretization

• Creating a partition of the
field, with regular/irregular
cells

• Energy and information
concentrated on a single
point in each cell

• Computation done for a
network of finite points

• Can approximate using a
set of grid points
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Choice of Grid Points

Consider a linear network [0, L]

• X: the n-element random vector denoting the location of n sensors

• pX(x): pdf of the deployment

• C(X): the objective function value, or the capacity

• We are interested in E[C(X)]

Using linear programs constructed using specific deployment lay-
outs, we can only approximate by averaging over many realizations
of the deployment
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On the other hand...

E[C(X)] =

∫
[0,L]n

C(x)pX(x)dx = C(xo)pX(xo)L
n,

• Discretization provides one approximation for xo

• It remains to determine the regions and the points – G1

• G2 – use E[X] to approximate xo: closed form solution in general not
available
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Example

Uniform distribution, L = 1, n = 4

• G1: Equal size squares/cells (0.125,0.375,0.625,0.875)

• G2: Expected position of nodes (0.2,0.4,0.6,0.8)

G1

G2
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Discussion and Critique

• A generalization of the original fluid-flow model: continuous functions
become impulse functions with known locations

• Our model computes the average capacity of the network for a distri-
bution rather than for a particular deployment

• Grid solution approach leads to coarse or fine-grained approximation

• Needs to be modified to take into account in-network processing that
violate flow conservation

• May be used jointly with distributed data compression by also optimiz-
ing over data rate allocation
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Numerical Experiments

• Accuracy of our method

• How sensitive it is to a range of parameters

• Compare against averages of 100 random instances of random de-
ployment

Energy model:

etr(r) = (et + edr
α) J/bit

et = 45 × 10−9; erx = 135 × 10−9; es = 50 × 10−9 J/bit

ed = 10 × 10−12 J/bit-meterα
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Average over 100 Random Deployment

α AVG 95% C.I. Min Max
2 46615 [46292 , 46938] 43593 49577
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Varying Grid Size
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Number of Grids

Average capacity for several 
random deployments

Result of optimization on G1 for different grid sizes 

Higher value of 95% C. I.
with 100 sample paths    

 Result of optimization on G2 for different grid sizes 

• 225 nodes uniformly
distributed over
1000 × 1000

• Good accuracy; mostly
within 95% C.I.

• Coarser-grained
computation remains
accurate

• Seconds vs. hours
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Varying Field Size

• 225 nodes

• Grid set to 225

Field size AVG P1 on G1 %error (G1) P1 on G2 % error (G2)
102 10138000 10137000 -0.01% 10147000 0.08%

10002 46615 46885 0.58% 46567 -0.10%
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Varying Number of Sensor Nodes
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Average Result
Optimization P1

• Varying number of
nodes does not affect
computation based on
G1 for a fixed granularity

• Approximation remains
good

• Error large when
number of nodes very
small

• Good for dense
networks
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Non-Uniform Node Distribution

X
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Z
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A

B

C

D

• Linear sloped node
distribution; 225 nodes

• G1: partitioning the field into
differentially-sized
rectangles, each with
identical energy

(AB, CD) P1 on G1 AVG % error
(2c,0) 57162 57322 -0.28%

(1.75c,0.25c) 54602 54769 -0.3%
(1.5c,0.5c) 52013 52215 -0.38%

(1.25c,0.75c) 49431 49424 0.014%
(1c,1c) 46885 46615 0.58%
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Some Applications

Due to advantage in computation

• Optimal routing pattern

• Optimal node distribution

• Joint routing and data compression
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Stability and Robustness

Consider LP1 and LP2:

• LP1 (the nominal version): LP using discretization, e.g., G1, for some
distribution.

• LP2 (the perturbed version): LP using some random realization of the
same distribution

LP2LP1
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Stability and Robustness (Cont’d)

Stability property of LP1:

• How much does the optimal value of LP2 differ from LP1

• Whether solving LP1 provides good approximation

• Whether we would be able to bound the error

Robustness property of LP1:

• Whether optimal solution (flow pattern) to LP1 remain feasible under
constraints of LP2

• Whether solutions obtained from LP1 are of practical value
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Average Error in Using LP1

Using the previous linear network example:

ē =

∫
[0,L]n

(C(x
′
) − C(x))pX(x)dx.

where C(.) is the objective function value.

• The difference C(x
′
) − C(x) can be bounded using known results

[Murty 1983]

• However, the bounds are functions of the solutions to the dual of LP1
and LP2

• We do not yet have better estimates
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Robustness

A robust solution to LP1:

• feasible under LP1 and

• only violates any constraint under LP2 by a small tolerance δ when x

is within a bounded range of x
′

Why are we interested:

• Robustness: whether solutions obtained via the grid based computa-
tion can be implemented in a random layout

• Because of the uncertainty in the actual node locations, we may be
more interested in a robust solution rather than the optimal solution
under LP1

• Also interested in the objective value difference between the two
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Robustness (Cont’d)

• Apply robust optimization theory [Ben-Tal and Nemirovski 1997-1999]:
location uncertainty (perturbation ε) −→ uncertainty in the coefficients
of the constraint matrix of LP1

• Seek a solution y that will be feasible for LP1 and will violate any con-
straint in LP2 by at most the tolerance δ

• Obtained by adding extra constraints to LP1

• Example: linear network with 50 nodes; δ = 5%

ε nominal robust (LP1) robust (LP2) diff.
1% 573,750 573,750 568,230 -0.96%

10% 573,750 561, 420 534,680 -4.76%
25% 573,750 511,540 487,180 -4.76%
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Discussion and Conclusion

• Presented a fluid-flow model for dense sensor networks

• Continuous input functions

• Lifetime/Information estimates for a distribution of nodes

• Computational advantage

• Stability and robustness properties

Discussion

• The legitimacy of studying grid networks?

• Distributed implementation?
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