

Modeling a Dense Wireless Sensor Network: Complexity, Stability and Robustness

Mingyan Liu
(Joint work with Enrique J. Duarte-Melo and Archan Misra)

Electrical Engineering and Computer Science University of Michigan, Ann Arbor

January 11, 2007

Dense Wireless Sensor Networks

Applications

- Environmental monitoring: large scale data collection
- Surveillance: alarm propagation, data storage and query

Key Features

- Large in quantity; deployed in bulk
- Close proximity; often duty-cycled
- Locations often random rather than precisely controlled

Challenges in Modeling

Scalability, complexity, accuracy, ...

Outline of the Talk

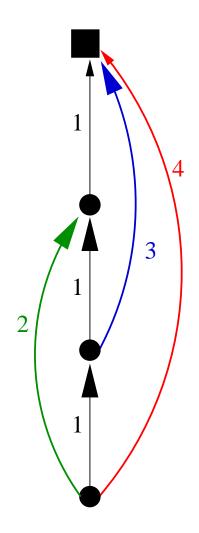
The case of computing network lifetime

- Fluid-based flow maximization models
- Problems that arise in a dense network
- Our approach and results

Stability and Robustness

- Robust solutions
- Practical implications

Network Lifetime



Key elements

- Nodes start with fixed initial energy E_i in joule
- Energy model: energy in transmission of a bit
- Data generation rate r_i in bits/unit time
- Lifetime maximized over all possible routing strategies
- Flows and flow distribution $f_{i,j}$, in bits
- Reduced to fluid-based flow maximization

Basic Assumptions

- Bits divisible
- Transmission range adjustable
- Energy model: transmission, reception and sensing/processing, no idling
- Operational lifetime: time only elapses during active tx and rx
- Communication overhead abstracted into communication energy per bit (may vary with specific physical layer setting)

A Linear Programming Approach

$$\begin{array}{ll} \max & t \quad \text{or} \quad \sum\limits_{i \in M} f_{i,C} \\ \text{s. t.} & \sum\limits_{j \in M} f_{i,j} + f_{i,C} = \sum\limits_{j \in M} f_{j,i} + r_i t \\ & \sum\limits_{j \in M} f_{i,j} e_{tx}^{i,j} + f_{i,C} e_{tr}^{i,C} + \sum\limits_{j \in M} f_{j,i} e_{rx} \\ & + r_i t e_s \leq E_i \quad \forall i \in M \\ & f_{i,j} \geq 0 \quad \forall i,j \in M \\ & f_{i,i} = 0 \quad \forall i \in M \\ & f_{C,i} = 0 \quad \forall i \in M \\ \end{array}$$

Observation

- Produces the optimal flow pattern as a solution
- Constructed using precise knowledge of sensor locations
- Varies from one deployment to another
- Related: [Bhardwaj and Chandrakasan 2002]

A Continuous Model

Motivation

- Maximization for node distributions, not particular outcomes or realizations of some distribution
- If possible, we will be able to study things like optimal node distribution

Key idea

- Extremely densely deployed field: spatially continuous
- Continuous node density $\rho(\sigma)$ in number per unit space
- Continuous information density $i(\sigma)$ in bits per unit time per unit space
- Continuous energy density $e(\sigma)$ in joule per unit space
- Optimize over all flow allocations $f(\sigma, \sigma')$, in bits per unit space-squared

Problem Formulation

$$\begin{aligned} & \max_{f} \quad t \cdot \int_{\sigma \in A} i(\sigma) d\sigma \ \sim \quad \max_{f} \ t \\ & \text{s.t.} \quad \int_{\sigma' \in A} f(\sigma, \sigma') d\sigma' + \int_{\sigma' \in C} f(\sigma, \sigma') d\sigma' = \int_{\sigma' \in A} f(\sigma', \sigma) d\sigma' + i(\sigma) \cdot t \\ & \int_{\sigma' \in A} f(\sigma, \sigma') e_{tx}(\sigma, \sigma') d\sigma' + \int_{\sigma' \in C} f(\sigma, \sigma') e_{tx}(\sigma, \sigma') d\sigma' \\ & + \int_{\sigma' \in A} f(\sigma', \sigma) e_{rx} d\sigma' + t \cdot e_{s} i(\sigma) \leq e(\sigma), \quad \forall \sigma \in A \end{aligned}$$

$$\begin{aligned} & f(\sigma, \sigma') \geq 0, \quad \forall \sigma, \sigma' \in A \cup C \\ & f(\sigma, \sigma') = 0, \quad \forall \sigma = \sigma' \\ & f(\sigma, \sigma') = 0, \quad \forall \sigma \in C, \forall \sigma' \in A \ . \end{aligned}$$

Some Comments

Total amount delivered to the collector is

$$\int_{\sigma \in A} \int_{\sigma' \in C} f(\sigma, \sigma') d\sigma d\sigma'.$$

 Maximizing lifetime is equivalent to maximizing total amount of data delivered:

$$\int_{\sigma \in A} \int_{\sigma' \in C} f(\sigma, \sigma') d\sigma d\sigma' = \int_{\sigma \in A} i(\sigma) d\sigma \cdot t,$$

• Can completely eliminate t from the formulation: problem (P1)

Solution Technique: Discretization

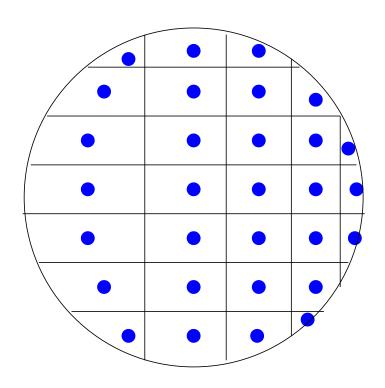
Consider the objective function:

$$\max_{f} \int_{\sigma \in A} \int_{\sigma' \in C} f(\sigma, \sigma') d\sigma d\sigma' = \int_{\sigma \in A} f(\sigma, \sigma_{C}) C d\sigma$$
$$= \sum_{m=0}^{M} \int_{\sigma \in A_{m}} f(\sigma, \sigma_{C}) C d\sigma = \sum_{m=0}^{M} f(\sigma_{m}, \sigma_{C}) A_{m} C,$$

where σ_m (σ_C) is some location within area A_m (C).

Discretization

- Creating a partition of the field, with regular/irregular cells
- Energy and information concentrated on a single point in each cell
- Computation done for a network of finite points
- Can approximate using a set of grid points



Choice of Grid Points

Consider a linear network [0, L]

- *X*: the *n*-element random vector denoting the location of *n* sensors
- $p_X(x)$: pdf of the deployment
- C(X): the objective function value, or the *capacity*
- We are interested in E[C(X)]

Using linear programs constructed using specific deployment layouts, we can only approximate by averaging over many realizations of the deployment

On the other hand...

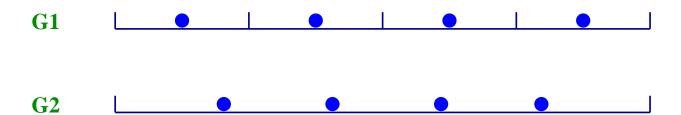
$$E[C(X)] = \int_{[0,L]^n} C(x) p_X(x) dx = C(x_o) p_X(x_o) L^n,$$

- Discretization provides one approximation for x_o
- It remains to determine the regions and the points G1
- G2 use E[X] to approximate x_o : closed form solution in general not available

Example

Uniform distribution, L=1, n=4

- G1: Equal size squares/cells (0.125, 0.375, 0.625, 0.875)
- G2: Expected position of nodes (0.2, 0.4, 0.6, 0.8)



Discussion and Critique

- A generalization of the original fluid-flow model: continuous functions become impulse functions with known locations
- Our model computes the average capacity of the network for a distribution rather than for a particular deployment
- Grid solution approach leads to coarse or fine-grained approximation
- Needs to be modified to take into account in-network processing that violate flow conservation
- May be used jointly with distributed data compression by also optimizing over data rate allocation

Numerical Experiments

- Accuracy of our method
- How sensitive it is to a range of parameters
- Compare against averages of 100 random instances of random deployment

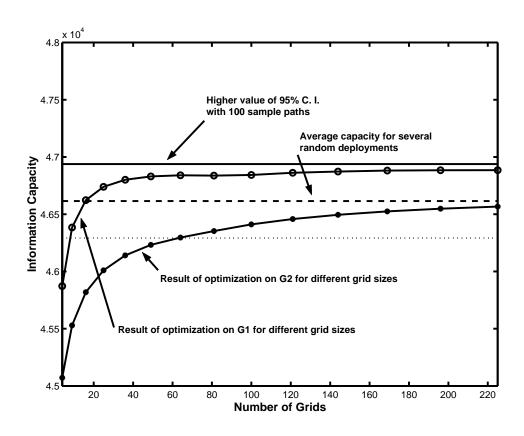
Energy model:

$$e_{tr}(r) = (e_t + e_d r^{\alpha})$$
 J/bit $e_t = 45 \times 10^{-9}$; $e_{rx} = 135 \times 10^{-9}$; $e_s = 50 \times 10^{-9}$ J/bit $e_d = 10 \times 10^{-12}$ J/bit-meter ^{α}

Average over 100 Random Deployment

α	AVG	95% C.I.	Min	Max
2	46615	[46292 , 46938]	43593	49577

Varying Grid Size



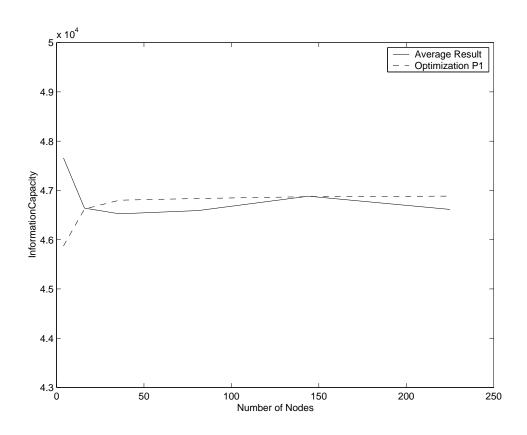
- 225 nodes uniformly distributed over
 1000 × 1000
- Good accuracy; mostly within 95% C.I.
- Coarser-grained computation remains accurate
- Seconds vs. hours

Varying Field Size

- 225 nodes
- Grid set to 225

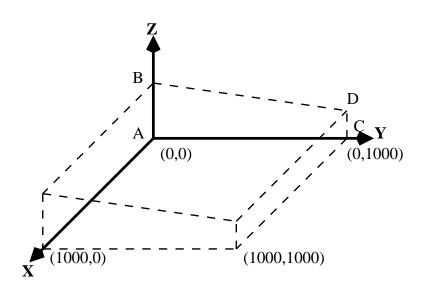
Field size	AVG	P1 on G1	%error (G1)	P1 on G2	% error (G2)
10 ²	10138000	10137000	-0.01%	10147000	0.08%
1000 ²	46615	46885	0.58%	46567	-0.10%

Varying Number of Sensor Nodes



- Varying number of nodes does not affect computation based on G1 for a fixed granularity
- Approximation remains good
- Error large when number of nodes very small
- Good for dense networks

Non-Uniform Node Distribution



- Linear sloped node distribution; 225 nodes
- G1: partitioning the field into differentially-sized rectangles, each with identical energy

$(\overline{AB},\overline{CD})$	P1 on G1	AVG	% error
(2c, 0)	57162	57322	-0.28%
(1.75c, 0.25c)	54602	54769	-0.3%
(1.5c, 0.5c)	52013	52215	-0.38%
(1.25c, 0.75c)	49431	49424	0.014%
(1c,1c)	46885	46615	0.58%

Some Applications

Due to advantage in computation

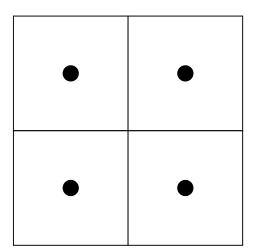
- Optimal routing pattern
- Optimal node distribution
- Joint routing and data compression

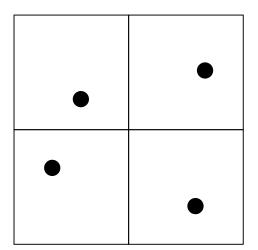
Stability and Robustness

Consider LP1 and LP2:

- LP1 (the nominal version): LP using discretization, e.g., G1, for some distribution.
- LP2 (the perturbed version): LP using some random realization of the same distribution

LP1 LP2





Stability and Robustness (Cont'd)

Stability property of LP1:

- How much does the optimal value of LP2 differ from LP1
- Whether solving LP1 provides good approximation
- Whether we would be able to bound the error

Robustness property of LP1:

- Whether optimal solution (flow pattern) to LP1 remain feasible under constraints of LP2
- Whether solutions obtained from LP1 are of practical value

Average Error in Using LP1

Using the previous linear network example:

$$\bar{e} = \int_{[0,L]^n} (C(x') - C(x)) p_X(x) dx.$$

where C(.) is the objective function value.

- The difference $C(x^{\prime})-C(x)$ can be bounded using known results [Murty 1983]
- However, the bounds are functions of the solutions to the dual of LP1 and LP2
- We do not yet have better estimates

Robustness

A robust solution to LP1:

- feasible under LP1 and
- only violates any constraint under LP2 by a small tolerance δ when x is within a bounded range of x'

Why are we interested:

- Robustness: whether solutions obtained via the grid based computation can be implemented in a random layout
- Because of the uncertainty in the actual node locations, we may be more interested in a robust solution rather than the optimal solution under LP1
- Also interested in the objective value difference between the two

Robustness (Cont'd)

- Apply robust optimization theory [Ben-Tal and Nemirovski 1997-1999]: location uncertainty (perturbation ϵ) \longrightarrow uncertainty in the coefficients of the constraint matrix of LP1
- Seek a solution y that will be feasible for LP1 and will violate any constraint in LP2 by at most the tolerance δ
- Obtained by adding extra constraints to LP1
- Example: linear network with 50 nodes; $\delta = 5\%$

ϵ	nominal	robust (LP1)	robust (LP2)	diff.
1%	573,750	573,750	568,230	-0.96%
10%	573,750	561, 420	534,680	-4.76%
25%	573,750	511,540	487,180	-4.76%

Discussion and Conclusion

- Presented a fluid-flow model for dense sensor networks
- Continuous input functions
- Lifetime/Information estimates for a distribution of nodes
- Computational advantage
- Stability and robustness properties

Discussion

- The legitimacy of studying grid networks?
- Distributed implementation?

References

- Bhardwaj and Chandrakasan 2002: "Bounding the lifetime of sensor networks via optimal role assignments", IEEE INFOCOM.
- Murty 1983: Linear Programming, John Wiley and Sons.
- Ben-Tal and Nemirovski 1997: "Robust truss topology design via semidefinite programming", SIAM J. Optimization.
- Ben-Tal and Nemirovski 1998: "Robust convex optimization", *Mathematics of Operations Research*.
- Ben-Tal and Nemirovski 1998: "Robust solutions to uncertain linear programs", Operations Research Letters.

