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Dense Wireless Sensor Networks

Applications

e Environmental monitoring: large scale data collection
e Surveillance: alarm propagation, data storage and query

Key Features

e Large in quantity; deployed in bulk
e Close proximity; often duty-cycled
e Locations often random rather than precisely controlled

Challenges in Modeling

e Scalability, complexity, accuracy, ...
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Outline of the Talk

The case of computing network lifetime

e Fluid-based flow maximization models
e Problems that arise in a dense network
e Our approach and results

Stability and Robustness

e Robust solutions
e Practical implications
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Network Lifetime

Key elements

Nodes start with fixed initial energy
F; in joule

Energy model: energy In
transmission of a bit

Data generation rate r; in bits/unit
time

Lifetime maximized over all possible
routing strategies

Flows and flow distribution fz-,j, N
bits

Reduced to fluid-based flow
maximization
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Basic Assumptions

e Bits divisible

e Transmission range adjustable

e Energy model: transmission, reception and sensing/processing, no
idling

e Operational lifetime: time only elapses during active tx and rx

e Communication overhead abstracted into communication energy per
bit (may vary with specific physical layer setting)
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A Linear Programming Approach

Observation

max ¢ or Y fic e Produces the optimal
€M flow pattern as a
s. t. > fijt+fic= ) fjitmi solution
jeM jeM

. _ e Constructed using
2 Tiged + ficen + 2_ Tiierz  precise knowledge of
]EM_I_ rites < B Vi e ]\}EM sensor locations
£>0 VijeM e Varies from one

)= ’ deployment to another
fiig=0 YieM e Related: [Bhardwaj and
fci=0 VieM Chandrakasan 2002]
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A Continuous Model

Motivation
e Maximization for node distributions, not particular outcomes or realiza-
tions of some distribution
e If possible, we will be able to study things like optimal node distribution

Key idea
e Extremely densely deployed field: spatially continuous
e Continuous node density p(o) in number per unit space
e Continuous information density 7(o) in bits per unit time per unit space
e Continuous energy density e(o) in joule per unit space
e Optimize over all flow allocations f (o, (7/), in bits per unit space-squared
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Problem Formulation

max t-/ i(oc)do ~ maxt
f occA f

S.t. /g’eA f (o, al)dal + /J,ch(a, a/)da/ = /O,EAf(al, a)da/ + (o) - t

/O'IEA f (o, 0'/)67533(0‘, 0‘/)d0‘/ + / Cf(O', O‘/)em(a, O‘I)d()'/

0/6

‘|‘/ f(al,()')em;do'/ +t-esi(o0) <e(o), VoeA
oeA

f(a,a/)ZO, VJ,U/EAUC
f (o, 0/) =0, Vo= o
f(a,a,)ZO, VUEC’,VJ/EA.
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Some Comments

e Total amount delivered to the collector is

/ // f(o, O'/)dO'dO'/.
oceAJo eC

e Maximizing lifetime is equivalent to maximizing total amount of data
delivered:

/ /
o )dod =/ (0)do - t,
/aeA/o’eC flo,o )dodo aeAZ(a) ’

e Can completely eliminate ¢ from the formulation: problem (P1)
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Solution Technique: Discretization

Consider the objective function:
/ /
max ,o )dod =/ : Cd
/ /aeA /o’ec flo,0)dodo aeAf(a oc)Cdo

M M
— mZ::o /0 _, J(e00)Cdo = S flom, 00)AmC,

m=0

where om, (o) Is some location within area A, (C).
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Discretization

Creating a partition of the
field, with regular/irregular

cells
Energy and information

concentrated on a single

point in each cell
Computation done for a

network of finite points
Can approximate using a

set of grid points

:

.

\1\0\:\00/
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Choice of Grid Points

Consider a linear network [0, L]

e X: the n-element random vector denoting the location of n sensors
e py (x): pdf of the deployment

e C'(X): the objective function value, or the capacity

e We are interested in E[C(X)]

Using linear programs constructed using specific deployment lay-
outs, we can only approximate by averaging over many realizations
of the deployment
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On the other hand...

BlC(X)) = |

o oy C@Px @)z = Clao)px (o) L,

e Discretization provides one approximation for z,
e It remains to determine the regions and the points — G1

e G2 —use E[X] to approximate x,: closed form solution in general not
available
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Example

Uniform distribution, L =1, n =4

e G1: Equal size squares/cells (0.125,0.375,0.625,0.875)
e G2: Expected position of nodes (0.2,0.4,0.6, 0.8)

Gl ® [ ] [ ] [ ]

G2 [ ] [ ] [ ] [ ]
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Discussion and Critique

A generalization of the original fluid-flow model: continuous functions
become impulse functions with known locations

Our model computes the average capacity of the network for a distri-
bution rather than for a particular deployment

Grid solution approach leads to coarse or fine-grained approximation

Needs to be modified to take into account in-network processing that
violate flow conservation

May be used jointly with distributed data compression by also optimiz-
Ing over data rate allocation
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Numerical Experiments

e Accuracy of our method
e How sensitive it is to a range of parameters

e Compare against averages of 100 random instances of random de-
ployment

Energy model:

etr(r) = (ex + eyr®)  Jibit
et =45x1077; e =135%x10"7; s =50x 107 J/hit
e; = 10 x 10712 J/bit-meter®
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Average over 100 Random Deployment

a | AVG 95% C.I. Min Max
2 | 46615 | [46292 , 46938] | 43593 | 49577
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Varying Grid Size

x 10
4.8
4. 75 Higher value of 95% C. I.
with 100 sample paths
Average capacity for several
random deployments
4.7 \
—- -© 9 )
4.65 g ¢
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Result of optimization on G2 for different grid sizes

Result of optimization on G1 for different grid sizes

L L L
20 40 60

Il Il Il Il Il Il Il Il
80 100 120 140 160 180 200 220
Number of Grids

225 nodes uniformly
distributed over

1000 x 1000
Good accuracy; mostly

within 95% C.I.
Coarser-grained

computation remains

accurate
Seconds vs. hours
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Varying Field Size

e 225 nodes
e Grid set to 225

Field size AVG P1on Gl | %error (G1) | P1on G2 | % error (G2)

107 10138000 | 10137000 -0.01% 10147000 0.08%

1000~ 46615 46885 0.58% 46567 -0.10%
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Varying Number of Sensor Nodes

10 | e Varying number of
-~ Opimgaon nodes does not affect
* computation based on

G1 for a fixed granularity
e Approximation remains

good

49F

>
©

»
3

InformationCapacity

e Error large when

number of nodes very
small

* e Good for dense

. _ - _ networks

Number of Nodes
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Non-Uniform Node Distribution

Z .
e Linear sloped node
By - ___ 5 distribution; 225 nodes
! T e G1: partitioning the field into
/ A y2 | Y R . .
(0,0 L7 2 7(0.1000 differentially-sized
rectangles, each with
I identical energy
J (1000,00 l'(1000,1000)

(AB,CD) PlonGl | AVG | % error
(2¢,0) 57162 | 57322 | -0.28%
(1.75¢,0.25¢) | 54602 | 54769 | -0.3%
(1.5¢,0.5¢) 52013 | 52215 | -0.38%
(1.25¢,0.75¢) | 49431 | 49424 | 0.014%
(1lc, 1¢) 46885 | 46615 | 0.58%
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Some Applications

Due to advantage in computation

e Optimal routing pattern
e Optimal node distribution
e Joint routing and data compression
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Stability and Robustness

Consider LP1 and LP2:
e LP1 (the nominal version): LP using discretization, e.g., G1, for some
distribution.
e LP2 (the perturbed version): LP using some random realization of the
same distribution

L P1 L P2
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Stability and Robustness (Cont'd)

Stability property of LP1.:

e How much does the optimal value of LP2 differ from LP1
e Whether solving LP1 provides good approximation
e Whether we would be able to bound the error

Robustness property of LP1:

e Whether optimal solution (flow pattern) to LP1 remain feasible under
constraints of LP2

e Whether solutions obtained from LP1 are of practical value
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Average Error in Using LP1

Using the previous linear network example:

7= [ e (CGD = C@Ipx (@
where C(.) is the objective function value.

e The difference C(x’) — C'(x) can be bounded using known results
[Murty 1983]

e However, the bounds are functions of the solutions to the dual of LP1
and LP2

e \We do not yet have better estimates
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Robustness

A robust solution to LP1:

e feasible under LP1 and

e only violates any constraint under LP2 by a small tolerance § when «
. . . /
IS within a bounded range of x

Why are we interested:
e Robustness: whether solutions obtained via the grid based computa-
tion can be implemented in a random layout

e Because of the uncertainty in the actual node locations, we may be
more interested in a robust solution rather than the optimal solution
under LP1

e Also interested in the objective value difference between the two
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Robustness (Cont'd)

e Apply robust optimization theory [Ben-Tal and Nemirovski 1997-1999].
location uncertainty (perturbation ¢€) — uncertainty in the coefficients
of the constraint matrix of LP1

e Seek a solution y that will be feasible for LP1 and will violate any con-
straint in LP2 by at most the tolerance ¢

e Obtained by adding extra constraints to LP1
e Example: linear network with 50 nodes; § = 5%

€ nominal | robust (LP1) | robust (LP2) diff.
1% | 573,750 573,750 568,230 -0.96%
10% | 573,750 | 561, 420 534,680 -4.76%
25% | 573,750 511,540 487,180 -4.76%

IPAM SN’07 M. Liu, EECS, University of Michigan 26



Discussion and Conclusion

e Presented a fluid-flow model for dense sensor networks
e Continuous input functions

e Lifetime/Information estimates for a distribution of nodes
e Computational advantage

e Stability and robustness properties

Discussion

e The legitimacy of studying grid networks?
e Distributed implementation?
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